AUTO EEG



Publications



( Book Chapters | Journal Papers | Conference Papers | Abstracts | Theses and Dissertations | Reports )


Book Chapters

  • Shah, V., Golmohammadi, M., Obeid, I., & Picone, J. (2021). Objective Evaluation Metrics for Automatic Classification of EEG Events. In I. Obeid, I. Selesnick, & J. Picone (Eds.), Biomedical Signal Processing: Innovation and Applications (1st ed., pp. 223-256). Springer. (Download).
  • Golmohammadi, M., Shah, V., Obeid, I., & Picone, J. (2020). Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms. In I. Obeid, I. Selesnick, & J. Picone (Eds.), Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications (1st ed., pp. 233–274). (Download)
  • Obeid, I., & Picone, J. (2018). The Temple University Hospital EEG Data Corpus. In Augmentation of Brain Function: Facts, Fiction and Controversy. Volume I: Brain-Machine Interfaces (1st ed., pp. 394–398). Lausanne, Switzerland: Frontiers Media S.A. (Download).
  • Obeid, I., & Picone, J. (2018). Machine Learning Approaches to Automatic Interpretation of EEGs. In E. Sejdik & T. Falk (Eds.), Signal Processing and Machine Learning for Biomedical Big Data (1st ed., p. 70). Boca Raton, Florida, USA: CRC Press. (Download)

Journal Papers

  • Roy, S., Kiral-Kornek, I., Mirmomeni, M., Mummert, T., Braz, A., Tsai, J., Tang, J., Asif, U., Schaffter, T., Ahsen, M. E., Iwamori, T., Yanagisawa, H., Poonawala, H., Madan, P., Qin, Y., Picone, J., Obeid, I., De Assis Marques, B., Maetschke, Khalaf, R., Rosen-Zvi, M., Stolovitzky, G., & Harrer, S. (2021). Evaluation of Artificial Intelligence Systems for Assisting Neurologists With Fast and Accurate Annotations of Scalp Electroencephalography Data, EBioMedicine, 1–11. (Download).
  • Golmohammadi, M., Harati, A., Lopez, S., Obeid, I., & Picone, J. (2019). Automatic Analysis of EEGs Using Big Data and Hybrid Deep Learning Architectures. Frontiers in Human Neuroscience, 13, 76. (Download)
  • Shah, V., von Weltin, E., Lopez, S., McHugh, J. R., Veloso, L., Golmohammadi, M., Obeid, I., & Picone, J. (2018). The Temple University Hospital Seizure Detection Corpus. Frontiers in Neuroinformatics, 12, 1-6. (Download).
  • Obeid, I. and Picone, J. (2016). The Temple University Hospital EEG Data Corpus. Frontiers in Neuroscience, Section Neural Technology, 10, 1-8. (Download).

Conference Papers

  • Shah, V., Obeid, I., Picone, J., Ekladious, G., Iskander, R., and Roy, Y. (2020). Validation of Temporal Scoring Metrics for Automatic Seizure Detection. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–5). Philadelphia, Pennsylvania, USA. (Download)
  • Golmohammadi, M., Ziyabari, S., Shah, V., Obeid, I., & Picone, J. (2018). Deep Architectures for Spatio-Temporal Modeling: Automated Seizure Detection in Scalp EEGs. Proceedings of the International Conference on Machine Learning and Applications (ICMLA) (pp. 1–6). Orlando, Florida, USA. (Download).
  • Shah, V., Golmohammadi, M., Ziyabari, S., von Weltin, E., Obeid, I., and Picone, J. (2017). Optimizing Channel Selection for Seizure Detection. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-5). Philadelphia, Pennsylvania, USA: IEEE. (Download).
  • Golmohammadi, M., Ziyabari, S., Shah, V., Obeid, I. and Picone, J. (2017). Gated Recurrent Networks for Seizure Detection. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-5). Philadelphia, Pennsylvania, USA: IEEE. (Download).
  • von Weltin, E., Ahsan, T., Shah, V., Jamshed, D., Golmohammadi, M., Obeid, I. and Picone, J. (2017). Electroencephalographic Slowing: A Primary Source of Error in Automatic Seizure Detection. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-5). Philadelphia, Pennsylvania, USA: IEEE. (Download)
  • Yang, S., Lopez, S., Golmohammadi, M., Obeid, I. and Picone, J. (2016). Semi-automated Annotation of Signal Events in Clinical EEG Data. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-5). Philadelphia, Pennsylvania, USA. (Download).
  • Lopez, S., Gross, A., Yang, S., Golmohammadi, M., Obeid, I. and Picone, J. (2016). An Analysis of Two Common Reference Points for EEGs. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-4). Philadelphia, Pennsylvania, USA. (Download).
  • Lopez, S., Suarez, G., Jungreis, D., Obeid, I. and Picone, J. (2015). Automated Identification of Abnormal EEGs. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-4). Philadelphia, Pennsylvania, USA. (Download).
  • Harati, A., Golmohammadi, M., Lopez, S., Obeid, I. and Picone, J. (2015). Improved EEG Event Classification Using Differential Energy. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-4). Philadelphia, Pennsylvania, USA. (Download).
  • Harati, A., Lopez, S., Obeid, I., Jacobson, M., Tobochnik, S. and Picone, J. (2014). THE TUH EEG CORPUS: A Big Data Resource for Automated EEG Interpretation. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1-5). Philadelphia, Pennsylvania, USA. (Download).
  • Harati, A., Choi, S. I., Tabrizi, M., Obeid, I., Jacobson, M. and Picone, J. (2013). The Temple University Hospital EEG Corpus. Proceedings of the IEEE Global Conference on Signal and Information Processing. (pp. 29-32). Austin, Texas, USA. (Download).

Abstracts

  • Rahman, S., Hamid, A., Ochal, D., Obeid, I., & Picone, J. (2020). Improving the Quality of the TUSZ Corpus. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–5). Philadelphia, Pennsylvania, USA. (Download).
  • Hamid, A., Gagliano, K., Rahman, S., Tulin, N., Tchiong, V., Obeid, I., & Picone, J. (2020). The Temple University Artifact Corpus: An Annotated Corpus of EEG Artifacts. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–3). Philadelphia, Pennsylvania, USA. (Download).
  • Shawki, N., Elseify, T., Cap, T., Shah, V., Obeid, I., & Picone, J. (2020). A Deep Learning-Based Real-time Seizure Detection System. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–4). Philadelphia, Pennsylvania, USA. (Download).
  • Lin, R., Marquez, D., Jacobson, M., Castaldi, H., Buckman, S., Shah, V., & Picone, J. (2020). Accuracy of Automated Machine Learning Software in Identifying EEGs with Prolonged Seizures. Annual Meeting of the American Academy of Neurology (AAN), (p. P6.002). Philadelphia, Pennsylvania, USA. (Download).
  • Rahman, S., Miranda, M., Obeid, I., & Picone, J. (2019). Software and Data Resources to Advance Machine Learning Research in Electroencephalography. I. Obeid & J. Picone (Eds.), Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (SPMB) (pp. 1-4). (Download).
  • Capp, N., Campbell, C., Elseify, T., Obeid, I., & Picone, J. (2018). Optimizing EEG Visualization Through Remote Data Retrieval and Asynchronous Processing. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–2). Philadelphia, Pennsylvania, USA. (Download).
  • Shah, V., Anstotz, R., Obeid, I., & Picone, J. (2018). Adapting an Automatic Speech Recognition System to Event Classification of Electroencephalograms. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (pp. 1–4). Philadelphia, Pennsylvania, USA. (Download).
  • Picone, J., Obeid, I., & Harabagiu, S. (2018). Automated Cohort Retrieval from EEG Medical Records. 26th Conference on Intelligent Systems for Molecular Biology (p. 1). Chicago, Illinois, USA. (Download).
  • Lopez, S., Obeid, I. and Picone, J. (2018). Automated Interpretation of Abnormal Adult Electroencephalograms. 26th Conference on Intelligent Systems for Molecular Biology (p. 1). Chicago, Illinois, USA. (Download).
  • Golmohammadi, M., Obeid, I. and Picone, J. (2018). Deep Residual Learning for Automatic Seizure Detection. 26th Conference on Intelligent Systems for Molecular Biology (p. 1). Chicago, Illinois, USA. (Download).
  • Veloso, L., McHugh, J. R., von Weltin, E., Obeid, I. and Picone, J. (2017). Big Data Resources for EEGs: Enabling Deep Learning Research. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (p. 1). Philadelphia, Pennsylvania, USA: IEEE. (Download).
  • Capp, N., Krome, E., Obeid, I. and Picone, J. (2017). Facilitating the Annotation of Seizure Events Through An Extensible Visualization Tool. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (p. 1). Philadelphia, Pennsylvania, USA. (Download).
  • Golmohammadi, M., Shah, V., Lopez, S., Ziyabari, S., Yang, S., Camaratta, J., Obeid, I. and Picone, J. (2017). The TUH EEG Seizure Corpus. American Clinical Neurophysiology Society (ACNS) Annual Meeting (p. 1). Phoenix, Arizona, USA: American Clinical Neurophysiology Society. (Download).
  • Thiess, M., Krome, E., Golmohammadi, M., Obeid, I. and Picone, J. (2016). Enhanced visualizations for improved real-time EEG monitoring. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (p. 1). (Download).
  • Golmohammadi, M., Ziyabari, S., Lopez, S., Krome, E., Thiess, M., Yang, S., Obeid, I. and Picone, J. (2016). EEG Event Detection Using Deep Learning. Big Data to Knowledge All Hands Grantee Meeting (p. 1). Bethesda, Maryland, USA: National Institutes of Health. (Download).
  • Obeid, I., Picone, J. and Harabagiu, S. (2016). Automatic Discovery and Processing of EEG Cohorts from Clinical Records. Big Data to Know ledge All Hands Grantee Meeting (p. 1). Bethesda, Maryland, USA: National Institutes of Health. (Download).
  • Picone, J., Obeid, I. and Harabagiu, S. (2016). Scalable EEG interpretation using Deep Learning and Schema Descriptors. Big Data to Knowledge All Hands Grantee Meeting (p. 1). Bethesda, Maryland, USA: National Institutes of Health. (Download).
  • Harabagiu, S., Goodwin, T., Maldonado, R. and Taylor, S. (2016). Active Deep Learning-Based Annotation of Electroencephalography Reports for Patient Cohort Identification. M. Dunn (Ed.), Big Data to Knowledge All Hands Grantee Meeting (p. 1). Bethesda, Maryland, USA: National Institutes of Health. (Download).
  • Harati, A., Golmohammadi, M., Jacobson, M., Lopez, S., Obeid, I., Picone, J. and Tobochnik, S. (2016). Automatic Interpretation of EEGs for Clinical Decision Support. American Clinical Neurophysiology Society (ACNS) Annual Meeting (p. 1). Orlando, Florida, USA. (Download).
  • Guimaraes Moura, A., Lopez, S., Obeid, I. and Picone, J. (2015). A Comparison of Feature Extraction Methods for EEG Signals. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (p. 1). Philadelphia, Pennsylvania, USA. (Download).
  • Golmohammadi, M., Lopez, S., Obeid, I. and Picone, J. (2015). EEG Event Detection on the TUH EEG Corpus. Big Data to Knowledge All Hands Grantee Meeting (p. 1). Bethesda, Maryland, USA. (Download).
  • Harabagiu, S., Goodwin, T. and Maldonado, R. (2015). Generating and Using a Qualified Medical Knowledge Graph for Patient Cohort Retrieval from Big Clinical Electroencephalography (EEG) Data. Big Data to Knowledge All Hands Grantee Meeting (p. 1). Bethesda, Maryland, USA. (Download).
  • Obeid, I., Harati, A. and Picone, J. (2014). EEG Event Detection Using Big Data. 48th Annual Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, California, USA. (Download).
  • Obeid, I. and Picone, J. (2014). Big Data Archive for EEG Brain Machine Interfaces. DARPA RE-NET Program Review. Scottsdale, Arizona, USA. (Download).
  • Ward, C., Obeid, I., Picone, J. and Jacobson, M. (2013). Leveraging Big Data Resources for Automatic Interpretation of EEGs. Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (SPMB) (p. 1). New York City, New York, USA. (Download).

Theses and Dissertations

  • Shah, V. (2021). Improved Segmentation for Automated Seizure Detection Using Channel-Depedent Posteriors. Temple University. (Download)
  • Lopez, S. (2017). Automated Identification of Abnormal EEGs. Temple University. (Download)

Reports

  • Obeid, I., & Picone, J. (2020). PFI-TT: Software for Automated Real-time Electroencephalogram Seizure Detection in Intensive Care Units. Philadelphia, Pennsylvania, USA. (Download).
  • Ferrell, S., Mathew, V., Refford, M., Tchiong, V., Ahsan, T., Obeid, I., & Picone, J. (2020). The Temple University Hospital EEG Corpus: Electrode Location and Channel Labels. Philadelphia, Pennsylvania, USA. (Download).
  • Ochal, D., Rahman, S., Ferrell, S., Elseify, T., Obeid, I., & Picone, J. (2020). The Temple University Hospital EEG Corpus: Annotation Guidelines. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I., Picone, J., & Harabagiu, S. (2019). Automatic Discovery and Processing of EEG Cohorts from Clinical Records. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I., & Picone, J. (2019). PFI-TT: Software for Automated Real-time Electroencephalogram Seizure Detection in Intensive Care Units. Philadelphia, Pennsylvania, USA. (Download).
  • Ferrell, S., Jakielaszek, L., Elseify, T., & Picone, J. (2019). The Temple University Hospital EEG Corpus: Annotation File Formats. Philadelphia, Pennsylvania, USA. (Download).
  • Harabagiu, S., Obeid, I., & Picone, J. (2018). Scalable EEG interpretation using Deep Learning and Schema Descriptors. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I., Picone, J. and Harabagiu, S. (2017). Automatic discovery and processing of EEG cohorts from clinical records. Philadelphia, Pennsylvania, USA. (Download).
  • Golmohammadi, M. (2017). STTR Phase I: Real-time Automatic Analysis of Electroencephalograms in an Intensive Care Environment Using Deep Learning. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I. and Picone, J. (2016). NSF ICORPS Team: AutoEEG. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I., Picone, J. and Harabagiu, S. (2016). Automatic discovery and processing of EEG cohorts from clinical records. Philadelphia, Pennsylvania, USA. (Download).
  • Golmohammadi, M. and Picone, J. (2016). STTR Phase I: Real-time Automatic Analysis of Electroencephalograms in an Intensive Care Environment Using Deep Learning (Progress: 20161101). Philadelphia, Pennsylvania, USA. (Download).
  • Golmohammadi, M. and Picone, J. (2016). STTR Phase I: Real-time Automatic Analysis of Electroencephalograms in an Intensive Care Environment Using Deep Learning (Progress: 20161201). Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I. and Picone, J. (2015). Big Data Archive for EEG Brain Machine Interface. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I., Jacobson, M. and Picone, J. (2015). Automatic Generation of EEG Reports Using Deep Learning (Progress: 20150531). Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I., Jacobson, M. and Picone, J. (2015). Automatic Generation of EEG Reports Using Deep Learning. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I., Jacobson, M. and Picone, J. (2014). Automatic Generation of EEG Reports Using Deep Learning. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I. and Picone, J. (2014). Big Data Archive for EEG Brain Machine Interface. Philadelphia, Pennsylvania, USA. (Download).
  • Obeid, I. and Picone, J. (2013). Big Data Archive for EEG Brain Machine Interface. Philadelphia, Pennsylvania, USA. (Download).