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CHAPTER I

INTRODUCTION

Dearest creature in creation,
Study English pronunciation.
I will teach you in my verse
Sounds like corpse, corps, horse, and worse.
I will keep you, Suzy, busy,
Make your head with heat grow dizzy.
Tear in eye, your dress will tear.
So shall I! Oh hear my prayer.

Just compare heart, beard, and heard,
Dies and diet, lord and word,
Sword and sward, retain and Britain.
(Mind the latter, how it’s written.)
Now I surely will not plague you
With such words as plaque and ague.
But be careful how you speak:
Say break and steak, but bleak and streak;
Cloven, oven, how and low,
Script, receipt, show, poem, and toe.

— An excerpt from “The Chaos” by Dr. G.N. Trenite
(1870-1946), a Dutch observer of English.

The ability to correctly pronounce names of entities, such as people, places

organizations, is a critical component of effective verbal communication. In m

situations, such as looking up information on a person or a place (e.g. airline reserva

directory assistance etc.), it is customary to alternate between written and oral form

communication. For instance, in telephone directory assistance the customer enun

the name of a person to be found, and the operator searches for the corresponding s

in a database. In the process, it becomes necessary to attribute a correspondence b
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the two different representations (viz. textual and verbal) of the words. Such a relation

that matches the spelling of a word with its pronunciation is known as a letter-to-so

mapping.

Usually, the pronunciations of a large proportion of the typical words in a langu

(e.g. common nouns, verbs, adjectives etc.) can be represented using a reasonably

set of such letter-to-sound rules. When one comes across the spelling of a new wor

has not been encountered before, its pronunciation can often be extrapolated by ap

the appropriate letter-to-sound rules to various parts of the word [1].

This strategy, unfortunately, is not very successful in case of proper nouns

names of people, places etc.). For instance, the surname “Brignac” will be pronou

using the standard English letter-to-sound rules to sound like “brig”+”knack”. Howe

this is actually a surname of French origin and pronounced as “brin”+”yak” (to rhy

with “cognac”).

As illustrated above, proper nouns often have a different morphology

phonology as compared to the typical words, and therefore the standard letter-to-

mapping is unable to accurately predict a pronunciation for such words [2].

This problem becomes even more pronounced for the text-to-speec

speech-to-text conversions involved in human-machine interactions. An early s

conducted in 1985 [3] revealed that a large number of commercial speech synthe

mispronounced almost 25% of the 2000 most common American surnames. Since

significant inroads have been made in improving the text-to-speech (TTS) techno

However, the problem of automatically generating acceptable and intellig
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pronunciations for proper nouns still remains unresolved.

Similarly, proper nouns are known to constitute a majority of errors

general-purpose conversational speech recognition tasks [4]. As more and

applications employ voice-driven interfaces, their dependence on accurate recognit

proper nouns also increases and the need for effectively modeling the pronunciatio

proper nouns intensifies.

The problem of accurately predicting pronunciations for proper nouns

compounded by the following factors:

1. Many proper nouns (such as surnames) evolve from ethnically heterogeneo

sociolinguistic factors that have no commonality with the general

pronunciation framework of the English (or any other) language, and are often

impossible to model with a reasonably large and systematic rule set.

2. The pronunciations also reflect the differences in the source language and th

extent of Anglicization (i.e. assimilation into the English language) [5]. Many

times, pronunciation of unfamiliar names uses non-English letter-to-sound

correspondences from the native language [6].

3. The notion of a so-called “correct” pronunciation varies from region to region

or individual to individual in an essentially idiosyncratic fashion [7].

Consequently, many proper nouns have multiple “correct” pronunciations; and a

percentage of proper nouns have no obvious letter-to-sound mapping rules that c

used to generate these pronunciations. In order to transcend the constraints impo

these factors, it is necessary for an optimal voice-based interface to automatically ge
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a list of plausible pronunciations for a given proper noun.

The spelling of the proper noun is often the only clue available towards its poss

pronunciation. Therefore, an approach that statistically relates the letters to correspo

phonemes appears to be reasonable towards developing a letter-to-sound function

applicable to proper nouns.

Motivation

Since a large proportion of the typical words in a language can be represent

terms of a letter-to-sound rule set, most text-to-speech (TTS) systems use a collect

such rules along with an exceptions dictionary to generate pronunciations. Howeve

pronunciations of proper nouns do not follow the typical letter-to-sound rules of

language. Therefore, TTS systems employ rule sets specifically crafted for gener

proper noun pronunciations. These rule sets need to be quite extensive and the size

associated exceptions dictionary quite large in order to cover the whole range of na

thus making the systems cumbersome and expensive. Moreover, such rule-based s

are constrained to generate only one pronunciation for a given proper noun, and d

generalize gracefully to names not covered by the rule set.

On the other hand, a statistically generated maximum likelihood model of

functional relationship between proper noun spellings and pronunciations is ab

capture the underlying letter-to-sound mapping without taking recourse to hard-c

rules. A system based on such a statistical model can generate the most pro

pronunciation of a proper noun that may not be part of the training data for the mo
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Moreover, it can produce a list of plausible pronunciations rank-ordered by the likelih

measured against the letter-to-sound statistical model.

The stochastic framework also allows introduction of additional knowled

sources such as language-dependent statistics of the occurrence of certain pho

which further improves the likelihood of finding the correct pronunciations for a giv

proper noun.

Maximum Likelihood Approach

If the spelling of a proper noun is given in terms of a sequence of alphabe

characters

(1)

and if pronunciation of proper nouns are denoted by phoneme sequences such as

(2)

then the most likely pronunciation for a given spelling is given by the phone

sequence with the maximum likelihood given the input letter sequence.

(3)

Using Bayes’ rule, this can be simplified to include the posterior probability of

spelling given the phoneme sequence and the probability of occurrence o

pronunciation or phoneme sequence  out of all the possible phoneme sequenc

(4)

I i 1 i2 … iN, , ,( )=

O o1 o2 … oM, , ,( )=

O
* I

O
* argmax

O
p O I⁄( )=

p I O⁄( )

p O( )

O
* argmax

O

p I O⁄( )p O( )
p I( )

------------------------------=
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Since the denominator term is common across all possible phoneme sequen

has no effect on the maximization process and therefore can be ignored from

calculations. As a result, the maximum likelihood representation takes the form

(5)

The posterior probability is a representation of the statistical relations

between the letters and the phonemes (i.e. the letter-to-sound map). The probability

phoneme sequence indicates language-related information and provides add

clues as to the possible pronunciations.

Proposed Framework

The problem of generating a list of possible pronunciations given only the spe

of a proper noun can be interpreted as one of mapping each letter in the spelling

corresponding phonemes. This mapping can be generated statistically as a classif

process where each letter is assigned a phoneme identity based on its context

spelling of the name. To obtain the most probable pronunciations for a given proper n

it follows that each letter should be mapped to phonemes that maximize the likelihoo

the resulting pronunciation phoneme sequences.

As described earlier, proper nouns are derived from a number of language

ethnic roots. Their pronunciations may contain phonemes that are not present in En

but are unique to the language of origin. Therefore, the phoneme set used to describe

pronunciations in a TTS system needs to provide adequate coverage of the phonem

O
* argmax

O
p I O⁄( )p O( )=

p I O⁄( )

p O( )
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large number of languages. The Worldbet phonetic representation system [8]

developed specifically to achieve this objective, and will be used to transcribe

pronunciations in this work.

In a large number of proper nouns, the pronunciation of each letter is a functio

its surrounding letters (e.g. the pronunciation of the letter “a” in “Amber” as opposed t

“Ames”). Therefore, instead of assigning a phoneme to an isolated letter, it is m

realistic to associate a phoneme with a letter in context of its neighbors in the spe

Thus the classification problem transforms into one of attributing phonemes to an n-

of letters. Such an n-tuple can be generated by sliding a window of an appropriate co

length across the spelling of the name. This approach is illustrated in Figure 1.

A classification model for the letter-phoneme mapping can be constructed

data-driven fashion, without recourse to any hand-written rules, by training the sy

with a database of name-pronunciation pairs decomposed into ordered sequences o

n-tuples and the corresponding phoneme symbols. To predict the pronunciation of a
Figure 1. Use of sliding context in creating n-tuples of letters from the spelling of a pro
noun, illustrated here for the surname “Amber” with the pronunciati
“@ m b &r”. A context length of 0 means each letter is treated individually
context of 1 indicates each letter considered along with its immediate prede
sor and follower, and so on. The symbol “_” indicates a blank (silent) lette
phoneme.
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proper noun, the trained system will transform its spelling into the appropriately l

n-tuples of letters and generate the most likely phonemes for each. This approa

schematically described in Figure 2.

Often, a group of adjacent letters in a proper noun combines to produce a s

sound (e.g. “ch” in “Church”, “ough” in “Houghton” etc.) and is therefore associated w

a single phoneme. However, each letter (or n-tuple of letters) requires to be asso

with a phoneme in the above representation. This problem is handled via the notion

blank or silent phoneme inserted in the appropriate places in the phoneme sequenc

silent phoneme acts as a placeholder in the model representation, but is never prono

Similarly, for context lengths larger than 0, the first and last letters of the spel

do not have sufficient context before and after, respectively. The required conte

obtained by padding the spelling with the appropriate number of blank letters.

The application of both the blank letter as well as the silent phoneme is

illustrated in Figure 1. Both entities are represented by the same symbol “_”.
Figure 2. Schematic representation of the statistical system to automatically gen
multiple likely pronunciations of proper nouns given the spelling.
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CHAPTER II

MAXIMUM LIKELIHOOD MODELING

The goal of the proposed research is to develop algorithms that can automat

generate an accurate list of pronunciations for a proper noun using a maximum likeli

estimate of the correspondence between the letters that make up its spelling an

phonemes that constitute its pronunciation.

To that effect, the letter-to-sound relationship can be modeled as a statis

pattern classification paradigm where each letter in the spelling of the proper no

assigned phoneme symbols that are most likely given the orthographic context o

letter. This is summarized in Equation (5), reproduced here for convenience:

(6)

Here, is an ordered sequence of letters that constitute the spe

of the name, and is an ordered sequence of phonemes.

is a model of the letter-to-phoneme map derived from the statistics of proper noun

and their pronunciations. indicates properties of the language since it represen

likelihood of the occurrence of the phoneme sequence.

In this framework, scores for various phoneme sequences or pronuncia

hypotheses are generated using the letter-to-phoneme posterior likelihoods an

probability of the corresponding partial phoneme sequence. The hypothesis wit

maximum overall score is found by performing a dynamic programming search thro

O
* argmax

O
p I O⁄( )p O( )=

I i 1 i2 … iN, , ,( )= N

O o1 o2 … oM, , ,( )= M p I O⁄( )

p O( )
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all such hypotheses, which yields the best pronunciation for the given spelling.

A Simple Model for Letter-Phoneme Correspondence

Equation (6) can be expanded to include the individual letters and phonemes

proper noun and its pronunciation respectively as follows —

(7)

Assuming statistical independence between adjacent phonemes, i.e. th

sequence of the phoneme symbols represents independent outcomes of a random p

statistically the occurrence of one phoneme in the pronunciation of a name doe

influence the chances of appearance of other phonemes.

(8)

Now, the estimation of the letter-to-phoneme correspondence can be further simplifie

mapping that individually maximizes the likelihood of each phoneme for the given le

sequence.

(9)

Here, is the set of all phonemes. The optimal pronunciation can be constructe

simply concatenating individually most probable phonemes given the spelling as

(10)

and the total probability of the phoneme sequence constituting the pronunciation is

o1 o2 … oM, , ,( )*
argmaxp i1 i2 … iN, , , o1 o2 … oM, , ,⁄( )p o1 o2 … oM, , ,( )=

p o1 o2 … oM, , ,( ) p ok( )
k 1=

M

∏=

ok
* argmax

o{ }
p i1 i2 … iN, , , ok⁄( )p ok( )= … k∀ 1 2 … M, , ,{ }∈

o{ }

O
*

o1 o2 … oM, , ,( )*
o1

*
o2

* … oM
*, , ,( )= =
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by simply multiplying the likelihoods of the individual phonemes.

(11)

By forcing the constraint that each letter in the spelling has a correspon

phoneme associated with it (in case of a cluster of two or more adjacent letters mapp

the same sound, this is achieved by assigning the phoneme to one of the letters and

the silent phoneme as the place holder for the rest — see Figure 1), and Equ

(9) further simplifies to

(12)

If occurrence of adjacent letters in the spelling is also assumed to be statisti

independent, then each phoneme can be associated with a single letter in the spellin

equation for maximization of the likelihood of the phoneme can now be written for e

single letter-phoneme pair for the proper noun.

(13)

While Equation (13) presents a fairly simplified representation of the maxim

likelihood paradigm, the implicit assumption that the pronunciation of a lette

independent of its surrounding letters is not realistic. As illustrated earlier, it is often

orthographic context of a letter that determines its pronunciation. This dependence

phoneme associated with a letter on the letter n-tuple centered around this letter c

statistically modeled as a bidirectional or non-causal Markov process.

p O
*

( ) p o1
*

o2
* … oM

*, , ,( ) p ok
*

( )
k 1=

M

∏= =

M N=

ok
* argmax

o{ }
p i1 i2 … iN, , , ok⁄( )p ok( )= … k∀ 1 2 … N, , ,{ }∈

ok
* argmax

o{ }
p ik ok⁄( )p ok( )= … k∀ 1 2 … N, , ,{ }∈
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For a standard th order Markov process , the likelihood of an event given its fu

history is a function of only the preceding events. For a sequence of observa

, the likelihood of each observation  is given by

(14)

An th order bidirectional or non-causal Markov process can be thought of

combination of two th order Markov processes operating in opposite directions. In ot

words, the likelihood of an event is a function of the preceding events, as well as

following  events.

(15)

Assuming that the probability of a phoneme corresponding to a letter

function of a context length , the likelihood maximization equation takes a form sim

to Equation (15).

(16)

The non-causal estimation of the letters in the spelling follows from the fact

while the phonemes are predicted in a time-sequential manner for each letter, the

spelling of the name is available in advance to generate letter sequences of any d

context duration.

Equation (16) forms the basis of the sliding-window approach to train

phoneme classification mechanism proposed in this research. Using a sliding window

n χ

n

x1 x2 … xN, , , xk

p xk x1 x2 … xk 1–, , ,⁄( ) p xk xk n– xk n– 1+ … xk 1–, , ,⁄( )=

n

n

n

n

p xk x1 … xk 1– xk 1+ … xN, , , , ,⁄( ) p xk xk n– … xk 1– xk 1+ … xk n+, , , , ,⁄( )=

ok ik

n

ok
* argmax

o{ }
p ik n– … ik 1– ik ik 1+ … ik n+, , , , , , ok⁄( )p ok( )=

… k∀ 1 2 … N, , ,{ }∈
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fixed context length, n-tuple of letters of the proper noun spelling are created w

corresponding phoneme from the pronunciation associated with it. Each sequence ca

be treated as an individual training sample. Figure 3 illustrates how using a context le

of i.e. a window length of , a pronunciation is first aligned with th

spelling string and then used to generate training sequences. The system can b

allowed to learn the statistical relationship between each n-tuple of letters an

corresponding phonemes.

Effect of Phonemic Context

In the discussion in the previous section, it was assumed that the consec

phonemes in the pronunciation are statistically independent of each other (Equation

However, a study of human articulatory patterns reveals that speech sounds i.e. phon

dependent on context [9], and therefore it may be beneficial to assume some stat

dependence between a phoneme in the pronunciation string and its predecessors. Th

be modeled as a Markov process. Using a single-phoneme history i.e. a first order M

n 2= 2n 1+ 5=
Figure 3. The training sequences generated for the word “Matt” with nominal pronun
tion “m @ t” using a 5-letter context. The aligned pronunciation is “m @ t _”.
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assumption, Equation (8) can now be written as

(17)

As a result, the probability of the phoneme sequence representing a pronunciation

input proper noun can be estimated as

(18)

A system that uses the phoneme history in addition to the letter con

information to generate the pronunciation string will thus be required to evaluate a s

for each predicted phoneme based on the estimates of the observation probabilitie

the likelihood of the predicted phoneme given the letter context sequence and the h

phoneme), and a search strategy that hypothesizes all the possible phoneme sequen

generates a list of those that have the highest cumulative likelihood scores. Th

analogous to the N-best Viterbi decoding used commonly in speech recognition syste

determine the best sequence of phones based on acoustic scores [10, 11, 12].

In general, an th order Markov process can be used to model the phone

history, in which case Equation (17) can be re-written as

(19)

This is similar to the n-gram language modeling techniques used in speech recogn

and corresponding methods for likelihood determination that include back-off estim

p o1 o2 … oM, , ,( ) p ok ok 1–⁄( )
k 1=

M

∏=

ok
* argmax

o{ }
p ik n– … ik 1– ik ik 1+ … ik n+, , , , , , ok⁄( )p ok ok 1–⁄( )=

… k∀ 1 2 … N, , ,{ }∈

m

p o1 o2 … oM, , ,( ) p ok ok 1– ok 2– … ok m–, , ,⁄( )
k 1=

M

∏=
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and smoothing can also be applied to calculate the probabilities of the phon

sequences.

Estimation of Letter-to-Phoneme Posterior Probability

The expression for maximizing the estimated likelihood of a pronunciat

phoneme sequence, as derived in the previous section, is given by

(20)

where

(21)

for a context length of for the letters and anth order Markov assumption for the

phoneme sequence.

Thus the likelihood estimation can be split into two distinct operations — one

the a posteriori l ikelihood of the letter sequence given the phoneme (i.e. t

letter-to-phoneme correspondence map)

(22)

and the other for the likelihood of the phoneme given its history in terms of previou

occurred phonemes in the pronunciation, if any

(23)

Estimation of the posterior likelihood as defined by Equation (22) can be treate

p O
*

( ) p ok
*

( )
k 1=

N

∏=

ok
* argmax

o{ }
p ik n– … ik 1– ik ik 1+ … ik n+, , , , , , ok⁄( )=

p ok ok 1– ok 2– … ok m–, , ,⁄( )×

n m

p ik n– … ik 1– ik ik 1+ … ik n+, , , , , , ok⁄( )

p ok ok 1– ok 2– … ok m–, , ,⁄( )



16

f the

tter

and

gets

g the

owel

a

0 10 20 30 40

1

10

100

1000

10000

a

e

i

o

u

Phoneme index

P
ho

ne
m

e 
co

un
t

nary.
p to.

ed on
a classification problem, where the classifier is trained to represent the statistics o

association between letter n-tuples and the associated phoneme.

Since the pronunciation of a proper noun is not only a function of the le

n-tuples in its spelling, but also of several non-analytic factors such as ethnicity

dialect, a single letter n-tuple is often pronounced in different ways and therefore

mapped to multiple phonemes. Consequently, there is frequent overlap amon

classification regions for the various phonemes. This problem is illustrated for the v

space (i.e. pronunciations of only the vowels “a”, “e”, “i”, “o” and “u” as they appear in

pronunciation dictionary of 18500 American surnames) in Figure 4.
Figure 4. The phone space for the vowels for a 18500 surnames pronunciation dictio
The axis contains indices of all the 44 phonemes that each letter can ma
The axis contains the frequency of letter-phoneme correspondence plott
a logarithmic scale.

x
y
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Accounting for phonemes corresponding to the other letters in addition to

vowels, it is reasonable to extrapolate that the classification space is highly confusab

nonlinear. Standard linear classification techniques such as minimum mean squared

and nearest neighbor clustering will not be able to satisfactorily assign phonemes

corresponding letters. Moreover, the statistical model of letter-to-phone

correspondence is supposed to estimate a probability function for the occurrence o

letter-phoneme pair, a task not achievable with simple classification techniques. Ther

techniques that can optimally maximize the estimated likelihood of the letter-phon

pairs are needed to model the statistics of the classification space. Commonly

techniques for such stochastic pattern classification problems are statistical decision

artificial neural networks, Markov and hidden Markov models etc.

Statistical decision trees divide the classification space into piecewise lin

regions based on intelligent questions about the properties of the input data [13, 14

assign probabilities that a class corresponds to the input pattern accordingly. A num

existing text-to-speech systems involve decision tree techniques to convert te

phonemes, and the effect of decision trees for generating pronunciations of surnam

been studied in detail in [15]. The performance of such systems suffers from the ina

to generalize to the pronunciations of previously unseen names.

Neural networks, on the other hand, use interconnected sets of hidden units w

the connection weights are adjusted to model the complex relationships between

class and every input data token [16, 17]. Thus the output of the network is able to ca

the inherent functionality of the input data without anya priori statistical characterization
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or parameterization. The network can reduce large input vectors into small output fe

vectors that effectively indicate the classes represented by the input patterns. Often

features constitute the internal activation patterns of a network rather than the outpu

19].

Another approach that will be explored in this research is inspired from

methodologies used in solving problems pertaining to automatic recognition of spe

where the system generates a maximum likelihood sequence of speech units (ph

words etc.) using a dynamic programming search through the possible hypothese

probabilities are estimated using statistical optimization methods such as the

(expectation-maximization) algorithm [20].

Likelihood Estimation Using Statistical Neural Networks

Artificial neural networks (ANNs) are an attractive approach for nonline

classification tasks due to their ability to perform complex computing or classifica

operations through massive integration of individual computing units, each of w

performs an elementary computation.

ANNs are connectionist systems in which the knowledge about the da

distributed over multiple processing units and the net exchange of information betw

these units determines the behavior of the system. Such networks can be cr

automatically through incremental learning i.e. by repetitive training on example ca

Multilayered neural networks, in which the internal or hidden units can act as fea

detectors that perform a mapping between the input and the output are a class of m
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ideally suited for such applications of letter-to-phone conversion.

A hybrid stochastic neural network [21] is proposed here that combines

principles of multilayered feedforward networks [22, 23] and Boltzmann machines [

This network looks at each character in the spelling of the noun in the context of its

and right neighbors and maps such letter substrings to the corresponding sounds. A

register structure is used to buffer characters as they are input to the system one at

Local as well as long-distance constraints can be incorporated in the input data [25]
Figure 5. Topology for a multilayered feedforward stochastic neural network for pron
ciation generation. For the example word “Epstein” pronounced asE p s t aI n
— the input layer connects to the bit-encoded letter strings of different con
lengths, the many hidden layers capture the letter-to-sound features in the
bit stream. The output is another bit stream which encodes the phoneme.
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shift registers of different context sizes simultaneously. This approach is similar to o

time-delay techniques that have become popular in speech recognition systems [26

The network architecture for the problem of name pronunciation generatio

depicted in Figure 5. It is based on the following two design criteria —

• Generally, a relatively small amount of contextual information is sufficient to

narrow the range of possible sound correspondences to a small set of likel

phonemes.

• Choosing a correct sound from this set may require information occurring a

more remote points in the name (such as the identification of spelling pattern

unique to the language from which the name is derived).

The network architecture consists of three principal components described as follow

• An input layer that buffers n-tuples of input letters and maps them to

binary-valued inputs — the input character set consists of the 26 letters of th

alphabet, plus the blank letter “_” and a few other special characters such as th

apostrophe and the period.

• A set of hidden layers that maps such bit-streams into a set of internal states —

that derive and store the context-sensitive information regarding the “sounds

such n-tuples produce, and transform the bit-string output of the input laye

into some representation of sounds or features corresponding to th

pronunciation of the name. The connection weights between the input buffer

and the hidden layer are used to represent knowledge about the n-tuple lett

sequences.
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• An output layer that integrates the long-term and short-term constraints to

interpret the groups of letters into a phonetic representation — an indexing

system is used to encode the output symbols as phonemes in order to redu

the complexity of the system.

By repeatedly applying the same name as input to the system, different pho

feature sequences can be produced, corresponding to alternate plausible pronuncia

the name. Thus, the network succeeds in determining not only a nominal or “cor

pronunciation, but also describing all likely pronunciations of the name. The activa

probability of each unit in the network also provides a likelihood measure or “score”

each pronunciation.

Standard algorithms used for training multilayered perceptrons, such as simu

annealing [28] and error backpropagation were found to have divergence problem

training the letter-to-phoneme classifier due to the nature of the classification space

Therefore, a modified training algorithm is proposed here for this neural network sys

This algorithm is a variation on the standard simulated annealing gradient de

method. It tries to minimize the asymmetric divergence (an information-theoretic mea

of the distance between two probability distributions) between the network en

distributions generated by the reference pronunciation and the hypothesis phoneme

Derivation of The Weight-Update Rules

The typical connections between neurons in two connected layers are illustrat

Figure 6. Let be the set of weights connecting units in the two layers, suchwij{ }



22

se of

work

i.e. are

rmal

f the

of

n the

s

h j

jth neuron

wkj

wijhi

ith neuron

•

•
• • • •

−∞ ∞0

0.5

1.0

pj

∆Ej

the
eu-

The probability that the j th neuron will fire is given by

Ej∆ wij hi θ j–
i

∑= ; p hj 1=( ) 1

1 e
Ej∆– T⁄

+

-------------------------------=

θ j
represents the set of output bits of one layer (say the input layer) and tho

the other (output layer). Let be a global state of this Boltzmann machine neural net

corresponding to the case where the outputs represent the hypothesis pronunciation

set according to the input bits and not clamped externally; and the network is in the

equilibrium. When the output bits are clamped to their desired values, let the state o

network at thermal equilibrium be represented by . If indicates the probability

the system being in the equilibrium state , then the asymmetric divergence betwee

distributions at the hypothesis state  and the desired or ideal state  is defined a

(24)

hi{ } hj{ }

α

α) Pα

α

α α)

Ψ P
α

P
α

Pα
--------log

α
∑= )

)

)

Figure 6. Typical neuron connections in a Boltzmann machine network, along with
Boltzmann distribution function that governs the activation probability of a n
ron. The neuron activation function is also illustrated.
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Assuming that the threshold values at each unit are included in the summation

total global energy of this system in state  is

(25)

Therefore differentiating  with respect to a connection weight  yields

(26)

The probability that the system under thermal equilibrium conditions ends u

the global state  is given by the following equation [28] —

(27)

where is any global state of the network. Differentiating Equation (27) and substitu

Equation (26) the following equation is obtained —

(28)

which simplifies to

(29)
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This relation is used to compute the gradient of the error function. The deriva

of Equation (24) results in

(30)

A substitution from yields

(31)

Noting that the sum of probability values over the entire domain is 1 and that the inpu

are the same in both the reference and hypothesis cases —

(32)

if the error in the output bit is termed as , then on further simplification

Equation (31) the relationship between the gradient of the error function and the bit

becomes apparent.

(33)

Thus to minimize it is sufficient to change each weight by an amount proportiona

the difference between the expected output and the desired output.

(34)
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Figure 7. A schematic overview of the simulated annealing backpropagation algor
used to train the multilayered stochastic neural network.
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Here is a scaling factor that determines the size of each weight change, and i

context of neural network training is called thelearning rate.

There are a number of possible modifications to the algorithm derived above

affect the learning in terms of speed of convergence. By keeping the scaling factor

small the noise in incrementing the weights can be minimized, but a very small value

also results in a slow learning rate. This can be partly compensated for by adding

momentum to the training. This involves providing some feedback to the weight upd

based on the updates for the previous input-output case. The feedback factor is

the momentum coefficient, and can be varied to control the direction of learning to s

extent. Now the weight update equation takes the form

(35)

which is used in training the pronunciation generating system.

The training algorithm is described in detail next. Figure 7 contains a schem

outline of the training process.

Training Algorithm for Stochastic Multilayered Neural Network

Given a set of input spellings along with the corresponding phonetic transcripti

to compute the set of weights for a stochastically activated network with numbe

layers that maps the inputs onto the corresponding outputs the following procedu

used:

1. As there are layers in the network, layer 1 corresponds to the one clampe

η

η

µ

wij∆ ηδ j
α

hi
α µ wij∆+=

K

K
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with the inputs and layer corresponds to the neuron layers that constitute th

system output. Let be the number of neurons in the layer. Also, let

be the number of bits that are input the first layer of neurons. These bits are th

accumulation of the bit-strings corresponding to all the symbols loaded in the

input buffer, and hence is fixed once the context size is decided. Let the

input bits be denoted by , the activation levels of the neurons in the

hidden layer be denoted as and the output bits of the (output) layer be

. We indicate the weight connecting the neuron in the layer to the

neuron in the layer by . is the index of the number of training

loops. is thesystem temperaturein the iteration through the training

data. Let be thelearning rateand be thefeedback coefficientor the

momentumterm used to update the connection weights. The learning rate is a

fixed constant that characterizes the impact of the output error of a neuron o

the weights connected to it. The momentum determines how much the

previous training affects the weight update. For , the weights are

initialized to small random values (say between -0.1 and 0.1). The respectiv

initial values of the momentum and the temperature are

also set. The initial temperature  is a parameter specified by the user.

2. The following steps 3 through 10 are carried out for each iteration

K
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th

N0

N0

xi k
th

h
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k K
th
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th

k 1–
th

j
th
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η α t( )
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over all the training vectors.

3. For an input vector , the probability of getting a high output for a hidden

layer neuron clamped to it is calculated in terms of its energy gap. The output

are set to a high or low value using a random number generator that follows

this distribution.

(36)

(37)

4. The output of the units in the first hidden layer is propagated through the

network to compute the outputs of neurons in the subsequent layers. Thus fo

all  —

(38)

(39)

5. Finally, the output bits of the outermost layer are computed.

(40)

(41)
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6. The output bit-string is compared to the bit-string that corresponds to the

expected or target output phoneme. The error in the system output is compute

based on the actual output and the target output. Since this error corresponds

the outermost layer, the error for the  neuron in this layer is denoted as

(42)

7. The error in the output of a neuron in an earlier layer is computed. The error a

the layer is calculated by backpropagating the error in the layer and

is denoted by . For all  —

(43)

8. The weights are updated using these error values with some feedback from th

updates in the previous training pass (see Appendix A for derivation). This

feedback is controlled using thelearning rate and the momentumor

feedback coefficient . For all  —

(44)

9. Steps 3 through 8 are repeated for the next input token. This is continued till a

input tokens are exhausted. A complete training pass through all the inpu

tokens is called an iteration or anepoch.

10. The momentum and temperature parameters are updated for the next iterati
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through the training data. The momentum term is slowly increased to be sma

in the beginning and to approach unity as the network runs through more

epochs. The temperature is gradually decreased i.e. the system is allowed

cool down as per the simulated annealing paradigm. A common cooling

schedule follows an exponential function with a cooling exponent specified

by the user. Therefore —

(45)

(46)

11. The network continues to make passes of the training data till the cumulativ

mean squared error in the output values drops below a suitable threshold. A

this juncture the system is said to have achieved convergence.

The training may be stopped according to several other criteria as well. These may in

stopping the training once some minimum value of the system temperature is reach

when the largest increment in any of the connection weights is smaller than a thre

value etc.

Likelihood Estimation Using Context Interpolation

The neural network model attempts to capture the letter-to-phoneme statis

distribution in a non-parametric framework i.e. it poses no restrictions on the form o

distribution. Therefore, a continuous density probability function is estimated.

alternative to training the neural network models is to estimate the letter-to-phon

β

α t( ) 1 e
βt–

–=

T t( ) T0e
βt–

=
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correspondence as a discrete probability distribution.

This is achieved by using ratios of the frequency of occurrence of each le

n-tuple and phoneme pair for a given context length. A back-off count is also mainta

for each central letter using an n-tuple of a smaller context length, and the correspo

back-off probabilities estimated. When generating the pronunciation of a proper noun

most likely phonemes given the letter n-tuple string are output. If a particular n-tuple

not exist in the model, the phoneme likelihood associated with it is calculated by bac

off to the next smallest context using the back-off weights.

First, all the distinct phonemes in the pronunciation database are indexe

integers in the range 1 through , where is the size of the phoneme set. For a co

length of , the size of the n-tuple is . If a letter sequence centered around the

be denoted by , then let the number of times the phoneme with the index

associated with this n-tuple be . The probability of this letter n-tuple to

associated with this phoneme is then given by

(47)

At the same time, the back-off context is of size , with th

corresponding letter sequence of the size . The back-off probabilit

this shorter letter sequence , which is obtained by stripping the extreme lette

the full-length sequence , to be associated with the phoneme index is then

V V

n 2n 1+

ξ ξ2n 1+ x

υ ξ2n 1+ x⁄( )

p ξ2n 1+ x⁄( )
υ ξ2n 1+ x⁄( )

υ ξ2n 1+ y⁄( )
y 1=

V

∑
-------------------------------------------=

b n 1–=

2b 1+ 2n 1–=

ξ2n 1–

ξ2n 1+ x
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(48)

Here, indicates the letter sequence of length which has any poss

letter at each of the two extreme positions, but the central substring is .

These back-off likelihoods are estimated for . Durin

evaluation, the likelihood of an input n-tuple of letters centered around for a phonem

is given by

(49)

The system backs off to progressively smaller context length substrings if the longer

substring is not found to have a satisfactory count of occurrences in the training data

Estimation of Phoneme Probabilities

The posterior probabilities of the letter-phoneme pairs can be used dire

without any additional knowledge to generate pronunciations of proper nouns. How

the performance of such a system based only on classification of phonemes is poo

This system essentially assumes a uniform distribution on the occurrence of all phon

However, not all phonemes are equiprobable, as described in Figure 8 by the

p ξ2n 1– x⁄( )
υ ξ2n 1– x⁄( )

υ ξ2n 1– y⁄( )
y 1=

V

∑
-------------------------------------------=

p ξ2n 1+ x⁄( )
A
∑= …A ξ2n 1+ * ξ2n 1– * ξ2n 1+={ }=

* ξ2n 1– * 2n 1+

ξ2n 1–

b n 1– n 2– … 1, , ,=

ξ x

p ξ x⁄( )
p ξ2n 1+ x⁄( ) …if exists

p ξ2n 1– x⁄( ) …otherwise



=
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of the occurrence frequencies for each phoneme in a pronunciations database consis

18500 American surnames. Using the phoneme occurrence statistics in conjunction

the posterior probability will provide more information towards selecting the corr

phoneme sequence for a given proper noun. Since the occurrence of a particular ph

sequence is a characteristic of the language of origin, inclusion of the phoneme seq

probability in the maximum likelihood framework allows application of linguist

knowledge sources.

It was described in Equation (19) that the probability of the phoneme seque

constituting the pronunciation of a proper noun can be modeled as ath order Markov

model. The equation is reproduced here for convenience.

m

Figure 8. Occurrence statistics of phonemes in a proper nouns pronunciation dicti
indicates the variation in the probability of occurrence of phonemes.



34

used

ences

d to

at of

e are

set.

only

as a

Then

of

f an

as
(50)

This formulation is analogous to the concept of an n-gram language model [31]

extensively in speech recognition applications to represent patterns of word sequ

occurring in the linguistic structure, where a history of the preceding words is use

determine the likelihood of occurrence of the word currently under consideration.

The probability of a phoneme sequence is calculated in a manner similar to th

n-gram estimation. As before, all the distinct phonemes in the pronunciation databas

indexed to integers in the range 1 through , where is the size of the phoneme

Assuming a , i.e. a first order Markov process, the occurrence of a phoneme is

a function of the previous phoneme in the pronunciation. This will be denoted

phoneme bigram, to maintain consistency with the speech recognition nomenclature.

for each adjacent pair of phoneme indices and , the total number of occurrences

following (denoted by ) is counted. Then the total number of occurrences o

individual phoneme  is given by

(51)

and the total number of phoneme occurrences in the database is given by

(52)

Then, the bigram probability of a phoneme given the preceding phoneme w

p o1 o2 … oM, , ,( ) p ok ok 1– ok 2– … ok m–, , ,⁄( )
k 1=

M

∏=

n

V V

m 1=

x y x

y n x y⁄( )

x

n x( ) n x y⁄( )
y 1=

V

∑=

ntotal n x( )
x 1=

V

∑=

x y
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is given by

(53)

Here, is a lower bound on the probability and is set to some small value to a

underflow.  is a normalizing constant used to ensure that all probabilities sum to 1

(54)

If a phoneme sequence does not occur at all in the training data, then it is ass

the uniform distribution term . If a large number of such cases occur in the big

estimation, the performance of the system suffers since it approaches the un

distribution system described earlier in this section.

As an alternative, a back-off bigram [32] can be constructed to overcome

sparse data problem to some extent. Here, if a particular phoneme sequence does no

in the training data, its likelihood can be computed using a back-off weight of the his

phoneme and the unigram probability (i.e. the probability of the individual phoneme

the current phoneme. The unigram probabilities are defined as

(55)

p x y⁄( )

αn x y⁄( )
n x( )

----------------- …n x y⁄( ) 0>

1
V
---- …n x y⁄( ) 0=

f …otherwise







=

f

α

p x y⁄( )
y 1=

V

∑ 1=

1 V⁄

p x( )

n x( )
ntotal
------------- …n x( ) u>

u
ntotal
------------- …otherwise









=
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where is the lower bound on the occurrence count of a single phoneme. The bac

bigram probability is given by

(56)

Here, is the discounting factor [33] used to deduct some of the available probab

mass from the more frequent bigrams and distributing it among the low-occurre

bigrams, and is typically set to 0.5. is a bigram count floor limit. The back-

probability is computed as

(57)

where is the set of all phonemes for which the bigram exists. This ensure

validity of probability sum —

(58)

The equations for higher order phoneme n-grams can be derived in a similar fas

However, an order larger than 2 or 3 is usually found to be impractical due to lac

sufficient training data, in which case most probabilities are assigned as back-off.

Since in the n-gram model of the phoneme sequence the likelihood of a parti

phoneme depends on its position in the sequence, the information about whet

u

p x y⁄( )
n x y⁄( ) D–

n x( )
---------------------------- …n x y⁄( ) t>

b y( ) p x( ) …otherwise





=

D

t

b x( )

1 p x y⁄( )
y B∈

V

∑–

1 p y( )
y B∈

V

∑–

---------------------------------------=

B x y⁄( )

p x y⁄( )
y 1=

V

∑ 1=
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phoneme can be at the start or end of a proper noun pronunciation is also impo

However, the first phoneme has no preceding context, and the last phoneme can

identifieda priori. Therefore, for the phoneme string representing the pronunciatio

each proper noun in the training database, a start phoneme tag is assigned to th

phoneme and an end phoneme tag assigned to the last phoneme. This allows the like

of the phoneme being at the noun start or end is also captured in the n-gram model.
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CHAPTER III

REVIEW OF CURRENT TEXT-TO-SPEECH TECHNOLOGY

Automatic generation of a list of probable pronunciations of proper nouns

application to both speech recognition and synthesis. In recognition systems, such lis

be used to build better pronunciation models for proper nouns, thus increasin

likelihood of obtaining accurate acoustic matches for such words. Similarly, a sp

synthesis system can be tuned to produce a more natural utterance of the names re

to be output.

To that effect, the aim of the proposed research is to develop maximum likelih

techniques that can automatically generate an accurate (i.e. acceptable with a

probability score) list of pronunciations for proper nouns.

The motivation for the proposed work originates from experiences at Te

Instruments in the late 1980s with attempts to field speech recognition technolog

medical applications [34]. In many such applications, the ability to recognize a physic

or patient’s name is crucial in providing a usable interface. For example, using numbe

access patient records is problematic due to the impracticality of remembering

numbers for any significant class of patients. Name recognition is a vital ste

transforming medical record access from keyboard input to voice input. A compar

problem involving company names and product names exists in voice interface

advanced telecommunications services [35, 36].
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Historical Overview

While the fields of speech recognition and synthesis have been active for se

decades now, the focus on proper noun pronunciations is relatively recent. An exte

study was performed in the late 1980s to evaluate the accuracy of text-to-speech sy

on pronouncing proper nouns [37] for a directory assistance application. In this wo

was shown that extensive handwritten rule sets were required to generate an ac

pronunciation of names. Such rule-based systems, even though deemed fairly accur

the specific application, generated only the single most likely pronunciation for e

proper noun.

Since many proper nouns have a number of highly probable pronunciations w

can be rarely differentiated from the context of the application, a system generating

the single-most likely pronunciation essentially attempts to solve an ill-posed prob

Also, for a successful speech recognition application it is important that all plaus

pronunciation alternatives be available to the system to build better quality aco

models for the proper nouns.

A commercial product called DECTalk [38] was developed in the mid-1980s

converted unrestricted English text into speech, using a set of phonological rules a

handling exceptions with a lookup table. DECTalk used two methods for converting

into phonemes — first a word was looked up in a pronunciation dictionary of comm

words. If it was not found there then a set of phonological rules was applied to obt

phonetic transcription along with stress assignments. These were then converte

speech sounds using transition rules and digital speech synthesis. For novel wor
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which a correct pronunciation could not be obtained, the dictionary and rule sets req

updating through explicit intervention. This approach was found to be hig

labor-intensive and very limited in scope even for its intended application.

Many commercial systems, such as Bellcore’s Orator [39], Bell Labs’ TTS [

and Mitsubishi’s Anapron [41], follow variations on the same concepts of rule-ba

and/or dictionary-based look-ups to generate pronunciations for proper nouns. A m

drawback of such systems is that they require an extensive set of handwr

letter-to-sound rules which make the systems cumbersome and expensive to devel

maintain. Moreover, such rule-based systems are constrained by their ability to gen

only one pronunciation for a given proper noun, and do not generalize gracefully w

presented with names not covered by the rule set.

Alternative approaches have emerged since then that employ statistical techn

such as Hidden Markov Models (HMMs) [42] and artificial neural networks (ANNs) [4

to model the stochastic distribution of pronunciations with respect to the letters in

spelling of the word. These have been met with varying degrees of success.

The general idea of applying neural network techniques to the text-to-spe

problem is loosely based on a feasibility study performed in the mid-1980s that focuse

automatically learning letter-to-sound mappings using neural networks [44]. As pa

this study, a multilayered neural network model called NETtalk was developed a

alternative to DECTalk. It successfully demonstrated that a relatively small network

capture most of the significant regularities of the pronunciations of regular English wo

as well as absorb a large number of the irregularities. It also had the advantage of
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language independent (i.e. it could be trained to be used on any language) and d

implementable in hardware. However, it was found to be limited in its ability to han

ambiguities that require syntactic and semantic levels of analysis.

In the late 1980s a technique for voice recognition of proper nouns us

text-derived recognition models [45] was proposed and subsequently patented at

Instruments. In this technique, an algorithm was proposed to automatically de

recognition models from the text-only spelling of the name (rather than voice d

containing nominal pronunciations). This system relied on a particular class of ne

networks known as a Boltzmann machine [46], designed to generate multiple outputs

given input. Such a network transforms the spelling of a proper noun to a netwo

distinctive features [47] describing articulatory movements required to produce var

pronunciations of the name. However, this system was never implemented or evalu

and has served as the starting point for the research proposed here.

Recently, statistical decision trees (DTs) have emerged as a viable techniqu

performing such nonlinear classification tasks with high degree of accuracy. For exa

a technique that uses decision trees to automatically generate detailed pho

pronunciation networks from a coarse phonemic transcription [48] has been develop

AT&T. Since each terminal node in the tree can store a statistical distribution of

phoneme associated with it, some decision tree based systems are also capa

generating more than one pronunciations.

Many of the systems described here have reported reasonable performan

standard English words. However, at present there exists no system that can automa
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and effectively model the peculiarities of proper noun phonology to generate mul

likely pronunciations for them.

The approaches to model pronunciations of words (including proper nouns) ca

broadly classified into two categories — rule-based and data-driven. Rule-based sy

employ a set of explicit (and often hand-crafted) rules designed by linguistic exper

determine the pronunciation of the input word. Data-driven methods, on the other h

assimilate the statistical relationships between the features of the words (such as sp

speech samples, formant tracks etc.) and the corresponding phonetic variation.

A discussion of various methodologies as applied to generation of pronuncia

for proper nouns as well as regular words is presented here. A comparison of se

state-of-the-art name pronunciation systems can be found in [49, 50].

Rule-Based Pronunciation Generation

The rules for generating pronunciation of a word are highly stylized and simpli

approximations to the phenomena of natural speech, and are typically based o

morphological and phonological structure of the word [51]. In case of regular words

language (such as English), the translation of the morphology of a word into a pho

representation is fairly straightforward, and an appropriately large rule set is sufficie

provide coverage of a bulk of the vocabulary.

However, for proper nouns such as surnames the letter-to-sound relations

exceedingly complex; and correspondingly the number of rules required to pro

adequate coverage over a representative name set is impractically large. A typica
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system specialized for name synthesis may have an error rate of about 20% in terms

coverage provided by its rule set when evaluated on a random set of names [52].

present-day systems address this problem using a two-fold strategy — very large rule

are built to obtain coverage of approximately 60% of the surname distribution, a

specialized dictionary is used to look up the pronunciations for the remainder o

names.

The foundation of the rule-based systems lies in the observation that in m

languages such as English, historically the alphabetical spelling representation of a

was closely related to its intended pronunciation [53, 54]. Over time, the pronuncia

evolved to reflect sociolinguistic changes such as interaction with other languages

and resulted in such complex conventions as compound letters (for instance “ch

“sh”), silent letters (e.g. “Psychology”) etc. [56].

Standard Rule-Based Systems

Early systems employing rule sets for pronouncing words exploited the fact

the pronunciation of a letter or a pair of adjacent letters in the spelling of a word is clo

related to the adjacent letter context [57, 58]. Thus, rules were devised that would co

letter n-tuples such as “ph”, “ee” etc. to the corresponding phoneme. A subsequent

conversion rules then assigned the remaining single letters to phones. The rules

usually ordered to treat consonants first and use the context specification provided b

consonants to convert vowels into phonemes.

From a perspective of text-to-speech synthesis, it was also found desirab
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generate the stress patterns for the pronunciations of these words. This was achie

including stress rules such as the Chomsky-Halle set [59] used in [60], or the Hill

Nessly rule set [61] used in [62]. A majority of TTS systems that emplo

letter-to-phoneme rules also include stress pattern information for the syllables o

word. However, since the focus of this research is to generate pronunciation model

can be used both for recognition and synthesis, generation of stress patterns is

critical issue. Therefore, a detailed discussion on application of stress rules is om

here.

Due to the inherent variations in the letter-to-sound mapping of the language,

a large set of rules fails to accurately predict the pronunciations of the different words

evaluating a large set of words on a purely rule-based system a list of exceptions c

generated, and the pronunciations of these words stored separately in the system.

An exception-handling pronunciation dictionary is necessitated by two factors

spelling-to-pronunciation conversion in typical TTS applications. First, a small numbe

words — approximately 2000 — is sufficient to cover almost 70% of words regularly u

in English [63]. With a pronunciation dictionary for these words built into the system

majority of the input text does not need to be treated with the letter-to-sound ru

Secondly, by adding other relatively frequent words that fail to be pronounced corre

using the rules to the dictionary, the performance of the system can be impr

considerably [64, 65].

However, the size of the exceptions dictionary grows inversely proportional to

quality and extent of the letter-to-phoneme rules. Thus the storage requirements on
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rule-based systems are immense — either the rule set needs to be large to provide a

coverage of different letter contexts, or the dictionary gets heavily populate

compensate for the deficiencies of the rules [66].

The standard procedure for generation of a pronunciation is depicted in Figu

First, the input word is looked up in a small pronunciation dictionary built into the sys

for handling exceptionally difficult words. If no match is found, the word is progressiv

broken into smaller parts calledmorphemesor graphemesby removing common prefixes

and suffixes and recovering the root form of the word. If the root word does not match
Figure 9. Schematic procedure for generating pronunciation of a word from its spe
using letter-to-phoneme rules and dictionary lookup.
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dictionary, the word is subject to the letter-to-phoneme rule set to generat

pronunciation.

Morpheme-Based Rules

An alternative to bulky exception-handling dictionaries is to maintain

pronunciations database of morphemes. Morphemes are often described as the s

meaningful unit of language [67]. Morphological analysis of words is important wh

dealing with silent letters like “t” and disambiguating pronunciation of compounds suc

“hh” in “hitchhike”, since a rule-based system will break down on such words. The ben

of morpheme-based methodologies is also supported by studies [68] which indicat

good spellers seek out morphemes in words and reconstruct the word spellin

concatenating its morphemic components.

The benefits of morpheme-based decomposition of words to gene

pronunciations was demonstrated early on in [69] with a small dictionary of 3,

morphemes. This was extended in [70] where a dictionary of 12,000 morph

pronunciations was generated by interactive examination of the text of the Brown co

[71], and augmented with a set of heuristic scoring procedures that will select the

plausible of the different possible morphemic parses of each word (e.g. “scar” + “c

vis-a-vis “scarce” + “ity” for the word “scarcity”).

The MITalk system [72] was built around such a morpheme decomposit

algorithm with approximately 98% accuracy for words in regular text in addition

pronunciation rules. A similar system at Bell Labs [73] used a dictionary of 43,0
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morphemes augmented with rules for stress assignment and affix analysis.

The most obvious advantage of morpheme-based pronunciation dictionaries i

a relatively small number of morphemes is required to provide coverage of a fairly l

vocabulary, thus significantly reducing the memory requirements of the except

dictionary.

Proper Noun Systems

With sufficiently large rule sets and exception dictionaries, the rule-based sys

described above performed fairly (accuracy of 95% at word level) well on genera

pronunciations for general English text. However, their performance on predicting pr

noun pronunciations degraded significantly — the early pronunciation systems ge

specifically towards proper nouns [74, 75] had an error rate of more than 20% [76].

A study of the performance of contemporary TTS systems on pronouncing pr

nouns [77] suggests that names often represent phenomena that pose problems for

letter-to-sound rules. Particularly, a large number of proper nouns have origin

languages other than English and therefore the letter-to-phoneme rules derived for E

text do not translate well to their pronunciation.

One approach to overcome this problem is to first identify the language of or

for the name and then apply the rules specific to that language to generat

pronunciation. Language identification can be achieved by using the statistics o

frequency of occurrence of letter sequences in different languages and comparing

against the input name [78]. Therefore, adapting a system to proper nouns inv
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hand-crafting a very large number of restrictive letter-to-phoneme rules and a signif

increase in the size of the exceptions dictionary. Most state-of-the-art commercial sy

specially designed to generate proper noun pronunciations employ this strategy with

modifications. Figure 10 describes the general procedure for rule-based systems to p

pronunciations of proper nouns.

In the Orator system [39] from Bellcore, the name input to the system is f

compared against a small exception dictionary of approximately 2500 names. If the

is not found in the dictionary, the system characterizes its language of origin and

subjects it to morphological analysis. A morpheme pronunciation dictionary is use
Figure 10. Schematic procedure for generating pronunciation of a proper noun fro
spelling using dictionary lookup, morphology and letter-to-phoneme rules.
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determine the pronunciation of each morpheme. If the morpheme does not exist

dictionary, it is subjected to letter-to-sound rules. The rules were specifically designe

pronunciation of names, taking into account factors such as the language, morp

boundaries and orthographic context. The rule set adheres closer to the America

pronunciations of the names from foreign languages rather than the native pronuncia

Since the rule set is fairly large, for efficiency reasons it is compiled into a finite-s

machine at run-time.

The DECvoice II system [79] from DEC is built around a modernized version

the DECtalk system [38] and follows a sequence of operations similar to the Orat

predict the pronunciation of a name. The first pass consists of a dictionary look-up, w

is then followed by language identification if the name is not contained in the dictionar

two-step process comprising of a set of filter rules followed by a trigram analysis of le

is used to characterize the language. The filter rules take into account characteristic

patterns in the name to eliminate non-candidate languages. The trigram analy

analogous to that described earlier in this section and in [78], and is required only i

filter rules yield multiple candidate languages. Pronunciation rules specific to

identified language are applied next to generate the pronunciation for the name.

The TTS system [40] from Bell labs relies heavily on a hierarchy of dictiona

look-up methods. The first and simplest of these is to search for the name

pronunciation dictionary of the 50,000 most common names found in the US. If this d

look-up fails, it applies morphological analysis-synthesis techniques to find names i

dictionary that are somehow related to the input name. These relationships inc
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rhyming analogies (e.g. “Mark” and “Stark”), appending or removing stress-neu

affixes to/from a name to match a dictionary entry (e.g. “Robinson” - “son” = “Robin”)

exchanging affixes (e.g. “Augustino” - “ino” + “elli” = “Augustelli”). The pronunciation

for each of these morphemes are looked up in the dictionary and the final n

pronunciation is constructed through similar operations. In the rare case where all

dictionary-based techniques do not provide a satisfactory match, a rule-based sys

used to generate pronunciations for the exceptional morphemes.

The Anapron system [80] enhances the performance of a rule-based system

case-based reasoning by drawing analogies to existing cases [81] in the pronunc

dictionary when deriving letter-to-sound rules for an unknown name. It uses a dictio

of 5,000 surnames, which consist of the 2,500 most common American surname

1,250 surnames each sampled at random from the 2,500 through 10,000 and 1

through 60,000 most frequent surnames in the US. Conversion to phonemes is perf

as a combination of rule-based and case-based reasoning. First, the system pe

language identification and corresponding morphological analysis of the input name

each morpheme, letter-to-phoneme rules are applied to generate its pronunciation

rule selected for a particular letter is used to index into the dictionary to retrieve na

that represent exceptions to the rule. If a strong analogy exists between any of the ret

names and the input name, then the pronunciation of the exception is used fo

morpheme. Analogies are determined by applying similarity metrics to the two nam

and through empirical verification that evaluates the generalization behind the analo

other similar names in the dictionary.
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Pronunciation Generation by Learning

An alternative approach to predicting pronunciations by rule stems fr

psychological studies that suggest that people learn letter-to-sound conversions n

memorization of rules, but using analogies with similar patterns of letter sequenc

words whose pronunciation is already familiar to them [82]. An early implementation

this strategy on regular words, which coupled the information contained in the frequ

of occurrence of such analogous words [83], was found to match human performan

predicting word pronunciations over 90% of the test cases.

A system based on such an approach of learning by analogy often needs to s

pronunciation lexicon of words [84]. When a novel word is presented to the system

searches through the lexicon for morphologically similar words and subsequently m

their phonetic transcription in accordance with the spelling of the input word. Thi

sometimes referred to as “explicit analogy” [85]. Systems based on this technique are

marginally better than rule-based systems, since they are still memory-intensive and

(they often need to make multiple search passes through the lexicon to generate a c

words similar to the novel word).

Alternatively, systems can extract “implicit analogies” or generalized informat

from a training lexicon of pronunciations [86]. This has inspired research into treating

problem of letter-to-phoneme conversion as one of statistical pattern recognition

additional benefit of this approach is that the system can learn both the languag

pronunciation dependent aspects of the lexicon [87], and therefore can be appli

multiple languages such as French [88] and German [89].
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A letter-pattern learning algorithm was developed in the early 1980s [90]

defined feature sets related to random sequences of letters using a forward-bac

training algorithm analogous to one used in speech recognition systems. This algo

was trained on a lexicon of 50,000 regular English words to determine the optimal fe

sets for individual phonemes using a seven-letter context, and correspondingly a

probabilities was generated for a search tree recognition model. This system yiel

letter-to-phoneme conversion accuracy of 94% for a 5,000 word test set.

A statistically learning neural network was implemented in the NETtalk syst

[44] which accepted as input a similar window of seven-letter context, and outpu

phoneme corresponding to the middle input letter. It used a set of 120 hidden neuro

letter symbols for the input and a set of 40 phoneme symbols to represent the o

pronunciations. The network weights were initialized randomly and trained incremen

using simulated annealing [28] over a lexicon of 20,000 words. In a closed-loop evalu

(i.e. testing on the same set of words) this network was found to achieve 90% pho

classification accuracy — comparable to a contemporary rule-based system witho

exceptions dictionary. A similar network architecture was subsequently applie

Spanish, with comparable performance [91].

An algorithm was defined in [92] in which a decision tree was developed

perform comparison of substrings from the spelling of a word in an optimal and effic

fashion. A moderate-sized decision tree trained on a pronunciation lexicon of 20

words was constructed with half the data held out for evaluation. The performanc

accurate classification of individual letters was found to be 93% on this held-out subs
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data. A similar system [93] automatically maps groups of letters to phonemes by lea

from a training lexicon.

A review of the error modalities in these early classification systems reveals

such systems failed to generalize in an optimal fashion over different classes of letter

phones [51]. For instance, a vast majority of errors (about 80%) were found to o

during classification of vowels. This can be attributed to the extent of letter context

influences stress assignments and therefore the pronunciations of the vowels. In ad

since pattern matching systems require an output for every input, compound letters s

“sh” and compound words with letters that have no corresponding phones (e.g. “

“lifeboat”) posed problems of alignment.

Recently, new data-driven techniques such as stochastic phonogra

transduction (SPT) [94] have emerged that model the spellings and pronunciatio

English words as the output of a stochastic grammar which is derived fro

pronunciation dictionary. The terminal symbols of this grammar are letter-to-phon

correspondences, and the rewrite (production) rules of the grammar specify how the

combined to form acceptable spellings for English words and their pronunciations

For a given word, its pronunciation is produced by parsing its spelling according to

letter-part of the terminal symbols, and selecting the best sequence of correspo

phoneme-part terminals according to some optimization criteria [96].

For practical systems that are efficiently trainable, the grammar is assumed

regular and that the pronunciation of a word is modeled as a Markov proces

concatenated letter-phoneme pairs. The SPT training algorithm then amounts t
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inference of an optimal set of correspondences and the estimation of their assoc

transition probabilities. Transduction to produce a pronunciation for a word given

spelling is achieved by Viterbi decoding [97]. A phoneme classification rate of 93%

reported using this technique on an open-loop test over regular English words.

Name Pronunciation Systems

Many of the statistical learning techniques described above have been attun

generate pronunciations of proper nouns. For instance, a modified version of the NE

system classifies a phoneme for each letter of the input name, and then compares

sequences of different lengths from the name to entries in a pronunciation dictionary

99]. If a match is found, the dictionary pronunciation closest to the generated phone

used as the output.

Similarly, the TTS systems from AT&T [100] employ stochastic decision trees

derive name pronunciations from coarse phonemic representations generated from

letter-to-sound pronunciation rule set.

The text-to-phone convertors developed at CMU [101] use pronunciat

dictionaries to train a system that produces a set of alignments between the lette

phonemes given a set of word and its pronunciation. These are stored as an ordered

symbols and converted into feature vectors, one per letter, that include a given amo

context. A stochastic decision tree is constructed based on the feature that splits th

into the purest pair of subsets. Here, each feature vector can be thought of as a

generated by a context-sensitive regular grammar. Therefore, the decision tree ac
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finite state transducer that maps the letter context to corresponding phonemes [102

Modeling of Phoneme Sequence Probabilities

As described earlier (e.g. Equation (21)), the application of phoneme sequ

probabilities has a significant influence on the maximum likelihood prediction of

pronunciation of a proper noun. The parallelism between the language modeling pro

in speech recognition and the phoneme sequence modeling for proper n

pronunciations is obvious. Both problems deal with estimating likelihoods of units ba

on their position in a sequence — words in the former case and phonemes in the

Therefore, the techniques applied for language model estimation can also be us

model the phoneme sequences.

The choice and scope of the phoneme sequence model has a significant infl

on the performance of the pronunciation generation system. It provides constraints o

occurrence of particular phonemes and phoneme patterns depending on the nature

proper noun and its language of origin. Thus it plays a considerable role in determ

the search space for generating the best pronunciation for the given spelling.

Since the order of occurrence of phonemes in a pronunciation does not foll

formal grammatical structure, the phoneme sequence probabilities need to be esti

statistically over a large number of proper noun pronunciations.

Static Models

A phoneme sequence model can be used by a pronunciation generating sys
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apply various levels of linguistic constraints. Auniform model that assigns equa

probabilities to all phonemes in the dictionary does not impose any constraint on

system and therefore is not very useful. As described in Chapter II, n-gram models

provide information about the identity of a phoneme given its history i.e. the sequen

the preceding  phonemes in the pronunciation.

(59)

A value of greater than 3 is not practicable for implementation, and hence

typically limited to 2 (bigram model) or 3 (trigram model). A trigram is better than

bigram model as it carries more information, but requires more training data.

The n-gram model is simple yet powerful [104], but it is static. It uses only

very immediate history of the phoneme and does not depend on or vary with the data

observed. Therefore it is not capable of adapting to a change in the linguistic style

cannot exploit this to enhance the probabilities of related phonemes while suppre

those of others.

Dynamic Models

An adaptive or dynamic model improves upon the performance of a static n-g

model by changing estimates of the phoneme probabilities depending upon the part

pronunciation observed so far. This is particularly useful if a model trained on d

pertaining to a specific domain is used in another domain, as the model can adjust

new language.

n

p o1 o2 … oN, , ,( ) p ok ok 1– ok 2– … ok n–, , ,⁄( )
k 1=

N

∏=

n n
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Also, if the pronunciation dictionary used for training can be partitioned in

different root languages, then an adaptive model trained on this heterogeneous sour

exploit the sub-language structure to improve performance. There are a numb

techniques used in language modeling that implement this approach to capture

linguistic phenomena, and can be applied similarly to phoneme sequences.

• Long-distance n-grams:These are similar to conventional n-grams except that

they precede the phoneme  by  positions [105].

• Triggers:A trigger pair [106, 107] consists of two phoneme sequences where

the occurrence of one changes the probability estimate of the other

Constructing a trigger model involves eliminating all pairs of phoneme

sequences that are not significantly related. The effects of several trigger

towards the triggered sequence are combined and the trigger information i

integrated with the static model in a way that preserves the advantages of bot

A maximum entropy (ME) algorithm [108, 109] is used to train the

trigger-based model. While the ME approach is intuitively simple, easy to

implement for a variety of problems and guaranteed to converge to a solution

it suffers from very high requirements of memory and computation and does

not have a well-defined rate of convergence.

• Cache Models:Once a phoneme (or phoneme sequence) occurs in a documen

its likelihood of recurrence is greatly increased. This tendency is most true o

rare phonemes, and reduces as the phoneme becomes more frequent

occurrence. Based on this phenomenon, the last phonemes (or phonem

ok q

L
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sequences) of the pronunciations seen so far are stored in a cache. This cach

used to estimate the dynamic unigram, bigram and trigram probabilities [110

111, 112] and then incorporated with the static model using interpolation

techniques. Caches can also be formed based on the number of times t

phoneme already appeared in the history and based on distance i.e. the la

time  occurred in the history.

• Class Grammars:Instead of phonemes, classes of phonemes are taken as th

units of the model. The probability of phoneme occurrence is determined by

the probability of occurrence of that phoneme class [113].

• Tree-based models:These models [114] generate a binary decision tree from

the training data to cluster phoneme histories. Each node of the tree i

associated with a state of the model and each leaf corresponds to a val

phoneme sequence. The tree is constructed using yes/no questions that redu

the uncertainty of predicting the next phoneme at every node and thu

minimize the average entropy at every leaf. However, these methods ar

computationally expensive.

• Mixture models:The phoneme sequence model is built as a mixture of severa

component models, each of which is trained on the n-gram statistics of a

particular class of names. The component models can be combined using eith

dynamic-weight mixtures at n-gram level [115] or static-weight mixtures at the

complete pronunciation level [116, 117]. The proper noun classes can be

ok

ok
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specified by hand, or can be determined automatically using clustering

techniques. Robustness of parameter estimation for mixture components is a

important issue here as each component model is trained only on a part of th

available data.

Other Techniques

There are various other techniques for language modeling with different prope

that can be used to model phoneme sequences. For instance, while context-free [11

unification [119] models do a more realistic job of capturing the distribution of t

phonemes, they are cumbersome and computationally expensive. On the other hand

state [120, 121] models that try to model all pronunciations in a single network pro

more constraints on the distribution, but do not provide as realistic a representation

phoneme statistics.

Observations

The performance of the learning systems in accurately classifying letter

phonemes has been comparable, if not worse, compared to the rule-based syste

regular English text-to-speech applications. In case of proper nouns, the performanc

is much wider. This is primarily due to the difficulty in capturing the stochas

relationships between letters and phones which are inherently more complex for p

nouns, since the systems require an appropriately representative training data

optimally generalize the letter-to-sound inferences.

In practice, most present-day commercial speech synthesizers rel



60

te a

ed to

into

eech

ble to

have

peech

uns.

ingle

bility

or a

rate

ve.
pronunciation rules, morphological analysis and exception look-up to crea

letter-phoneme alignment for the given names. Statistical techniques are then us

model allophonic variations [122, 123], and to expand the preliminary alignments

more refined pronunciations [124, 125] for better synthesis of the phonemes into sp

output, and to construct better pronunciation models for automatic recognition.

However, the data-driven properties of statistical systems make them amena

automatic updates with new training, and their strong theoretical foundations that

been successfully applied to most other aspects of computerized processing of s

warrant further research into their merits for generating pronunciations of proper no

Moreover, all the rule-based systems described in this chapter deal with a s

pronunciation for each input word. Since the stochastic learning systems have the a

to generate probabilistic estimates of the plausibility of different pronunciations f

given letter context [126], research in developing algorithms to automatically gene

likelihood-ordered multiple pronunciation lists for proper nouns is particularly attracti
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CHAPTER IV

PRONUNCIATIONS DATABASE

For a speech recognition / synthesis system to learn to generate a list of p

noun pronunciations, the most obvious way would be to train the system on audio dat

exemplifies the different pronunciations for each name. However, no speech databa

provides comprehensive coverage of a range of proper nouns exists, and it is extr

expensive to construct.

A resource that is readily and inexpensively available for most proper no

(especially personal names, surnames, places etc.) is an orthographic transcrip

spelling. It follows that an ability to train a voice interface system to automatica

generate multiple pronunciations for a given spelling of the name will be gre

beneficial. Such a training methodology needs to exploit the statistics of the input da

capture the inter-relationships between letters and sounds. Therefore, a databa

consists of a large number of proper nouns and their possible pronunciations is nee

train the system.

Numerous data has been collected anecdotally on the problem of alter

pronunciations of proper nouns, and there exist some proprietary databases that

restricted domains of proper nouns [128, 129]. However, none of this data has ever

incorporated into a publicly available database. Thus there does not exist an appro

development database that provides comprehensive coverage of various kinds of

nouns and their pronunciations.
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As a result, a part of the effort expended in this research has been utilized fo

development of a proper noun pronunciations database that has been placed in the

domain [130] for free distribution. Since a significant number of applications involv

voice-driven interfaces (e.g. medical data entry, directory assistance etc.) involve nam

people, the current phase of the database effort has been focused on surname

database currently consists of 18494 surnames (last names) found in the United St

America. A total of 25648 pronunciations have been transcribed for these names.

The surnames in the database represent a diverse set of proper nouns

numerous ethnic origins, source languages and dialectic variations. Therefore, the

set spanning the English language is insufficient to provide full coverage of the varia

in pronunciations. Moreover, a phonetic convention that uses ASCII symbols for al

phonemes facilitates transcription and subsequent processing of the pronunciations

this perspective, the Worldbet phonetic convention [8] is an ideal choice for transcrip

of the pronunciations. It contains symbols for phonemes that appear in a large num

languages besides English, and these can be represented in a manner amen

computerized processing. The subset of the Worldbet phoneme set used in the dat

along with illustrative pronunciations is listed in Table 1.

Collection And Transcription

Construction of a representative database of surnames that can be compiled

reasonable requirements on resources of time and expenditure presents some p

problems. While the interesting pronunciation problems occur in the outliers of
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surname distribution — names occupying the bottom 0.01% of the total, the distributi

also extremely skewed. The 2000 most common surnames account for about 15%

population, while the remaining 85% of the population covers almost 1.5 mill
Phoneme Example Phoneme Example

i: heep I mill

E bell @ adams

A aanstoos ^ trump

> allman & alba

U pool u bookman

aI pine ei mate

>i joy aU cloud

oU close iU pure

&r easter p peabody

b baggs t stokes

d hardy k culkin

g gaston h hermit

v vail D worthy

T roth s sandler

z rose S nash

Z leisure f fielding

m ames n inez

N golding dZ johnson

tS chow l calahan

9r robinson j young

w willis ks fox

&k mcdowell _ bateman

r
Table 1. A list of phoneme symbols used for representing the pronunciations of prope
nouns.
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surnames. In our database we have strived to achieve a reasonable mix of common

names with infrequent occurrence and names that are known to present problem

letter-to-sound conversion because of complex morphology or difficult stress assignm

A significant fraction of the surnames included in this database was obtained

a study performed at Texas Instruments [37], which developed a small se

surname-pronunciation pairs to evaluate the intelligibility of text-to-speech synth

systems on surnames. A few of the sources which contributed significantly to the li

surnames covered by this database are enumerated below:

• The 2,000most common surnamesfrom the Social Security Administration

records compiled in 1964 [131].

• A list of medium frequency surnamesobtained from a random sampling of the

2,000 to 50,000 most common names in the 1964 Social Security

Administration records. This list was provided by M.F. Spiegel, Speech and

Image Processing Research Division, Bell Communications Research.

• Somechallenging surnamesthat look for somewhat subtle distinctions among

letter sequences whose pronunciation differs significantly based on the

remainder of the name (e.g. “bos” in “Bostwick” and “Bose”); and/or common

patterns that appear in some foreign names (e.g. “Stein”, “Renoir” etc.). A list

of such names was provided by M.F. Spiegel, Speech and Image Processin

Research Division, Bell Communications Research.

• Surnames that aremorphologically complexand require knowledge and/or

analysis of the morphology of the name for an appropriate pronunciation (e.g
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“Holinshead” can be mispronounced as “Holin Shead” if the “head”

morpheme is not identified correctly and separated for pronunciation). A

sampling of these was also provided by M.F. Spiegel, Speech and Imag

Processing Research Division, Bell Communications Research.

• A list of common but interesting namesthat demonstrate the prevalent

problems in generating automatic and accurate pronunciations was als

supplied by M.F. Spiegel, Speech and Image Processing Research Divisio

Bell Communications Research. This includes foreign names (e.g

“Subramanian”), morphologically complex names (such as “Blankenship”)

and names with unusual stress assignment (e.g. “Cadwallader”).

• A number of last names were generated at Texas Instruments as thos

belonging to the people working at Texas Instruments Computer Science

Center circa 1990.

• A list of surnames was extracted from electronic phone books compiled by the

Naval Research Laboratory. Another was created at MIT from people’s use

names on the MIT computers.

• A list of about 2000 surnames not already included in the previous lists was

obtained from the “30000 names” database being developed at the Orego

Graduate Institute [132].

Automated transcription of these surnames would have required a comme

rule-based text-to-speech synthesis system. A disadvantage of this approach, besi

cost involved, was that this would have yielded only a single pronunciation for each n



66

r the

to the

ame

ffort

f the

ss.

ual

f the

look

bors,

ssary

ce in

, such

ibed

(e.g.

nd
Moreover, accuracy of these pronunciations was an important issue; especially fo

more complex and unusual names. Converting the generated pronunciations

Worldbet phoneme set would introduce additional complications in the process.

Therefore, the phonetic transcription was performed by hand where each n

was transcribed multiple times to obtain all the correct pronunciations possible. No e

was made during this process to align letters or letter n-tuples in the spelling o

surname to the corresponding phonemes in the pronunciations.

Strict quality control was maintained throughout the transcription proce

Linguistic experts were consulted for transcription of surnames with unus

characteristics, while automated scripts were employed to ascertain the veracity o

phone set used and to correct typographic errors.

Phoneme Alignment With Spelling

As described in Chapter II, the phonetic classification paradigm is designed to

at each letter of the input surname spelling one by one in context of its nearest neigh

and output a phoneme symbol in accordance. Thus for training purposes it is nece

that there be a phoneme corresponding to every letter in the input spelling [133]. Sin

many cases a single phoneme encompasses a group of letters or vice-versa

one-to-one alignment is not possible for the pronunciations in their original transcr

form.

Situations where a single letter corresponds to more than one phoneme

“Max” is transcribed as “m @ k s”) appear relatively infrequently in the database, a
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Figure 1. The dynamic alignment procedure illustrated for the word “Wright” and nomi-
nal pronunciation “9r aI t”. The aligned pronunciation is “_ 9r aI _ _ t”.

_ 05 05 05 05 05 05
have been handled by using compound phones (such as “ks” for “k s”, so that “Max” is

pronounced “m @ ks”).

On the other hand, the cases in which a grapheme (i.e. a sub-word unit or a g

of consecutive letters) of the surname maps to a single phoneme (for instance, “Wrig

pronounced “9r aI t” where the two letters “wr” account for a single phoneme“9r” ;

similarly the letters “igh” together correspond to the one phoneme “aI” ) are quite

common. To correctly align such groups of letters in the spelling with the correspon

phonetic expression, a newsilent phonemesymbol denoted as “_” has been introduced

(therefore, “Wright” now gets transcribed as “_ 9r aI _ _ t”).

A dynamic programming algorithm has been developed to perform autom

alignment of the spelling-pronunciation pairs by introducing such a silent phonem

appropriate positions in the pronunciation phoneme sequence. This algorithm as
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numeric scores to all possible letter-to-phone maps. A phoneme corresponding to a

of letters is aligned with one of the letters according to a strategy that maximizes the

alignment score for the entire word. The other letters are aligned with the blank phon

An example of the dynamic alignment can be seen in Figure 1.
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CHAPTER V

PROPOSED EXPERIMENTS AND EVALUATION

As described in Chapter II, the experimental framework for evaluating

maximum likelihood estimation techniques for automatic generation of pronunciation

for proper nouns consists of a sliding window input of the context-dependent n-tuple

letters derived from the spelling of the name, and its classification into the most li

phoneme symbols. The output phonemes corresponding to each letter in the spellin

be then used to construct a pronunciation network for the name which represen

possible pronunciations along with the corresponding likelihood scores.

The surname pronunciations database described in Chapter IV will be used a

test bed for all experiments and evaluations. This database currently consists of 1

surnames, which will be divided into two sets as follows:

• A training set consisting of 15000 names and the corresponding

pronunciations will be picked randomly. The surname-pronunciation pairs in

this set will be used to train the statistical models that capture the

letter-to-sound dynamics of name pronunciations. Closed-loop evaluations (i.e

testing on this data) will be performed to demonstrate the ability of the system

to learn from these exemplars.

• An evaluation setof the remaining 3494 surnames and their pronunciations

will be held out for open-loop testing (pronunciation generation on previously

unseen names). This will evaluate the ability of the system to generalize its
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knowledge and extend it to unfamiliar inputs.

To cross-validate the results i.e. to ensure that the results are robust to the sp

artefacts in the training data (such as the order of the names in which the system is t

etc.), the above partitioning will be carried out three times. These partitions wil

designed to create three mutually exclusive evaluation sets, and corresponding

respective training sets will have about 60% overlap.

Error Metrics

Traditionally, a good measure of the performance of text-to-speech conver

systems has been the voice quality of the output and the intelligibility of the gener

pronunciations [134]. Other factors that influence evaluation of a TTS system inc

listener fatigue, cognitive load [135] and response latency [7]. On the other hand

effect of pronunciation modeling quality in a speech recognition application is m

apparent from the quality of the acoustic matching and the recognition perform

measured as the word error rate.

The performance of the pronunciation generation system will be measure

terms of the proportion of surnames for which the system is able to generate at lea

accurate pronunciation. As the problem of text-to-phoneme conversion is essen

unrelated to the transformation of phonemes to voice output, synthesis-based criter

not be employed to evaluate the quality of pronunciations.

For phonemic transcriptions of proper nouns to be useful for synthesis an

recognition, it is important to represent the possible variation in the pronunciations of
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name. Therefore an error metric based on how well the generated pronunciation

name span its reference pronunciations in the dictionary is proposed. Since m

surnames have multiple reference pronunciations, and the system also generates m

pronunciations for each surname, the performance measurement involves a many

correspondence between the reference and hypothesis pronunciations. As a resu

error metric will consist of three measurements:

• all correct — all the pronunciations in the reference dictionary are generated

by the system.

• some correct— at least one, but not all of the reference pronunciations are

included in the generated pronunciations.

• no correct— none of the reference pronunciations are found to match any of

the pronunciations generated by the system.

The no correctvalue represents the word-level error rate of the system

generating pronunciations. The higher the number inall correct, the better is the

performance of the system. The sum ofall correct andsome correctnames for the output

of the system is an indication of its ability to generalize the letter-to-phone

correspondence learnt during training.

Scoring Methodology

The performance of the system in predicting multiple pronunciations for the in

names will be measured automatically using a scoring software that locates the refe

pronunciations in the dictionary and compares them with the pronunciations generat
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the system. The resulting score file will thus contain each test case proper noun

number of reference and hypothesis (generated) pronunciations for it and the num

correct pronunciations generated. The correctly hypothesized pronunciations an

incorrect pronunciations can also be listed in decreasing order of likelihood scores. A

end, the overall scoring statistics — the number of test case proper nouns, the num

total reference pronunciations, the number of pronunciations generated and the

statistics as described in the previous section will be calculated.

Initial Results

A set of preliminary experiments have already been conducted to demonstra

feasibility of some of the techniques proposed in this research, such as artificial n

networks, statistical decision trees and a simple table look-up scheme based on the c

interpolation method. These experiments follow the framework defined in Equation

and therefore do not assume any dependence of the predicted phoneme on the pre

identified phoneme (i.e. a uniform distribution is assumed for the occurrence

phoneme in the phoneme sequence).

Since the likelihood of the optimal phoneme sequence can be found by sim

multiplying the probabilities of the individually optimal phonemes, no search is requ

to determine the best pronunciation for the given proper noun. Since the proble

modeling the letter-to-phoneme mapping is treated as a pattern classification para

the phoneme classification error rate is the most significant factor contributing to

performance metric for this system.
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Phoneme Classification Using Neural Networks

Pronunciation generation systems using Boltzmann machines — feed-for

backpropagation networks with a stochastic component — were first trained on a s

subset of 1200 surnames using the standard simulated annealing techniques [2

tested on a held-out subset of 400 names [136] in the surname pronunciation diction

single and fixed context length was used, as opposed to a series of contexts. Theno correct

pronunciation generation error rate was found to be approximately 50% on an open

evaluation, while the phoneme classification error rate was around 20%. When train

the full training set, an open loop evaluation on the full test set yielded ano correcterror

rate of 65% and a phoneme classification error rate of 30% [137] using 1-b

pronunciations i.e. a single output phone per letter.

Experiments conducted with neural networks having more than one hidden

yielded no significant improvement over those with a single hidden layer, but cau

considerable overhead in terms of the memory and time required for training.

While the neural network system was found to be highly accurate on sma

phoneme classification tasks, its performance degraded on larger-scale application

An analysis of the error modalities revealed some inconsistencies with the trai

database which have been rectified since then. With the improved training algori

presented in Chapter II and a cleaner database, the performance is expected to imp

Phoneme Classification Using Decision Trees

A parallel study that explored simple stochastic decision trees to classify le
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system description % error

Orator dictionary lookup, language identification, rules 93.00

DECvoice dictionary lookup, language identification, rules 93.00

TTS progressively coarse dictionary lookup 89.00

Anapron rules and case-based transcription 86.00

NETtalk NETtalk with block-decoding post-processor 78.00

Neural net multilayered feed-forward network 74.00

Decision tree Bayesian criteria for node-splitting 82.00

0
n

strings derived from surname spellings into the corresponding phonemes was cond

[138, 139]. Using Bayesian estimates of node likelihoods in the tree, a system train

5-letter contexts of the names from the surname pronunciations database reporteno

correctname pronunciation error rate of 38% on the evaluation set, and approxim

12% on a closed-loop evaluation [140].

Binary Tree Search / Table Look-up of Likelihoods

A system that generated all possible letter context sequences (up to a fixed l

of context) present in the training data, and for each partial letter sequence stored cou

all the possible phoneme symbols in a binary search table [141] was developed and t

on the surname dictionary. During evaluation, for each letter in the spelling of the i

name the longest matching partial letter sequence was found in the table, an

corresponding phoneme symbol with the maximum count was looked up and output.
Table 2. Comparative performance of various name-pronunciation systems on a 40
surname test set (courtesy [49]) compared to performance of test systems o
a similar test set of 400 names.
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system, which uses the most elementary form of likelihood maximization, recorded c

to 40% ofno correct error rate.

A comparative performance evaluation of surname pronunciation generation u

various text-to-speech systems is provided in [49]. Since the training and test data us

this benchmark is not publicly available, it is difficult to compare the performance of

algorithms discussed here against this benchmark. However, by selecting test data

the surname pronunciation dictionary in an analogous manner, the test conditions

approximated and a similar comparative evaluation was conducted. The result

presented in Table 2. Even though a valid comparison is not possible, the sy

performance was estimated to be comparable to many of the rule-based systems.

Proposed Evaluations

The proposed system designed to generate multiple pronunciations for pr

noun spellings will be trained using the surname pronunciations training databa

model the letter-to-phonemea posteriori likelihoods using the various algorithms

developed in Chapter II. The database will also be used to estimate n-gram models f

phoneme sequence likelihoods.

For evaluation, a dynamic programming search technique [142, 143] will be u

to find phoneme sequences with the maximum cumulative scores obtained by comb

the computed score of the input letter n-tuples against the letter-to-phoneme model

the phoneme sequence probabilities. The letter-to-phoneme models explored w

variations of the stochastic neural network, as well as the context interpolation mode
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uniform phoneme distribution (i.e. no phoneme likelihoods included in the maxim

likelihood estimation), as well as unigram and bigram models will be used for

phoneme sequence likelihood.

Evaluation of the Neural Network Model

The neural network system will be trained with letter n-tuples of multiple cont

lengths simultaneously. These strings will capture the context information from no

very near contexts (only immediately adjacent letters) through more distant features

3 neighbors on each side). The classification will be performed in the following diffe

fashions.

1. Each input vector will be classified to a single phoneme along with the

associated likelihood estimate, and a stochastic component with multiple

applications of the same input vector will be used to generate the phonem

variants with different likelihoods.

2. For each input vector, the possible phoneme outputs will be simultaneousl

classified using a multi-output network. A threshold value on the likelihood

estimates will be used to prune away poor-scoring alternatives and an N-be

list of phonemes will be output.

3. As a variation on 2 above, the outputs of the network will be weighed with the

a priori likelihood of the corresponding phoneme being mapped to the input

letter sequence. Thea priori distribution will be generated from the training

data and this weighing will be used in both training and evaluation, or only
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during evaluation.

4. A time-delayed version of the network, that receives a feedback input of the

phoneme predicted for the previous letter string will be implemented to include

the phonemic context in addition to the orthographic information.

Evaluation Using the Context Interpolation Models

Different sets of context interpolation models will be trained on the surnam

database using a range of contexts lengths, and the corresponding back-off weigh

estimated in the process. This will be done by generating all the partial letter sequenc

to the full context length with the same central letter, and keeping counts of the frequ

of occurrence of each phoneme. During the Viterbi search to determine the best pho

sequence, these models will be used to estimate the likelihood of the input letter n-

against the models for each phoneme. Then a list of the highest-scoring hypotheses

generated as the optimal pronunciations.

Finally, an evaluation of each system output will be performed using the sco

paradigms described earlier, and the performance of each system analyzed in comp

with the others.
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