Time | 1:00 to 1:50 PM | |
Place | 250 Simrall | |
Instructor |
Joseph Picone Office: 2133 CAVS Office Hours: 8-9 MWF (others by appt.) Email: picone@ece.msstate.edu |
|
Class Alias | ece_8463@cavs.msstate.edu | |
URL | http://www.cavs.msstate.edu/research/isip/publications/courses/ece_8463 | |
Required Textbook(s) | X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to Theory, Algorithm, and System Development, Prentice Hall, ISBN: 0-13-022616-5, 2001. | |
Prerequisite | S.J. Orfandis, Introduction to Signal Processing, Prentice-Hall, ISBN: 0-13-209172-0, 1996. | |
Reference Textbook(s) |
F. Jelinek,
Statistical Methods for Speech Recognition,
MIT Press, ISBN: 0-262-10066-5, 1998.
J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000. S. Pinker, The Language Instinct: How the Mind Creates Language, Harperperennial Library, ISBN: 0-0609-5833-2, 2000. D. Jurafsky and J.H. Martin, SPEECH and LANGUAGE PROCESSING: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall, ISBN: 0-13-095069-6, 2000. S. Furui, Digital Speech Processing, Synthesis, and Recognition, Marcel Dekker, ISBN: 0-8247-0452-5, 2000. D. O'Shaughnessy, Speech Communications: Human and Machine, IEEE Press, ISBN: 0-7803-3449-3, 2000. L.R. Rabiner and B.W. Juang, Fundamentals of Speech Recognition, Prentice-Hall, ISBN: 0-13-015157-2, 1993. L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, ISBN: 0-13-213603-1, 1978. |
Exam No. 1 | 25% |
Exam No. 2 | 25% |
Exam No. 3 | 25% |
Final Exam (Cumulative) | 25% |
Class | Date | Section(s) | Topic(s) | |
01 | 08/18 | 1.1 - 1.5 | Course Overview; Introduction | |
02 | 08/20 | 2.1.2 | Speech Physiology | |
03 | 08/23 | 6.2 | Speech Production Models | |
04 | 08/25 | 2.1.3, 2.1.4 | Hearing Physiology | |
05 | 08/27 | 2.1.3.4 | Perception and Masking | |
06 | 08/30 | 2.2 | Phonetics and Phonology | |
07 | 09/01 | 2.3 - 2.5 | Syntax and Semantics | |
08 | 09/03 | 5.5, 9.3 | Sampling | |
09 | 09/08 | 5.6, 5.7 | Resampling | |
10 | 09/10 | 10.1 - 10.4 | Acoustic Transducers | |
11 | 09/13 | 5.4 | Temporal Analysis | |
12 | 09/15 | 5.1 - 5.3 | Frequency Domain Analysis | |
13 | 09/17 | Lectures 1-11 | Exam No. 1 | |
14 | 09/20 | 6.4 - 6.5 | Cepstral Analysis | |
15 | 09/22 | 6.1 - 6.3 | Linear Prediction | |
16 | 09/24 | 6.5.3 | LP-Based Representations | |
17 | 09/27 | 6.5.3, 9.3.4 | Spectral Normalization | |
18 | 09/29 | 9.3.3 | Differentiation | |
19 | 10/01 | 9.3.4, 3.2.2 | Principal Components | |
10/04 | 02/22 | 9.3.4, 3.2.2 | Linear Discriminant Analysis | |
21 | 10/06 | 8.2.1 | Dynamic Programming | |
22 | 10/08 | 8.2.2, 8.2.3 | Fundamentals of Markov Models | |
23 | 10/11 | 8.2.4, 4.4.2 | Parameter Estimation | |
24 | 10/13 | 8.2.4 | HMM Training | |
25 | 10/15 | 4.4.3, 8.3 | Continuous Mixture Densities | |
26 | 10/20 | 8.4 | Practical Issues | |
27 | 10/22 | 4.5 | Decision Trees | |
28 | 10/25 | Lectures 12 - 28 | Exam No. 2 | |
29 | 10/27 | 8.5 | Limitations of HMMs | |
30 | 10/29 | 11.1 | Formal Language Theory | |
31 | 11/01 | 11.2.1 | Context Free Grammars | |
32 | 11/03 | 11.2.2, 11.3 | N-gram Models and Complexity | |
33 | 11/05 | 11.4 | Smoothing | |
34 | 11/08 | 12.1 | Basic Search Algorithms | |
35 | 11/10 | 12.2 - 12.4 | Time Synchronous Search | |
36 | 11/12 | 12.5 - 13.6 | Stack Decoding | |
37 | 11/15 | 13.1.1 - 13.1.3 | Lexical Trees | |
38 | 11/17 | 13.1.4 - 13.1.6 | Efficent Trees | |
39 | 11/19 | 3.2.3, 9.6 | Adaptation | |
40 | 11/22 | Lectures 29 - 37 | Exam No. 3 | |
41 | 11/29 | 4.3 | Discriminative Training | |
42 | 12/01 | 4.3.3, 9.8.1 | Neural Networks | |
43 | 12/03 | N/A | Evaluation Metrics and Common Evaluations | |
46 | 12/07 | Cumulative | Final Exam (12 - 3 PM) |
No. | Due Date | Description |
1 | 08/30 | Speech Production |
2 | 09/08 | Speech Perception |
3 | 09/13 | Linguistics |
4 | 09/20 | Sampling |
5 | 09/27 | Frequency Response |
6 | 10/04 | Linear Prediction and the Cepstrum |
7 | 10/11 | Principle Components Analysis |
8 | 10/20 | Differentiation |
9 | 10/25 | Dynamic Programming |
10 | 11/01 | HMM Training |
11 | 11/08 | EM Estimation |
12 | 11/15 | N-grams |
13 | 11/22 | Smoothing |
14 | 11/29 | Search |