quick start:gcc [flags ...] file ... -l /isip/tools/lib/$ISIP_BINARY/lib_search.a #include <RegressionDecisionTreeNode.h> ~RegressionDecisionTreeNode(); RegressionDecisionTreeNode(); RegressionDecisionTreeNode(const RegressionDecisionTreeNode& copy_sym);
description:#include <RegressionDecisionTreeNode.h> RegressionDecisionTreeNode rdt_node; Triple<Long, Long, Long> datapoint; SingleLinkedList<datapoint > data; rdt_node.createTransform(Vector& stat_models_a); rdt_node.updateDistribution(Vector & stat_models_a);
static const String CLASS_NAME;
static const String DEF_PARAM;
static const String PARAM_DATAPOINTS;
static const String PARAM_CLUSTER_SCORE;
static const String PARAM_CLUSTER_ACCUMULATE;
static const String PARAM_NUMBER_COMPONENTS;
static const String PARAM_NODE_INDEX;
static const String PARAM_AVERAGE_COVARIANCE;
static const String PARAM_SPEECH_FLAG;
static const String PARAM_SPLIT_FLAG;
static const String PARAM_PARENT_NODE_INDEX;
static const String PARAM_TRANSFORM_FLAG;
static const String PARAM_STAT_MODELS;
static const String PARAM_W_TRANSFORM;
static const String PARAM_DBGL;
static const long DEF_TYPICAL_INDEX = -1;
static const long DEF_ACTUAL_INDEX = -1;
static const bool DEF_FLAG_EXISTS = true;
typedef Triple<Long, Long, Long<String, String> > RDataPoint;
typedef SingleLinkedList<DataPoint> RData;
static const long ERR = 00100600;
static const long ERR_ADAPT_NO_GAUSSIAN = 00100610;
typedef Triple<Long, Long, Long<String, String> > RDataPoint;
typedef SingleLinkedList<DataPoint> RData;
RData gaussian_models_d;
VectorFloat average_mean_d;
Float cluster_score_d;
Float cluster_accumulate_d;
Long number_components_d;
Long node_index_d;
MatrixFloat average_covariance_d;
Boolean speech_flag_d;
Boolean split_flag_d;
Long parent_node_index_d;
Boolean transform_flag_d;
Vectorstat_models_d;
Vectorw_transform_d;
MatrixFloat z_glob_d;
Vectorg_glob_d;
DebugLevel debug_level_d;
static MemoryManager mgr_d;
static const String& name();
static boolean diagnose(Integral::DEBUG debug_level);
boolean debug(const unichar* message) const;
static boolean setDebug(Integral::DEBUG debug_level);
~RegressionDecisionTreeNode();
RegressionDecisionTreeNode();
RegressionDecisionTreeNode(const RegressionDecisionTreeNode& arg);
boolean assign(const RegressionDecisionTreeNode& copy_node);
long sofSize() const;
boolean read(Sof& sof, long tag, const String& name = CLASS_NAME);
boolean write(Sof& sof, long tag, const String& name = CLASS_NAME) const;
boolean readData(Sof& sof, const String& pname = DEF_PARAM, long size = SofParser::FULL_OBJECT, boolean param = true, boolean nested = false) const;
boolean writeData(Sof& sof, const String& pname = DEF_PARAM) const;
boolean eq(const RegressionDecisionTreeNode& compare_node) const;
static void* operator new(size_t size);
static void* operator new[](size_t size);
static void operator delete(void* ptr);
static void operator delete[](void* ptr);
static boolean setGrowSize(long grow_size);
boolean clear(Integral::CMODE ctype = Integral::DEF_CMODE);
boolean setDataPoints(Data arg);
Data getDataPoints();
boolean setAverageMean(VectorFloat& arg);
String getAverageMean(VectorFloat& arg);
boolean setAverageCov(MatrixFloat& arg);
String getAverageCov(MatrixFloat& arg);
boolean setClusterScore(Float arg);
Float& getClusterScore();
boolean setNumComponents(long arg);
Float& getNumComponents();
boolean setSpeechFlag(Boolean arg);
boolean getSpeechFlag(Boolean arg);
boolean setSplitFlag(Boolean arg);
boolean getSplitFlag(Boolean arg);
boolean setTransformFlag(Boolean arg);
Boolean& getTransformFlag());
boolean setParentNodeIndex(long arg);
Long& getParentNodeIndex());
boolean setClusterAccumulate(Float arg);
Float& getClusterAccumulate());
boolean setTransformation(Vector& arg);
Boolean& getTransformation(Vector& arg));
boolean setTypicalIndex(Long arg);
Long getTypicalIndex();
boolean setNodeIndex(long arg);
Long& getNodeIndex());
boolean createTransform(Vector& stat_models_a);
boolean updateDistribution(Vector& stat_models_a);
boolean containModel(long sm_index_a, long gm_index_a);
boolean calcClusterDistribution(Vector& stat_models_a);
boolean computeSumOccupancy(Vector& stat_models_a, float& sum_num_occ_a);
boolean adaptPart(Vector& g_a, MatrixFloat& z_a, GaussianModel& gm_a);
boolean nodeScore(Vector& stat_models_a);