quick start:g++ [flags ...] file ... -l /isip/tools/lib/$ISIP_BINARY/lib_stat.a #include <RelevanceVectorModel.h> long sofAccumulatorSize() const; long sofOccupanciesSize() const; boolean readAccumulator(Sof& sof, long tag, const String& cname = CLASS_NAME); boolean writeAccumulator(Sof& sof, long tag, const String& cname = CLASS_NAME) const; boolean readAccumulatorData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false); boolean writeAccumulatorData(Sof& sof, const String& pname = DEF_PARAM) const; boolean readOccupancies(Sof& sof, long tag, const String& cname = CLASS_NAME); boolean writeOccupancies(Sof& sof, long tag, const String& cname = CLASS_NAME) const; boolean readOccupanciesData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false); boolean writeOccupanciesData(Sof& sof, const String& pname = DEF_PARAM) const; boolean setAlgorithm(ALGORITHM algo); ALGORITHM getAlgorithm(); boolean setImplementation(IMPLEMENTATION impl); IMPLEMENTATION getImplemenation(); MatrixFloat& getInvHessian(); VectorFloat& getWeights(); VectorByte& getTargets(); Vector<VectorFloat>& getRelevanceVectors(); Float& getBias(); Kernel& getKernel(long index); Vector<Kernel>& getKernels(); boolean setMode(MODE arg); const String& className() const; boolean init(); float getDistanceProb(const VectorFloat& input_a); float getLikelihood(const VectorFloat& input); float getLogLikelihood(const VectorFloat& input); boolean getMean(VectorFloat& mean); boolean getCovariance(MatrixFloat& cov); boolean resetAccumulators(); double getOccupancy(); boolean setOccupancy(double arg); long getAccessCount(); boolean setAccessCount(long arg); boolean accumulate(VectorDouble& param, VectorFloat& data, boolean precomp); boolean update(VectorFloat& varfloor, long min_count); boolean accumulate(VectorFloat& data); boolean initialize(VectorFloat& param);
description:VectorFloat test_vector(L"0.1, 0.3"); RelevanceVectorModel rvm; rvm.getLogLikelihood(test_vector);
enum ALGORITHM { SINGLE_KERNEL = 0, MULTIPLE_KERNEL, DEF_ALGORITHM = SINGLE_KERNEL };
enum IMPLEMENTATION { LOGISTIC_SIGMOID_LINK = 0, DEF_IMPLEMENTATION = LOGISTIC_SIGMOID_LINK };
static const NameMap ALGO_MAP;
static const NameMap IMPL_MAP;
static const String CLASS_NAME;
static const String DEF_PARAM;
static const String PARAM_ALGORITHM;
static const String PARAM_IMPLEMENTATION;
static const String PARAM_BIAS;
static const String PARAM_WEIGHTS;
static const String PARAM_INV_HESSIAN;
static const String PARAM_TARGETS;
static const String PARAM_VECTORS;
static const String PARAM_KERNELS;
static const String DEF_COMMENT_TAG;
ALGORITHM algorithm_d;
IMPLEMENTATION implementation_d;
MatrixDouble inv_hessian_d;
VectorDouble weights_d;
VectorByte targets_d;
Vector<VectorDouble> vectors_d;
Double bias_d;
Vector<Kernel> kernels_d;
static MemoryManager mgr_d;
static const String& name();
static boolean diagnose(Integral::DEBUG debug_level);
boolean debug(const unichar* msg) const;
~RelevanceVectorModel();
RelevanceVectorModel();
RelevanceVectorModel(const RelevanceVectorModel& arg);
boolean assign(const RelevanceVectorModel& arg);
boolean assign(const StatisticalModelBase& arg);
RelevanceVectorModel& operator=(const RelevanceVectorModel& arg);
long sofSize() const;
boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);
boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;
boolean readData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false);
boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const;
boolean eq(const RelevanceVectorModel& arg) const;
boolean eq(const StatisticalModelBase& arg) const;
static void* operator new(size_t size);
static void* operator new[](size_t size);
static void operator delete(void* ptr);
static void operator delete[](void* ptr);
static boolean setGrowSize(long grow_size);
boolean clear(Integral::CMODE cmode = Integral::DEF_CMODE);
long sofAccumulatorSize() const;
long sofOccupanciesSize() const;
boolean readAccumulator(Sof& sof, long tag, const String& cname = CLASS_NAME);
boolean writeAccumulator(Sof& sof, long tag, const String& cname = CLASS_NAME) const;
boolean readAccumulatorData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false);
boolean writeAccumulatorData(Sof& sof, const String& pname = DEF_PARAM) const;
boolean readOccupancies(Sof& sof, long tag, const String& cname = CLASS_NAME);
boolean writeOccupancies(Sof& sof, long tag, const String& cname = CLASS_NAME) const;
boolean readOccupanciesData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false);
boolean writeOccupanciesData(Sof& sof, const String& pname = DEF_PARAM) const;
boolean setAlgorithm(ALGORITHM algo);
ALGORITHM getAlgorithm();
boolean setImplementation(IMPLEMENTATION impl);
IMPLEMENTATION getImplemenation();
MatrixDouble& getInvHessian();
VectorDouble& getWeights();
VectorByte& getTargets();
Vector<VectorDouble>& getRelevanceVectors();
Double& getBias();
Kernel& getKernel(long index);
Vector<Kernel>& getKernels();
const String& className() const;
boolean setMode(MODE arg);
boolean init();
float getLikelihood(const VectorFloat& input);
float getDistanceProb(const VectorFloat& input);
float getLogLikelihood(const VectorFloat& input);
boolean getMean(VectorFloat& mean);
boolean getCovariance(MatrixFloat& cov);
boolean resetAccumulators();
double getOccupancy();
boolean setOccupancy(double arg);
long getAccessCount();
boolean setAccessCount(long arg);
boolean accumulate(VectorDouble& param, VectorFloat& data, boolean precomp);
boolean update(VectorFloat& varfloor, long min_count);
boolean accumulate(VectorFloat& data);
boolean initialize(VectorFloat& param);