name: StatisticalModelAdaptation

synopsis:

g++ [flags ...] file ... -l /isip/tools/lib/$ISIP_BINARY/lib_pr.a

#include <StatisticalModelAdaptation.h>

StatisticalModelAdaptation(ALGORITHM algorithm = DEF_ALGORITHM, IMPLEMENTATION implementation = DEF_IMPLEMENTATION, float split_threshold, float merge_threshold, float num_occ_threshold);
boolean eq(const StatisticalModelAdaptation& arg);
boolean setAlgorithm(ALGORITHM algorithm);
quick start:

StatisticalModelAdaptation smadp;
smadp.setAlgorithm(MLLR);
smadp.setImplementation(MEAN);
      
smadp.adapt(RegressionDecisionTree& rdt_a, Vector& stat_models_a);

description:

The StatisticalModelAdaptation class is used to solve the problem of sparse data by tying Statistical Models using the training data (Symbol Occupancies) and the Regression questions (expert knowledge). A good reference of the algorithm is:
dependencies:

public constants:

error codes:

protected data:

required public methods:

class-specific public methods:

private methods:

examples:

notes: