Time | 10 - 11 AM | |
Place | Lecture: 250 Simrall | |
Instructor |
Joseph Picone Office: 413 Simrall Office Hours: 11-12 MWF (others by appt.) Email: picone@cavs.msstate.edu |
|
Class Alias | ece_8463@cavs.msstate.edu | |
URL | http://www.cavs.msstate.edu/research/isip/publications/courses/ece_8463 | |
Required Textbook(s) | X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to Theory, Algorithm, and System Development, Prentice Hall, ISBN: 0-13-022616-5, 2001. | |
Prerequisite | S.J. Orfandis, Introduction to Signal Processing, Prentice-Hall, ISBN: 0-13-209172-0, 1996. | |
Reference Textbook(s) |
F. Jelinek,
Statistical Methods for Speech Recognition,
MIT Press, ISBN: 0-262-10066-5, 1998.
J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000. S. Pinker, The Language Instinct: How the Mind Creates Language, Harperperennial Library, ISBN: 0-0609-5833-2, 2000. D. Jurafsky and J.H. Martin, SPEECH and LANGUAGE PROCESSING: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall, ISBN: 0-13-095069-6, 2000. S. Furui, Digital Speech Processing, Synthesis, and Recognition, Marcel Dekker, ISBN: 0-8247-0452-5, 2000. D. O'Shaughnessy, Speech Communications: Human and Machine, IEEE Press, ISBN: 0-7803-3449-3, 2000. L.R. Rabiner and B.W. Juang, Fundamentals of Speech Recognition, Prentice-Hall, ISBN: 0-13-015157-2, 1993. L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, ISBN: 0-13-213603-1, 1978. |
Exam No. 1 | 25% |
Exam No. 2 | 25% |
Exam No. 3 | 25% |
Final Exam (Cumulative) | 25% |
Class | Date | Section(s) | Topic(s) | |
01 | 01/07 | 1.1 - 1.5 | Course Overview; Introduction | |
02 | 01/09 | 2.1.2 | Speech Physiology | |
03 | 01/11 | 6.2 | Speech Production Models | |
04 | 01/14 | 2.1.3, 2.1.4 | Hearing Physiology | |
05 | 01/16 | 2.1.3.4 | Perception and Masking | |
06 | 01/18 | 2.2 | Phonetics and Phonology | |
07 | 01/23 | 2.3 - 2.5 | Syntax and Semantics | |
08 | 01/25 | 5.5, 9.3 | Sampling | |
09 | 01/28 | 5.6, 5.7 | Resampling | |
10 | 01/30 | 10.1 - 10.4 | Acoustic Transducers | |
11 | 02/01 | 5.4 | Temporal Analysis | |
12 | 02/04 | 5.1 - 5.3 | Frequency Domain Analysis | |
13 | 02/06 | 6.4 - 6.5 | Cepstral Analysis | |
14 | 02/08 | Lectures 1-11 | Exam No. 1 | |
15 | 02/11 | 6.1 - 6.3 | Linear Prediction | |
16 | 02/13 | 6.5.3 | LP-Based Representations | |
17 | 02/15 | 6.5.3, 9.3.4 | Spectral Normalization | |
18 | 02/18 | 9.3.3 | Differentiation | |
19 | 02/20 | 9.3.4, 3.2.2 | Principal Components | |
20 | 02/22 | 9.3.4, 3.2.2 | Linear Discriminant Analysis | |
21 | 02/25 | 8.2.1 | Dynamic Programming | |
22 | 02/27 | 8.2.2, 8.2.3 | Fundamentals of Markov Models | |
23 | 03/01 | 8.2.4, 4.4.2 | Parameter Estimation | |
24 | 03/04 | 8.2.4 | HMM Training | |
25 | 03/06 | 4.4.3, 8.3 | Continuous Mixture Densities | |
26 | 03/08 | 8.4 | Practical Issues | |
27 | 03/18 | 4.5 | Decision Trees | |
28 | 03/20 | 8.5 | Limitations of HMMs | |
29 | 03/22 | 11.1 | Formal Language Theory | |
30 | 03/25 | 11.2.1 | Context Free Grammars | |
31 | 03/27 | Lectures 12 - 28 | Exam No. 2 | |
32 | 04/01 | 11.2.2, 11.3 | N-gram Models and Complexity | |
33 | 04/03 | 11.4 | Smoothing | |
34 | 04/05 | 12.1 | Basic Search Algorithms | |
35 | 04/08 | 12.2 - 12.4 | Time Synchronous Search | |
36 | 04/10 | 12.5 - 13.6 | Stack Decoding | |
37 | 04/12 | 13.1.1 - 13.1.3 | Lexical Trees | |
38 | 04/15 | 13.1.4 - 13.1.6 | Efficent Trees | |
39 | 04/17 | 3.2.3, 9.6 | Adaptation | |
40 | 04/19 | Lectures 29 - 37 | Exam No. 3 | |
41 | 04/22 | 4.3 | Discriminative Training | |
42 | 04/24 | 4.3.3, 9.8.1 | Neural Networks | |
43 | 04/26 | N/A | Evaluation Metrics | |
44 | 04/29 | N/A | Common Evaluation Tasks | |
45 | 05/01 | N/A | State of the Art | |
46 | 05/06 | Cumulative | Final Exam (8 - 11 AM) |
No. | Due Date | Description |
1 | 01/21 | Speech Production |
2 | 01/28 | Speech Perception |
3 | 02/04 | Linguistics |
4 | 02/11 | Sampling |
5 | 02/18 | Frequency Response |
6 | 02/25 | Linear Prediction and the Cepstrum |
7 | 03/04 | Principle Components Analysis |
8 | 03/18 | Differentiation |
9 | 03/25 | Dynamic Programming |
10 | 04/01 | HMM Training |
11 | 04/01 | EM Estimation |
12 | 04/08 | N-grams |
13 | 04/15 | Smoothing |
14 | 04/22 | Search |