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The prominent modeling technique for speech recognition today is the hidden Markov model with Gaussian emission densities. However, they
suffer from an inability to learn discriminative information. Artificial neural networks have been proposed as a replacement for the Gaussian
emission probabilities under the belief that the ANN models provide better discrimination capabilities. However, the use of ANNs often results in
over-parameterized models which are prone to overfitting. Techniques such as cross-validation have been suggested as remedies to the overfitting
problem but employing these is wasteful of both resources and computation. Further, cross-validation does not address the issue of model structure
and over-parameterization.

Recent work on machine learning has moved toward automatic methods for controlling generalization and parameterization. A model that has
gained much popularity recently is the support vector machine (SVM). SVMs use the principle of structural risk minimization to simultaneously
control generalization and performance on the training set. A recent dissertation from this university has employed the SVM in a hybrid framework
for speech recognition. While the HMM/SVM hybrid produced a decrease in the error rate, the implementation had some significant shortfalls
which we hope to address in this work. First, the SVMs are not probabilistic in nature and, thus, are not able to adequately express the posterior
uncertainty in predictions. This is particularly important in speech where there is significant overlap in the feature space. The SVMs also make
unnecessarily liberal use of parameters to define the decision region.

In this dissertation, we study a Bayesian model which takes the same form as the SVM model. This model, termed the relevance vector
machine (RVM), provides a fully probabilistic alternative to the SVMs. The RVMs have been found to provide generalization performance on par
with SVMs while typically using nearly an order of magnitude fewer parameters. Sparseness of the model is automatic using MacKay’s automatic
relevance determination methods. In this work we propose to develop the first speech recognition system using RVMs. Similar to hybrid HMM/
ANN systems, the RVM model will replace the Gaussian density in the HMM models. To accomplish this, we must develop closed-loop training
routines which insure convergence and optimality. Computational issues make this an impossibility currently and must be
addressed before a scalable system is feasible.



ORGANIZATION OF PRESENTATION

• Problem Definition : Speech recognition and the acoustic
modeling problem

• Prior Art : Hidden Markov models and artificial neural network
hybrid systems

• Prior Art : Support vector machines, hybrid systems

• Proposed Methodology : Bayesian methods, automatic relevance
determination and the relevance vector machine

• Proposed Work: Preliminary experiments and proposed
experiments



ASR PROBLEM

Bayesian formulation for speech recognition:

Objective : minimize the word error rate by
maximizing

Approach : maximize  (training)

Components :

• : acoustic model (hidden
Markov models, mixture of Gaussians)

• : language model (statistical, N-
grams, finite state networks)

• : acoustics (ignore during
maximization)
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• The Front-end maintains information
important for modeling in a reduced
parameter set.

• The language model typically predicts
a small set of next words based on
knowledge of a finite number of
previous words (N-grams) — leads to
search space reduction.



ACOUSTIC MODELING

Acoustic Models Must:

• Model the temporal progression of the
speech signal

• Model the acoustic characteristics of
sub-word units

• Account for variations in speaker
characteristics (speaker-independent)

Acoustic Models Should:

• Optimally trade-off discrimination and
representation

• Make efficient use of parameters

• Produce confidence measures of their
predictions for higher-level decision
processes
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• First two cepstral coefficients for all
vowels (based on a conversational
speech corpus — SWITCHBOARD).

• Overlap represents a fundamental
barrier for good classification.

Acoustic Confusability : Requires
reasoning under uncertainty!



PRIOR ART: HMMs

• Acoustic models encode the temporal
evolution of the features (spectrum).

• Gaussian mixture distributions are
used to account for variations in
speaker, accent, and pronunciation.

• Sharing model parameters is a
common strategy to reduce
complexity.

• The goal of our research is to replace
the Gaussian likelihood computation
at each state with a machine that
incorporates notions of:

❐ discrimination (“one vs. all”)

❐ Bayesian statistics (priors)

❐ confidence

❐ sparsity

• Maintain computational efficiency?



PRIOR ART: HMMs

• Data-driven modeling supervised only from
a word-level transcription.

• The expectation/maximization (EM)
algorithm is used to improve our estimates:

if:

Approach: maximum likelihood estimation

• Computationally efficient training algorithms
(Forward-Backward) have been crucial.

• Batch mode parameter updates are typically
preferred.

• Decision trees are used to optimize sharing
parameters, minimize system complexity,
and integrate additional linguistic
knowledge.
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PRIOR ART: HMMs

Convergence in maximum likelihood does not translate to optimal classification:
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• Error results from fitting uniform distributions
with Gaussians (and using an ML boundary).

• Since the classes are separable, finding the
optimal decision surface is trivial.

• Data not separable by a hyperplane
(a nonlinear classifier is needed).

• Gaussian MLE models tend towards
the center of mass (overtraining).

Solution: Nonlinear discriminative classifiers!
First Cut: Artificial Neural Networks



PRIOR ART: HMM/ANN HYBRIDS

Shortcomings:

• Prone to overfitting: require cross-
validation to determine when to stop
training. Need a method for
automatically penalizing overfitting!

• No substantial recognition
improvements over HMM/GMMs
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Architecture:
• ANN provides flexible, discriminative
classifiers for emission probabilities
that avoid the HMM independence
assumptions (can use wider acoustic
context).

• Trained using Viterbi iterative training
(hard decision rule) or can be trained
to learn Baum-Welch targets (soft
decision rule).



RISK MINIMIZATION

• Expected Risk:

Not possible to estimate .

• Empirical Risk Minimization:

• Related by VC (Vapnik-Chervonenkis)
dimension:

is referred to as the VC confidence,

is a confidence measure ( ).

• Approach: choose the machine that gives
the least upper bound on actual risk
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• The VC dimension,  is a measure of the
capacity of the learning machine.

• Principle of structural risk minimization
(SRM) (Vapnik, 1979) involves finding the
subset of functions that minimizes the
bound on the actual risk.

• Optimal hyperplane classifiers achieve zero
empirical risk for linearly separable data.
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SUPPORT VECTOR MACHINES
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perplanes C0-C2 achieve perfect
ssification — zero empirical risk.

is optimal in terms of generalization.

e data points that define the
undary are called support vectors.

Optimization (Separable Data)

• Hyperplane:

• Constraints:

The data points that satisfy the equality are
called support vectors.

• Optimize:

• Minimization of this Lagrange functional
minimizes risk criterion (maximizes margin).

• Final classifier:
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SUPPORT VECTOR MACHINES

• Data for practical applications typically
not separable using a hyperplane in the
original input feature space

ansform data to higher dimension
ere hyperplane classifier is sufficient

 model decision surface

rnels used for this transformation

nal classifier:

ft margin classifiers used in practice:
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• SVMs do not generate likelihoods directly

• Posterior estimation required for speech

• Use a sigmoid function to map distances
to posteriors:
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SUPPORT VECTOR MACHINES

HMM

SEGMENTAL

Segment
Information

Features (Mel-Cepstra)

HYBRID

Hypothesis

RECOGNITION

N-best

List

Segmental
Features

• Rescore N-best lists using
phone classifiers

• Use a segmental modeling
approach for phone classifiers

• 10.6% on AD task using hybrid
system that combines HMM
and SVM scores

• Experimental Results: Continuous Speech

Information Source HMM Hybrid

Transcription Segmentation AD SWB AD SWB

N-best Hypothesis 11.9 41.6 11.0 40.6

N-best N-best 12.0 42.3 11.8 42.1

N-best + Ref. Reference — — 3.3 5.8

N-best + Ref. N-best + Ref. 11.9 38.6 9.1 38.1

• Experimental Results: Deterding Vowel
(11 vowels spoken in “h*d” context)

Approach Error Rate

K-Nearest Neighbor 44%

Gaussian Node Network 44%

SVM: Polynomial Kernels 49%

SVM: RBF Kernels 35%

Separable Mixture Models 30%

RVM: RBF Kernels 30%

• A Hybrid Speech Recognition Framework

CONVERTER

DECODER



BAYESIAN MODELING

• First level of inference:

: the set of adjustable parameters
: data from which we make inferences
: overall model

• Second level of inference:

if , best model chosen by

evaluating evidence .

• Evidence marginalized across model
parameters:

• It is impractical to compute this integral, so
we need an approximation.
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• Evidence approximation for a single
model (Gaussian assumption)

• Under the assumption that the posterior
probability is Gaussian:

• The marginalization integral can be
assumed to have a strong peak at the most
probable value of the parameters, .

• The evidence can then be approximated by
multiplication of the height of the integrand
and the width of the posterior, .
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EVIDENCE FRAMEWORK

• The evidence is approximated by

 is the likelihood of the data

ven the best-fit parameter set

 is a penalty on the range of

,1] which measures how well our
sterior model fits our prior assumptions.
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• The objective in training:

• Using Bayes’ rule:

• A closed form solution to this maximization
is not possible.

• An iterative approximation has been
developed by MacKay that has complexity

O(N3) and is based on Gaussian
assumptions. Not feasible for large speech
recognition tasks.

• This approach is similar to Minimum
Description Length (MDL) and Bayesian
Information Criterion (BIC).
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RELEVANCE VECTOR MACHINES

Drawbacks of SVMs:

• Complexity scales linearly with the training
data for nontrivial problems (prohibitive for

rge speech recognition tasks).

arsity of the model should be explicit in
e optimization of the model.

ed a posterior probability, not distance.

e sigmoid approximation tends to
erestimate confidence (Tipping).

levance Vector Machines:

kernel-based learning technique.

Bayesian approach (MacKay) that
corporates an automatic relevance
termination (ARD) prior over each model
rameter.

Ms typically require an order of
agnitude less parameters than SVMs, but
quire significantly more training time.

• As with SVMs, the RVMs are formed by
defining a vector-to-scalar mapping:

• RVMs take a Bayesian approach and
explicitly define an ARD prior distribution
over the weights:

• To complete the Bayesian specification of
the model, we use a non-informative (flat)
prior for .

• The likelihood of the training data set can
be written as:

where .
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SVM / RVM COMPARISON

Relevance Vector Machines

Data:
Class labels: {0,1}; “one vs. all”

Goal: Learn posterior, .

Training:

find:

iteratively find  then .

Training Complexity: O(N3)

Classification: Threshold decoding (0.5)

Decoding: Integrated likelihood computation
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Support Vector Machines

Data:
Class labels: {-1,+1}; “one vs. all”

Goal:

Find decision surface that maximizes the
margin between two classes

Training:

Adjust parameters under constraint:

Optimize:

Training Complexity: O(N2)

Classification: Threshold decoding (0.0)

Decoding:

• Rescoring N-best lists
• Segmental models
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PROPOSAL

Current:
• Two-pass decoding methodology

• Ad hoc method for determining optimal
segmentation

• Ad hoc method for determining posterior
probability

• Lacks iterative training

Proposed:
• Integrated HMM/RVM solution

• Frame-based modeling: eliminates need
for segmental models

• RVM is naturally probabilistic: eliminates
need for sigmoid posterior fit

E-Step
AccumulationE-Step

Accumulation

M-Step
RVM training

Proposed Architecture:

• Convergence properties and efficient
training methods are critical.

• Bootstrapping or incremental training

• Available as part of the ISIP speech
recognition toolkit.

RVM(ot) RVM(ot) RVM(ot)

HMMs with RVM
Emission Distributions

Iterative Parameter
Estimation Similar

to Baum-Welch
Training of HMMs



RESEARCH PLAN

Practical optimization methods

• Currently O(N2) in memory and O(N3) in

time - prohibitive for large data sets.

• Explore methods for incremental
learning: Active learning (MacKay) or
decomposition (Tipping)

Integrated, iterative HMM/RVM training
• RVM replaces Gaussian

• E-M style training paradigm

• Need to address issues such as
convergence and parameter tying

Integrated HMM/RVM decoder
• Single-pass decoding

• Parameter tuning necessary

Experimental Progression

Task System Data Date

Static
Classification

Set of 1-vs-All
classifiers

Deterding
Vowel

March

Pilot ASR
Hybrid HMM/RVM

(same as SVM)
2000 training

Alphadigit March

Practical
Optimization

Set of 1-vs-All
classifiers

Deterding
Vowel

April

Hybrid HMM/RVM
Full training

Alphadigit April

HMM/RVM
Training and

Decoding

Frame-based
models

Full training.

First with single
frame feature
vectors, then
with extended

feature set

TIDigits
13000 train,
13000 test

June

Alphadigits
60k train
3300 test

July

SWB
114k train
2400 test

Aug



PRELIMINARY EXPERIMENTS

• Experimental Results: OGI Alphadigits
(telephone bandwidth letters and numbers)

• Hybrid RVM system is mirror of hybrid SVM
system (still has segmentation problem).

• Reduced training set size (2000 examples
per phone class).

• RVM yields a large reduction in parameter
count — translates to large efficiency boost
for decoder.

• Computational cost mainly in training, but is
still prohibitive for large data sets.

Approach
Error
Rate

Avg.
Parameter

Count

Training
Time

Testing
Time

SVM 16.4% 257 SVs 1/2 hour 30 mins

RVM 16.2% 12 RVs 1 month 1 min

• Experimental Results: Deterding Vowel
(11 vowels spoken in “h*d” context)

• RVMs yield superior sparsity with
comparable generalization.

Approach Error Rate

K-Nearest Neighbor 44%

Gaussian Node Network 44%

SVM: Polynomial Kernels 49%

SVM: RBF Kernels 35%

Separable Mixture Models 30%

RVM: RBF Kernels 30%

Approach Avg. Parameter Count

SVM: RBF Kernels 83 SVs

RVM: RBF Kernels 13 RVs



DISSERTATION CONTRIBUTIONS

What I will do:

• Build the first kernel-machine-based single-pass decoder.

• Make the first application of RVMs to speech recognition.

• Overcome the problems in the hybrid HMM/SVM system: fully probabilistic
models; extremely sparse models; models trained iteratively and in an
integrated manner.

• Package the software and documentation into our public-domain recognizer.

What I will not do:

• Build a comparison hybrid ANN system.

• Implement all of current speech recognition in terms of RVMs. e.g. no RVM
adaptation, but this is ripe for future work!
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