name: RelevanceVectorModel : public StatisticalModelBase

synopsis:


g++ [flags ...] file ... -l /isip/tools/lib/$ISIP_BINARY/lib_stat.a

#include <RelevanceVectorModel.h>

long sofAccumulatorSize() const;
long sofOccupanciesSize() const;
boolean readAccumulator(Sof& sof, long tag, const String& cname = CLASS_NAME);
boolean writeAccumulator(Sof& sof, long tag, const String& cname = CLASS_NAME) const;
boolean readAccumulatorData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false);
boolean writeAccumulatorData(Sof& sof, const String& pname = DEF_PARAM) const;
boolean readOccupancies(Sof& sof, long tag, const String& cname = CLASS_NAME);
boolean writeOccupancies(Sof& sof, long tag, const String& cname = CLASS_NAME) const;
boolean readOccupanciesData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false);
boolean writeOccupanciesData(Sof& sof, const String& pname = DEF_PARAM) const;
boolean setAlgorithm(ALGORITHM algo);
ALGORITHM getAlgorithm();
boolean setImplementation(IMPLEMENTATION impl);
IMPLEMENTATION getImplemenation();
MatrixFloat& getInvHessian();
VectorFloat& getWeights();
VectorByte& getTargets();
Vector<VectorFloat>& getRelevanceVectors();
Float& getBias();
Kernel& getKernel(long index);
Vector<Kernel>& getKernels();
boolean setMode(MODE arg);
const String& className() const;
boolean init();
float getDistanceProb(const VectorFloat& input_a);
float getLikelihood(const VectorFloat& input);
float getLogLikelihood(const VectorFloat& input);
boolean getMean(VectorFloat& mean);
boolean getCovariance(MatrixFloat& cov);
boolean resetAccumulators();
double getOccupancy();
boolean setOccupancy(double arg);
long getAccessCount();
boolean setAccessCount(long arg);
boolean accumulate(VectorDouble& param, VectorFloat& data, boolean precomp);
boolean update(VectorFloat& varfloor, long min_count);
boolean accumulate(VectorFloat& data);
boolean initialize(VectorFloat& param);
quick start:


VectorFloat test_vector(L"0.1, 0.3");

RelevanceVectorModel rvm;
rvm.getLogLikelihood(test_vector);

description:

The RelevanceVectorModel class is used to compute the probability of a vector give the model, which specified by the relevance vector machine.

dependencies:

public constants:

error codes:

protected data:

required public methods:

class-specific public methods:

private methods:

examples:

notes: