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CHAPTER |

INTRODUCTION

Dearest creature in creation,

Study English pronunciation.

| will teach you in my verse

Sounds like corpse, corps, horse, and worse.
| will keep you, Suzy, busy,

Make your head with heat grow dizzy.

Tear in eye, your dress will tear.

So shall I' Oh hear my prayer.

Just compare heart, beard, and heard,
Dies and diet, lord and word,

Sword and sward, retain and Britain.

(Mind the latter, how it's written.)

Now | surely will not plague you

With such words as plaque and ague.

But be careful how you speak:

Say break and steak, but bleak and streak;
Cloven, oven, how and low,

Script, receipt, show, poem, and toe.

— An excerpt from “The Chaos” by Dr. G.N. Trenite
(1870-1946), a Dutch observer of English.

The ability to correctly pronounce names of entities, such as people, places and
organizations, is a critical component of effective verbal communication. In many
situations, such as looking up information on a person or a place (e.g. airline reservations,
directory assistance etc.), it is customary to alternate between written and oral forms of
communication. For instance, in telephone directory assistance the customer enunciates
the name of a person to be found, and the operator searches for the corresponding spelling

in a database. In the process, it becomes necessary to attribute a correspondence between



the two different representations (viz. textual and verbal) of the words. Such a relationship
that matches the spelling of a word with its pronunciation is known as a letter-to-sound
mapping.

Usually, the pronunciations of a large proportion of the typical words in a language
(e.g. common nouns, verbs, adjectives etc.) can be represented using a reasonably limited
set of such letter-to-sound rules. When one comes across the spelling of a new word that
has not been encountered before, its pronunciation can often be extrapolated by applying
the appropriate letter-to-sound rules to various parts of the word [1].

This strategy, unfortunately, is not very successful in case of proper nouns (i.e.
names of people, places etc.). For instance, the surname “Brignac” will be pronounced
using the standard English letter-to-sound rules to sound like “brig”+”knack”. However,
this is actually a surname of French origin and pronounced as “brin”+"yak” (to rhyme
with “cognac”).

As illustrated above, proper nouns often have a different morphology and
phonology as compared to the typical words, and therefore the standard letter-to-sound
mapping is unable to accurately predict a pronunciation for such words [2].

This problem becomes even more pronounced for the text-to-speech or
speech-to-text conversions involved in human-machine interactions. An early study
conducted in 1985 [3] revealed that a large number of commercial speech synthesizers
mispronounced almost 25% of the 2000 most common American surnames. Since then,
significant inroads have been made in improving the text-to-speech (TTS) technology.

However, the problem of automatically generating acceptable and intelligible



pronunciations for proper nouns still remains unresolved.

Similarly, proper nouns are known to constitute a majority of errors in
general-purpose conversational speech recognition tasks [4]. As more and more
applications employ voice-driven interfaces, their dependence on accurate recognition of
proper nouns also increases and the need for effectively modeling the pronunciations of
proper nouns intensifies.

The problem of accurately predicting pronunciations for proper nouns is
compounded by the following factors:

1. Many proper nouns (such as surnames) evolve from ethnically heterogeneous
sociolinguistic factors that have no commonality with the general
pronunciation framework of the English (or any other) language, and are often
impossible to model with a reasonably large and systematic rule set.

2. The pronunciations also reflect the differences in the source language and the
extent of Anglicization (i.e. assimilation into the English language) [5]. Many
times, pronunciation of unfamiliar names uses non-English letter-to-sound
correspondences from the native language [6].

3. The notion of a so-called “correct” pronunciation varies from region to region
or individual to individual in an essentially idiosyncratic fashion [7].

Consequently, many proper nouns have multiple “correct” pronunciations; and a large
percentage of proper nouns have no obvious letter-to-sound mapping rules that can be
used to generate these pronunciations. In order to transcend the constraints imposed by

these factors, it is necessary for an optimal voice-based interface to automatically generate



a list of plausible pronunciations for a given proper noun.

The spelling of the proper noun is often the only clue available towards its possible
pronunciation. Therefore, an approach that statistically relates the letters to corresponding
phonemes appears to be reasonable towards developing a letter-to-sound function that is

applicable to proper nouns.

Motivation

Since a large proportion of the typical words in a language can be represented in
terms of a letter-to-sound rule set, most text-to-speech (TTS) systems use a collection of
such rules along with an exceptions dictionary to generate pronunciations. However, the
pronunciations of proper nouns do not follow the typical letter-to-sound rules of the
language. Therefore, TTS systems employ rule sets specifically crafted for generating
proper noun pronunciations. These rule sets need to be quite extensive and the size of the
associated exceptions dictionary quite large in order to cover the whole range of names,
thus making the systems cumbersome and expensive. Moreover, such rule-based systems
are constrained to generate only one pronunciation for a given proper noun, and do not
generalize gracefully to names not covered by the rule set.

On the other hand, a statistically generated maximum likelihood model of the
functional relationship between proper noun spellings and pronunciations is able to
capture the underlying letter-to-sound mapping without taking recourse to hard-coded
rules. A system based on such a statistical model can generate the most probable

pronunciation of a proper noun that may not be part of the training data for the model.



Moreover, it can produce a list of plausible pronunciations rank-ordered by the likelihood
measured against the letter-to-sound statistical model.

The stochastic framework also allows introduction of additional knowledge
sources such as language-dependent statistics of the occurrence of certain phonemes,
which further improves the likelihood of finding the correct pronunciations for a given

proper noun.
Maximum Likelihood Approach

If the spelling of a proper noun is given in terms of a sequence of alphabetical

characters
= (iq g nniy) 1)
and if pronunciation of proper nouns are denoted by phoneme sequences such as

O = (04,05, ...,0y) (2)

then the most likely pronunciatioﬁ)* for a given spellihg is given by the phoneme

sequence with the maximum likelihood given the input letter sequence.
o = argcr)naXp(o/ 1) ®3)

Using Bayes’ rule, this can be simplified to include the posterior probability of the
spelling given the phoneme sequenaé/ O) and the probability of occurrence of the

pronunciation or phoneme sequenxge®) out of all the possible phoneme sequences.

Y p(170)p(O)
o = argcr)nax =0 (4)



Since the denominator term is common across all possible phoneme sequences, it
has no effect on the maximization process and therefore can be ignored from the

calculations. As a result, the maximum likelihood representation takes the form
0" = argmaxp(1/ 0)p(O) (5)

The posterior probabilityp(l/O) is a representation of the statistical relationship
between the letters and the phonemes (i.e. the letter-to-sound map). The probability of the
phoneme sequenggO) indicates language-related information and provides additional

clues as to the possible pronunciations.
Proposed Framework

The problem of generating a list of possible pronunciations given only the spelling
of a proper noun can be interpreted as one of mapping each letter in the spelling to a
corresponding phonemes. This mapping can be generated statistically as a classification
process where each letter is assigned a phoneme identity based on its context in the
spelling of the name. To obtain the most probable pronunciations for a given proper noun,
it follows that each letter should be mapped to phonemes that maximize the likelihood of
the resulting pronunciation phoneme sequences.

As described earlier, proper nouns are derived from a number of languages and
ethnic roots. Their pronunciations may contain phonemes that are not present in English,
but are unique to the language of origin. Therefore, the phoneme set used to describe these

pronunciations in a TTS system needs to provide adequate coverage of the phonemes in a



A m b e r Context size 0

_Am Amb mbe ber er_ Context size 1

@ &r Pronunciation

Figure 1. Use of sliding context in creating n-tuples of letters from the spelling of a proper
noun, illustrated here for the surname “Amber” with the pronunciation
“@ m b &r”. A context length of 0 means each letter is treated individually, a
context of 1 indicates each letter considered along with its immediate predeces-
sor and follower, and so on. The symbol “_” indicates a blank (silent) letter or
phoneme.

large number of languages. The Worldbet phonetic representation system [8] was
developed specifically to achieve this objective, and will be used to transcribe the
pronunciations in this work.

In a large number of proper nouns, the pronunciation of each letter is a function of
its surrounding letters (e.g. the pronunciation of the letter “a” in “Amber” as opposed to in
“Ames”). Therefore, instead of assigning a phoneme to an isolated letter, it is more
realistic to associate a phoneme with a letter in context of its neighbors in the spelling.
Thus the classification problem transforms into one of attributing phonemes to an n-tuple
of letters. Such an n-tuple can be generated by sliding a window of an appropriate context
length across the spelling of the name. This approach is illustrated in Figure 1.

A classification model for the letter-phoneme mapping can be constructed in a
data-driven fashion, without recourse to any hand-written rules, by training the system
with a database of name-pronunciation pairs decomposed into ordered sequences of letter

n-tuples and the corresponding phoneme symbols. To predict the pronunciation of a new
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Pronunciation Letter 0 Phoneme
Dictionary § > Distribution
Stochastic )
System Model
Proper Noun 9 Multiple likely
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Figure 2. Schematic representation of the statistical system to automatically generate

Generation
multiple likely pronunciations of proper nouns given the spelling.

proper noun, the trained system will transform its spelling into the appropriately long
n-tuples of letters and generate the most likely phonemes for each. This approach is
schematically described in Figure 2.

Often, a group of adjacent letters in a proper noun combines to produce a single
sound (e.g. “ch” in “Church”, “ough” in “Houghton” etc.) and is therefore associated with
a single phoneme. However, each letter (or n-tuple of letters) requires to be associated
with a phoneme in the above representation. This problem is handled via the notion of a
blank or silent phoneme inserted in the appropriate places in the phoneme sequence. The
silent phoneme acts as a placeholder in the model representation, but is never pronounced.

Similarly, for context lengths larger than 0, the first and last letters of the spelling
do not have sufficient context before and after, respectively. The required context is
obtained by padding the spelling with the appropriate number of blank letters.

The application of both the blank letter as well as the silent phoneme is also

illustrated in Figure 1. Both entities are represented by the same symbol “_".



CHAPTER Il

MAXIMUM LIKELIHOOD MODELING

The goal of the proposed research is to develop algorithms that can automatically
generate an accurate list of pronunciations for a proper noun using a maximum likelihood
estimate of the correspondence between the letters that make up its spelling and the
phonemes that constitute its pronunciation.

To that effect, the letter-to-sound relationship can be modeled as a statistical
pattern classification paradigm where each letter in the spelling of the proper noun is
assigned phoneme symbols that are most likely given the orthographic context of the

letter. This is summarized in Equation (5), reproduced here for convenience:
o = argmaxp(1,/0) p(O) (6)

Here,| = (iq, i, ...,iy) Is an ordered sequencedf letters that constitute the spelling

of the name, an® = (0,,0,, ...,0y,) Iisan ordered sequencklof  phonep(es0)

is a model of the letter-to-phoneme map derived from the statistics of proper noun data
and their pronunciationg(O) indicates properties of the language since it represents the
likelihood of the occurrence of the phoneme sequence.

In this framework, scores for various phoneme sequences or pronunciation
hypotheses are generated using the letter-to-phoneme posterior likelihoods and the
probability of the corresponding partial phoneme sequence. The hypothesis with the

maximum overall score is found by performing a dynamic programming search through
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all such hypotheses, which yields the best pronunciation for the given spelling.
A Simple Model for Letter-Phoneme Correspondence

Equation (6) can be expanded to include the individual letters and phonemes in the

proper noun and its pronunciation respectively as follows —

(04,05, ..., oM)* = argmaxp(iy, iy, ..., ip/ 09, 0y, ..., 0y) P(Oy, O, ..., Oyy) (7)

Assuming statistical independence between adjacent phonemes, i.e. that the
sequence of the phoneme symbols represents independent outcomes of a random process,
statistically the occurrence of one phoneme in the pronunciation of a name does not
influence the chances of appearance of other phonemes.

M
p(0y, 0y, ..., Oyy) = |_| p(o,) (8)
k=1
Now, the estimation of the letter-to-phoneme correspondence can be further simplified to a
mapping that individually maximizes the likelihood of each phoneme for the given letter

sequence.
O = ar{gg;axp(il,iz,...,iN/ok)p(ok) L OkO{L, 2 ..., M} 9

Here,{ 0} is the set of all phonemes. The optimal pronunciation can be constructed by

simply concatenating individually most probable phonemes given the spelling as

* *

O =(04,0p...,0y) = (07 ,0y,...,04 ) (10)

and the total probability of the phoneme sequence constituting the pronunciation is given
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by simply multiplying the likelihoods of the individual phonemes.
* * * * M *
P(O) = p(oy .0y, .., 0y ) = [ P(O) (11)
k=1
By forcing the constraint that each letter in the spelling has a corresponding
phoneme associated with it (in case of a cluster of two or more adjacent letters mapping to

the same sound, this is achieved by assigning the phoneme to one of the letters and using
the silent phoneme as the place holder for the rest — see Figuké ¥),N and Equation

(9) further simplifies to
0, = ar?n;aXp(il,iz, e in/0)p(0)  ..OkO{1,2 ..., N} (12)
0

If occurrence of adjacent letters in the spelling is also assumed to be statistically
independent, then each phoneme can be associated with a single letter in the spelling. The
equation for maximization of the likelihood of the phoneme can now be written for each

single letter-phoneme pair for the proper noun.

*

O = ar?g;axp(ik/ok) p(oy) L OkO{1, 2 ...,N} (13)

While Equation (13) presents a fairly simplified representation of the maximum
likelihood paradigm, the implicit assumption that the pronunciation of a letter is
independent of its surrounding letters is not realistic. As illustrated earlier, it is often the
orthographic context of a letter that determines its pronunciation. This dependence of the
phoneme associated with a letter on the letter n-tuple centered around this letter can be

statistically modeled as a bidirectional or non-causal Markov process.
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For a standara ™ order Markov proces¥ , the likelihood of an event given its full
history is a function of only the precediny events. For a sequence of observations

X1s X5, -y Xy » the likelinood of each observatioy s given by

P(X/ Xqs Xor vy X — 1) = POY/ Ky —pp Xk— it 1 ++o0 Xi— 1) (14)
An n'" order bidirectional or non-causal Markov process can be thought of as a

combination of twon™ order Markov processes operating in opposite directions. In other
words, the likelihood of an event is a function of the preceding events, as well as the

following n events.
PO/ Xgs oo Ko X 1 s XN) = PO/ Xy oo Xm0 X w10 o0 X ) (15)
Assuming that the probability of a phonerog  corresponding to a Igjter  is a

function of a context lengtim , the likelihood maximization equation takes a form similar

to Equation (15).

o = APk o+ Tk T T 10 T O PO (16)
L.OkO{1,2..,N}

The non-causal estimation of the letters in the spelling follows from the fact that
while the phonemes are predicted in a time-sequential manner for each letter, the entire
spelling of the name is available in advance to generate letter sequences of any desired
context duration.

Equation (16) forms the basis of the sliding-window approach to train the

phoneme classification mechanism proposed in this research. Using a sliding window of a



13

/

letter phoneme

Figure 3. The training sequences generated for the word “Matt” with nominal pronuncia-
tion “m @ t using a 5-letter context. The aligned pronunciatiorms@® t ”.

fixed context length, n-tuple of letters of the proper noun spelling are created with a
corresponding phoneme from the pronunciation associated with it. Each sequence can thus
be treated as an individual training sample. Figure 3 illustrates how using a context length
of n = 2 i.e. awindow length o2n+1 = 5 |, a pronunciation is first aligned with the
spelling string and then used to generate training sequences. The system can be thus
allowed to learn the statistical relationship between each n-tuple of letters and its

corresponding phonemes.

Effect of Phonemic Context

In the discussion in the previous section, it was assumed that the consecutive
phonemes in the pronunciation are statistically independent of each other (Equation (8)).
However, a study of human articulatory patterns reveals that speech sounds i.e. phones are
dependent on context [9], and therefore it may be beneficial to assume some statistical
dependence between a phoneme in the pronunciation string and its predecessors. This may

be modeled as a Markov process. Using a single-phoneme history i.e. a first order Markov
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assumption, Equation (8) can now be written as

M

P(03, 0y, ..., Opy) = |_| p(0,/ 0, _1) a7
k=1

As a result, the probability of the phoneme sequence representing a pronunciation of the

input proper noun can be estimated as

..OkO0{1,2...,N}

(18)

A system that uses the phoneme history in addition to the letter context
information to generate the pronunciation string will thus be required to evaluate a score
for each predicted phoneme based on the estimates of the observation probabilities (i.e.
the likelihood of the predicted phoneme given the letter context sequence and the history
phoneme), and a search strategy that hypothesizes all the possible phoneme sequences and
generates a list of those that have the highest cumulative likelihood scores. This is
analogous to the N-best Viterbi decoding used commonly in speech recognition systems to

determine the best sequence of phones based on acoustic scores [10, 11, 12].

In general, arm'™ order Markov process can be used to model the phonemic
history, in which case Equation (17) can be re-written as

M

P(0y, 0y, ..., Opy) = |_| P(0,/ O _1: Oy _ 21 -+ Op _ 1) (29)
k=1

This is similar to the n-gram language modeling techniques used in speech recognition,

and corresponding methods for likelihood determination that include back-off estimates
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and smoothing can also be applied to calculate the probabilities of the phoneme

sequences.
Estimation of Letter-to-Phoneme Posterior Probability

The expression for maximizing the estimated likelihood of a pronunciation
phoneme sequence, as derived in the previous section, is given by
* N *
p(0) = [T ploy) (20)
k=1
where

*

o, = argmaxp(i, . ...,lp_q,0p,1 . /0y)
K ?0} K—n k1 e Tk+1 k+n’ O 1)

X P(0/ O _1: O _ 21 +++» O _ 1)

for a context length oh  for the letters and an" order Markov assumption for the
phoneme sequence.

Thus the likelihood estimation can be split into two distinct operations — one for
the a posteriorilikelihood of the letter sequence given the phoneme (i.e. the
letter-to-phoneme correspondence map)

Pl _ oo o s 10 oor et 1/ O (22)
and the other for the likelihood of the phoneme given its history in terms of previously
occurred phonemes in the pronunciation, if any

P(0/ O _1: O _ 25 +++» O _ ) (23)

Estimation of the posterior likelihood as defined by Equation (22) can be treated as
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Figure 4. The phone space for the vowels for a 18500 surnames pronunciation dictionary.
The x axis contains indices of all the 44 phonemes that each letter can map to.
They axis contains the frequency of letter-phoneme correspondence plotted on
a logarithmic scale.

a classification problem, where the classifier is trained to represent the statistics of the
association between letter n-tuples and the associated phoneme.

Since the pronunciation of a proper noun is not only a function of the letter
n-tuples in its spelling, but also of several non-analytic factors such as ethnicity and
dialect, a single letter n-tuple is often pronounced in different ways and therefore gets
mapped to multiple phonemes. Consequently, there is frequent overlap among the
classification regions for the various phonemes. This problem is illustrated for the vowel
space (i.e. pronunciations of only the vowels “a”, “e”, “i”, “0” and “u” as they appear in a

pronunciation dictionary of 18500 American surnames) in Figure 4.
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Accounting for phonemes corresponding to the other letters in addition to the
vowels, it is reasonable to extrapolate that the classification space is highly confusable and
nonlinear. Standard linear classification techniques such as minimum mean squared error
and nearest neighbor clustering will not be able to satisfactorily assign phonemes to the
corresponding letters. Moreover, the statistical model of letter-to-phoneme
correspondence is supposed to estimate a probability function for the occurrence of each
letter-phoneme pair, a task not achievable with simple classification techniques. Therefore,
techniques that can optimally maximize the estimated likelihood of the letter-phoneme
pairs are needed to model the statistics of the classification space. Commonly used
techniques for such stochastic pattern classification problems are statistical decision trees,
artificial neural networks, Markov and hidden Markov models etc.

Statistical decision trees divide the classification space into piecewise linear
regions based on intelligent questions about the properties of the input data [13, 14] and
assign probabilities that a class corresponds to the input pattern accordingly. A number of
existing text-to-speech systems involve decision tree techniques to convert text to
phonemes, and the effect of decision trees for generating pronunciations of surnames has
been studied in detail in [15]. The performance of such systems suffers from the inability
to generalize to the pronunciations of previously unseen names.

Neural networks, on the other hand, use interconnected sets of hidden units where
the connection weights are adjusted to model the complex relationships between each
class and every input data token [16, 17]. Thus the output of the network is able to capture

the inherent functionality of the input data without aaypriori statistical characterization
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or parameterization. The network can reduce large input vectors into small output feature

vectors that effectively indicate the classes represented by the input patterns. Often, such
features constitute the internal activation patterns of a network rather than the output [18,

19].

Another approach that will be explored in this research is inspired from the
methodologies used in solving problems pertaining to automatic recognition of speech,
where the system generates a maximum likelihood sequence of speech units (phones,
words etc.) using a dynamic programming search through the possible hypotheses. The
probabilities are estimated using statistical optimization methods such as the EM

(expectation-maximization) algorithm [20].

Likelihood Estimation Using Statistical Neural Networks

Artificial neural networks (ANNS) are an attractive approach for nonlinear
classification tasks due to their ability to perform complex computing or classification
operations through massive integration of individual computing units, each of which
performs an elementary computation.

ANNSs are connectionist systems in which the knowledge about the data is
distributed over multiple processing units and the net exchange of information between
these units determines the behavior of the system. Such networks can be created
automatically through incremental learning i.e. by repetitive training on example cases.
Multilayered neural networks, in which the internal or hidden units can act as feature

detectors that perform a mapping between the input and the output are a class of models
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Figure 5. Topology for a multilayered feedforward stochastic neural network for pronun-
ciation generation. For the example word “Epstein” pronouncddlas t al n
— the input layer connects to the bit-encoded letter strings of different context
lengths, the many hidden layers capture the letter-to-sound features in the input
bit stream. The output is another bit stream which encodes the phoneme.

ideally suited for such applications of letter-to-phone conversion.

A hybrid stochastic neural network [21] is proposed here that combines the
principles of multilayered feedforward networks [22, 23] and Boltzmann machines [24].
This network looks at each character in the spelling of the noun in the context of its left
and right neighbors and maps such letter substrings to the corresponding sounds. A shift
register structure is used to buffer characters as they are input to the system one at a time.

Local as well as long-distance constraints can be incorporated in the input data [25] using
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shift registers of different context sizes simultaneously. This approach is similar to other

time-delay techniques that have become popular in speech recognition systems [26, 27].

The network architecture for the problem of name pronunciation generation is

depicted in Figure 5. It is based on the following two design criteria —

Generally, a relatively small amount of contextual information is sufficient to
narrow the range of possible sound correspondences to a small set of likely
phonemes.

Choosing a correct sound from this set may require information occurring at
more remote points in the name (such as the identification of spelling patterns

unique to the language from which the name is derived).

The network architecture consists of three principal components described as follows —

An input layer that buffers n-tuples of input letters and maps them to
binary-valued inputs — the input character set consists of the 26 letters of the
alphabet, plus the blank letter “_” and a few other special characters such as the
apostrophe and the period.

A set of hidden layers that maps such bit-streams into a set of internal states —
that derive and store the context-sensitive information regarding the “sounds”
such n-tuples produce, and transform the bit-string output of the input layer
into some representation of sounds or features corresponding to the
pronunciation of the name. The connection weights between the input buffers
and the hidden layer are used to represent knowledge about the n-tuple letter

sequences.
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* An output layer that integrates the long-term and short-term constraints to
interpret the groups of letters into a phonetic representation — an indexing
system is used to encode the output symbols as phonemes in order to reduce
the complexity of the system.

By repeatedly applying the same name as input to the system, different phonetic
feature sequences can be produced, corresponding to alternate plausible pronunciations of
the name. Thus, the network succeeds in determining not only a nominal or “correct”
pronunciation, but also describing all likely pronunciations of the name. The activation
probability of each unit in the network also provides a likelihood measure or “score” for
each pronunciation.

Standard algorithms used for training multilayered perceptrons, such as simulated
annealing [28] and error backpropagation were found to have divergence problems in
training the letter-to-phoneme classifier due to the nature of the classification space [29].
Therefore, a modified training algorithm is proposed here for this neural network system.

This algorithm is a variation on the standard simulated annealing gradient descent
method. It tries to minimize the asymmetric divergence (an information-theoretic measure
of the distance between two probability distributions) between the network energy

distributions generated by the reference pronunciation and the hypothesis phoneme string.
Derivation of The Weight-Update Rules

The typical connections between neurons in two connected layers are illustrated in

Figure 6. Let{ wij} be the set of weights connecting units in the two layers, such that
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Figure 6. Typical neuron connections in a Boltzmann machine network, along with the
Boltzmann distribution function that governs the activation probability of a neu-
ron. The neuron activation function is also illustrated.

{h,} represents the set of output bits of one layer (say the input layer) Iapd those of

the other (output layer). Let  be a global state of this Boltzmann machine neural network
corresponding to the case where the outputs represent the hypothesis pronunciation i.e. are
set according to the input bits and not clamped externally; and the network is in thermal

equilibrium. When the output bits are clamped to their desired values, let the state of the
network at thermal equilibrium be representeddy Plf indicates the probability of
the system being in the equilibrium state , then the asymmetric divergence between the

distributions at the hypothesis state  and the desired or idealState s defined as

PA
_ [of
Y = ZP’oTk)g_Pa (24)
(of
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Assuming that the threshold values at each unit are included in the summation, the

total global energy of this system in state  is

Z ZW'J i (25)

—E /T
Therefore differentiating ° with respect to a connection Weigpt yields
—E,/T
oe _ 1 E/T q,a
aw, o1 hih (26)

1]

The probability that the system under thermal equilibrium conditions ends up in
the global state&x is given by the following equation [28] —

i e—Ea/T
a ~ —E, /T
A
e

(27)

whereA is any global state of the network. Differentiating Equation (27) and substituting

Equation (26) the following equation is obtained —

-E /T -E,/T
e a h)\h A E
P, _ %1 ho 0 (28)
awij —E}\/T e—E)\/T E
O
which simplifies to
A BT
“h.e
oP P Hl
5 = (29)

m
>
N
_|
[ [ o [
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This relation is used to compute the gradient of the error function. The derivative

of Equation (24) results in

AaP
Py @)

A substitution from yields

(o3]

o
awij

(31)

i
>
N
—
I

Noting that the sum of probability values over the entire domain is 1 and that the input bits

are the same in both the reference and hypothesis cases —
a o

ZP,& =1 and h” = h, (32)

if the error in the output bit is termed aﬁ? = hja - h? , then on further simplification of

Equation (31) the relationship between the gradient of the error function and the bit error

becomes apparent.

_ afjo0 _ lia o
aw - TBU j % TBU —h; %i = -|-5j h; (33)
Thus to minimizeW it is sufficient to change each weight by an amount proportional to

the difference between the expected output and the desired output.

a, o
Aw; = N3 h; (34)
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Figure 7. A schematic overview of the simulated annealing backpropagation algorithm

used to train the multilayered stochastic neural network.
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Heren is a scaling factor that determines the size of each weight change, and in the
context of neural network training is called tharning rate

There are a number of possible modifications to the algorithm derived above that
affect the learning in terms of speed of convergence. By keeping the scaling factor fairly
small the noise in incrementing the weights can be minimized, but a very small vatue of
also results in a slow learning rate. This can be partly compensated for by adding some
momentum to the training. This involves providing some feedback to the weight updates
based on the updates for the previous input-output case. The feedbackfactor is called
the momentum coefficient, and can be varied to control the direction of learning to some

extent. Now the weight update equation takes the form
a, a
AWij = r|5j h; +pAwij (35)
which is used in training the pronunciation generating system.

The training algorithm is described in detail next. Figure 7 contains a schematic

outline of the training process.
Training Algorithm for Stochastic Multilayered Neural Network

Given a set of input spellings along with the corresponding phonetic transcriptions,
to compute the set of weights for a stochastically activated network Kvith  number of
layers that maps the inputs onto the corresponding outputs the following procedure is
used:

1. Asthere ar&k layers in the network, layer 1 corresponds to the one clamped
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with the inputs and layek corresponds to the neuron layers that constitute the

system output. Let,  be the number of neurons inkfe layer. AlsayJet

be the number of bits that are input the first layer of neurons. These bits are the
accumulation of the bit-strings corresponding to all the symbols loaded in the

input buffer, and hencel, is fixed once the context size is decided. Let the
input bits be denoted by, , the activation levels of the neurons inkthe

hidden layer be denoted ag and the output bits oktfle (output) layer be
|

o, . We indicate the weight connecting tH®  neuron in thet™ layer to the

jth neuron in thek™ layer by, t is the index of the number of training
i

loops. T(t) is thesystem temperatur@ the " iteration through the training
data. Letn be thdearning rateand a(t) be thefeedback coefficierndr the
momentumerm used to update the connection weights. The learning rate is a
fixed constant that characterizes the impact of the output error of a neuron on
the weights connected to it. The momentum determines how much the
previous training affects the weight update. Foe 0 , the weights are
initialized to small random values (say between -0.1 and 0.1). The respective

initial values of the momentum(0) = 0 and the temperatu(e) = T, are
also set. The initial temperaturg  is a parameter specified by the user.

2. The following steps 3 through 10 are carried out for each iteratfon, 1, 2 ...
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over all the training vectors.
3. For aninput vectofx} , the probability of getting a high output for a hidden

layer neuron clamped to it is calculated in terms of its energy gap. The outputs

are set to a high or low value using a random number generator that follows

this distribution.

NO
AE, = — : 36
L Z Wlij X (36)
i=0
_ _ 1
p(hlj =1 = —2E,/T() (37)
1+e !

4. The output of the units in the first hidden layer is propagated through the

network to compute the outputs of neurons in the subsequent layers. Thus for

allk =23,...(K-1) —

Ny _1
AE, = — h 38
kj Z Wkij k-1, (38)
=0
_ _ 1
p(hkj =1 = —2E, /70 (39)
1+e !

5. Finally, the output bits of the outermost layer are computed.

Ny _1
AE, = — h 40
Kj Z WKij K-1 (40)
1=0
1
0=1)= — = 41
p(o; = 1) BB 7T0) (41)

1+e
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6. The output bit-string is compared to the bit-string} that corresponds to the

expected or target output phoneme. The error in the system output is computed

based on the actual output and the target output. Since this error corresponds to

the outermost layer, the error for tH2  neuron in this layer is denoted as
j

6KJ. = Oj(l—oj)(Yj—Oj) (42)
7. The error in the output of a neuron in an earlier layer is computed. The error at
the k" layer is calculated by backpropagating the error inthe!" layer and
is denoted byskj .Foral = K-1,K-2,...,1 —

Ny

& = h.(1-h) Z O+ 1 W1, (43)
i e,

8. The weights are updated using these error values with some feedback from the
updates in the previous training pass (see Appendix A for derivation). This

feedback is controlled using thkearning rate n and the momentumor

feedback coefficiend . Forall= K, K-1,...,1 —

Aw,
1]
Aw,
1]

no h_; +a(t)Aw,
J J 1) (44)

nél.xj +a(t)Aw,
J 1)

9. Steps 3 through 8 are repeated for the next input token. This is continued till all
input tokens are exhausted. A complete training pass through all the input
tokens is called an iteration or apoch

10. The momentum and temperature parameters are updated for the next iteration
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through the training data. The momentum term is slowly increased to be small
in the beginning and to approach unity as the network runs through more
epochs. The temperature is gradually decreased i.e. the system is allowed to
cool down as per the simulated annealing paradigm. A common cooling
schedule follows an exponential function with a cooling exporgent  specified

by the user. Therefore —
a(t) = 1-e Pt (45)
T(t) = Tee ™ (46)
11. The network continues to make passes of the training data till the cumulative
mean squared error in the output values drops below a suitable threshold. At
this juncture the system is said to have achieved convergence.
The training may be stopped according to several other criteria as well. These may include
stopping the training once some minimum value of the system temperature is reached, or

when the largest increment in any of the connection weights is smaller than a threshold

value etc.
Likelihood Estimation Using Context Interpolation

The neural network model attempts to capture the letter-to-phoneme statistical
distribution in a non-parametric framework i.e. it poses no restrictions on the form of the
distribution. Therefore, a continuous density probability function is estimated. An

alternative to training the neural network models is to estimate the letter-to-phoneme
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correspondence as a discrete probability distribution.

This is achieved by using ratios of the frequency of occurrence of each letter
n-tuple and phoneme pair for a given context length. A back-off count is also maintained
for each central letter using an n-tuple of a smaller context length, and the corresponding
back-off probabilities estimated. When generating the pronunciation of a proper noun, the
most likely phonemes given the letter n-tuple string are output. If a particular n-tuple does
not exist in the model, the phoneme likelihood associated with it is calculated by backing
off to the next smallest context using the back-off weights.

First, all the distinct phonemes in the pronunciation database are indexed to
integers in the range 1 through , wheve s the size of the phoneme set. For a context

length ofn , the size of the n-tuple B+ 1 . If a letter sequence centered around the letter

¢ be denoted by, ., ; ,then letthe number of times the phoneme with the xdex is

associated with this n-tuple b&(¢,,, ;/x) . The probability of this letter n-tuple to be
associated with this phoneme is then given by

V(&2 4+ 1/%)

p(22n+1/x) = iV (47)
z U(22n+1/y)
y=1
At the same time, the back-off context is of sibe= n-1 , with the

corresponding letter sequence of the 2bet 1 = 2n-1 . The back-off probability of

this shorter letter sequenég,,_, , which is obtained by stripping the extreme letters of

the full-length sequencg,, , ; ,to be associated with the phoneme index is then given
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by
V(&on_1/%)
IO(EZn_l/X) Y L
y=1
= ;p(52n+1/x) A= {52n+1|*52n—1* = 52n+1}
Here,*&,,_1* indicates the letter sequence of lengjth+ 1 which has any possible

letter at each of the two extreme positions, but the central substgpg i

These back-off likelihoods are estimated for= n—-1,n-2,...,1 . During

evaluation, the likelihood of an input n-tuple of letters centered ar@und for a phoxeme

is given by
P&+ 17%) ...if exists
pE/x) =0 . . (49)
P(&pn_ 17/ X) ...otherwise

The system backs off to progressively smaller context length substrings if the longer letter

substring is not found to have a satisfactory count of occurrences in the training data.

Estimation of Phoneme Probabilities

The posterior probabilities of the letter-phoneme pairs can be used directly,
without any additional knowledge to generate pronunciations of proper nouns. However,
the performance of such a system based only on classification of phonemes is poor [30].
This system essentially assumes a uniform distribution on the occurrence of all phonemes.

However, not all phonemes are equiprobable, as described in Figure 8 by the plot
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Figure 8. Occurrence statistics of phonemes in a proper nouns pronunciation dictionary
indicates the variation in the probability of occurrence of phonemes.
of the occurrence frequencies for each phoneme in a pronunciations database consisting of
18500 American surnames. Using the phoneme occurrence statistics in conjunction with
the posterior probability will provide more information towards selecting the correct
phoneme sequence for a given proper noun. Since the occurrence of a particular phoneme
sequence is a characteristic of the language of origin, inclusion of the phoneme sequence
probability in the maximum likelihood framework allows application of linguistic
knowledge sources.

It was described in Equation (19) that the probability of the phoneme sequence

constituting the pronunciation of a proper noun can be modeledra¥ arder Markov

model. The equation is reproduced here for convenience.
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M

P(0y, 0y, ..., Op) = |_| P(0,/ O _1: Oy _ 21 -+ Op _ 1) (50)
k=1

This formulation is analogous to the concept of an n-gram language model [31] used
extensively in speech recognition applications to represent patterns of word sequences
occurring in the linguistic structure, where a history of the  preceding words is used to
determine the likelihood of occurrence of the word currently under consideration.

The probability of a phoneme sequence is calculated in a manner similar to that of
n-gram estimation. As before, all the distinct phonemes in the pronunciation database are

indexed to integers in the range 1 through , wh¥re s the size of the phoneme set.

Assumingam = 1 , i.e. afirst order Markov process, the occurrence of a phoneme is only
a function of the previous phoneme in the pronunciation. This will be denoted as a

phoneme bigram, to maintain consistency with the speech recognition nomenclature. Then
for each adjacent pair of phoneme indices agnd , the total number of occurrenkes of
following y (denoted byn(x/ y) ) is counted. Then the total number of occurrences of an

individual phonemex is given by

\Y,

nx = Y n(xy) (51)

y=1
and the total number of phoneme occurrences in the database is given by

\Y%
Niotal = Z n(x) (52)

x=1

Then, the bigram probability of a phoneme given the preceding phonemg was
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is given by
n(x/y)
éb( (%) ..n(x’y)>0
X/y) = 1 53
POY) E < L N(X/Y) =0 3)
g f ...otherwise

Here,f is a lower bound on the probability and is set to some small value to avoid

underflow.a is a normalizing constant used to ensure that all probabilities sumto 1 i.e.

\Y
S Py =1 (54)
y=1

If a phoneme sequence does not occur at all in the training data, then it is assigned
the uniform distribution ternl/V . If a large number of such cases occur in the bigram
estimation, the performance of the system suffers since it approaches the uniform
distribution system described earlier in this section.

As an alternative, a back-off bigram [32] can be constructed to overcome the
sparse data problem to some extent. Here, if a particular phoneme sequence does not occur
in the training data, its likelihood can be computed using a back-off weight of the history
phoneme and the unigram probability (i.e. the probability of the individual phoneme) of

the current phoneme. The unigram probabilities are defined as

E:(X) ..n(x)>u
U"total

P(¥) =0 | (55)
0= ...otherwise
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whereu is the lower bound on the occurrence count of a single phoneme. The back-off

bigram probability is given by

(xy)-D
o(x/y) = 5 N ..N(x/y) >t (56)
E b(y) p(x) ...otherwise

Here,D is the discounting factor [33] used to deduct some of the available probability
mass from the more frequent bigrams and distributing it among the low-occurrence
bigrams, and is typically set to 0.%. is a bigram count floor limit. The back-off

probability is computed as

\Y
1- % p(xy)
b(x) = —L2 (57)
1-3% p(y)
yOB
whereB is the set of all phonemes for which the bigréxv y) exists. This ensures the

validity of probability sum —

\Y
T Py =1 (58)
y=1

The equations for higher order phoneme n-grams can be derived in a similar fashion.
However, an order larger than 2 or 3 is usually found to be impractical due to lack of
sufficient training data, in which case most probabilities are assigned as back-off.

Since in the n-gram model of the phoneme sequence the likelihood of a particular

phoneme depends on its position in the sequence, the information about whether a



37

phoneme can be at the start or end of a proper noun pronunciation is also important.
However, the first phoneme has no preceding context, and the last phoneme cannot be
identified a priori. Therefore, for the phoneme string representing the pronunciation of
each proper noun in the training database, a start phoneme tag is assigned to the first
phoneme and an end phoneme tag assigned to the last phoneme. This allows the likelihood

of the phoneme being at the noun start or end is also captured in the n-gram model.
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CHAPTER IlI

REVIEW OF CURRENT TEXT-TO-SPEECH TECHNOLOGY

Automatic generation of a list of probable pronunciations of proper nouns has
application to both speech recognition and synthesis. In recognition systems, such lists can
be used to build better pronunciation models for proper nouns, thus increasing the
likelihood of obtaining accurate acoustic matches for such words. Similarly, a speech
synthesis system can be tuned to produce a more natural utterance of the names required
to be output.

To that effect, the aim of the proposed research is to develop maximum likelihood
techniques that can automatically generate an accurate (i.e. acceptable with a high
probability score) list of pronunciations for proper nouns.

The motivation for the proposed work originates from experiences at Texas
Instruments in the late 1980s with attempts to field speech recognition technology in
medical applications [34]. In many such applications, the ability to recognize a physician’s
or patient’s name is crucial in providing a usable interface. For example, using numbers to
access patient records is problematic due to the impracticality of remembering such
numbers for any significant class of patients. Name recognition is a vital step in
transforming medical record access from keyboard input to voice input. A comparable
problem involving company names and product names exists in voice interfaces for

advanced telecommunications services [35, 36].
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Historical Overview

While the fields of speech recognition and synthesis have been active for several
decades now, the focus on proper noun pronunciations is relatively recent. An extensive
study was performed in the late 1980s to evaluate the accuracy of text-to-speech systems
on pronouncing proper nouns [37] for a directory assistance application. In this work, it
was shown that extensive handwritten rule sets were required to generate an accurate
pronunciation of names. Such rule-based systems, even though deemed fairly accurate for
the specific application, generated only the single most likely pronunciation for each
proper noun.

Since many proper nouns have a number of highly probable pronunciations which
can be rarely differentiated from the context of the application, a system generating only
the single-most likely pronunciation essentially attempts to solve an ill-posed problem.
Also, for a successful speech recognition application it is important that all plausible
pronunciation alternatives be available to the system to build better quality acoustic
models for the proper nouns.

A commercial product called DECTalk [38] was developed in the mid-1980s that
converted unrestricted English text into speech, using a set of phonological rules and by
handling exceptions with a lookup table. DECTalk used two methods for converting text
into phonemes — first a word was looked up in a pronunciation dictionary of common
words. If it was not found there then a set of phonological rules was applied to obtain a
phonetic transcription along with stress assignments. These were then converted into

speech sounds using transition rules and digital speech synthesis. For novel words for
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which a correct pronunciation could not be obtained, the dictionary and rule sets required
updating through explicit intervention. This approach was found to be highly
labor-intensive and very limited in scope even for its intended application.

Many commercial systems, such as Bellcore’s Orator [39], Bell Labs’ TTS [40]
and Mitsubishi’'s Anapron [41], follow variations on the same concepts of rule-based
and/or dictionary-based look-ups to generate pronunciations for proper nouns. A major
drawback of such systems is that they require an extensive set of handwritten
letter-to-sound rules which make the systems cumbersome and expensive to develop and
maintain. Moreover, such rule-based systems are constrained by their ability to generate
only one pronunciation for a given proper noun, and do not generalize gracefully when
presented with names not covered by the rule set.

Alternative approaches have emerged since then that employ statistical techniques
such as Hidden Markov Models (HMMs) [42] and artificial neural networks (ANNS) [43]
to model the stochastic distribution of pronunciations with respect to the letters in the
spelling of the word. These have been met with varying degrees of success.

The general idea of applying neural network techniques to the text-to-speech
problem is loosely based on a feasibility study performed in the mid-1980s that focused on
automatically learning letter-to-sound mappings using neural networks [44]. As part of
this study, a multilayered neural network model called NETtalk was developed as an
alternative to DECTalk. It successfully demonstrated that a relatively small network can
capture most of the significant regularities of the pronunciations of regular English words,

as well as absorb a large number of the irregularities. It also had the advantage of being
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language independent (i.e. it could be trained to be used on any language) and directly
implementable in hardware. However, it was found to be limited in its ability to handle
ambiguities that require syntactic and semantic levels of analysis.

In the late 1980s a technique for voice recognition of proper nouns using
text-derived recognition models [45] was proposed and subsequently patented at Texas
Instruments. In this technique, an algorithm was proposed to automatically derive
recognition models from the text-only spelling of the name (rather than voice data
containing nominal pronunciations). This system relied on a particular class of neural
networks known as a Boltzmann machine [46], designed to generate multiple outputs for a
given input. Such a network transforms the spelling of a proper noun to a network of
distinctive features [47] describing articulatory movements required to produce various
pronunciations of the name. However, this system was never implemented or evaluated,
and has served as the starting point for the research proposed here.

Recently, statistical decision trees (DTs) have emerged as a viable technique for
performing such nonlinear classification tasks with high degree of accuracy. For example,
a technique that uses decision trees to automatically generate detailed phonetic
pronunciation networks from a coarse phonemic transcription [48] has been developed at
AT&T. Since each terminal node in the tree can store a statistical distribution of the
phoneme associated with it, some decision tree based systems are also capable of
generating more than one pronunciations.

Many of the systems described here have reported reasonable performance on

standard English words. However, at present there exists no system that can automatically
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and effectively model the peculiarities of proper noun phonology to generate multiple
likely pronunciations for them.

The approaches to model pronunciations of words (including proper nouns) can be
broadly classified into two categories — rule-based and data-driven. Rule-based systems
employ a set of explicit (and often hand-crafted) rules designed by linguistic experts to
determine the pronunciation of the input word. Data-driven methods, on the other hand,
assimilate the statistical relationships between the features of the words (such as spelling,
speech samples, formant tracks etc.) and the corresponding phonetic variation.

A discussion of various methodologies as applied to generation of pronunciations
for proper nouns as well as regular words is presented here. A comparison of several

state-of-the-art name pronunciation systems can be found in [49, 50].

Rule-Based Pronunciation Generation

The rules for generating pronunciation of a word are highly stylized and simplified
approximations to the phenomena of natural speech, and are typically based on the
morphological and phonological structure of the word [51]. In case of regular words in a
language (such as English), the translation of the morphology of a word into a phonetic
representation is fairly straightforward, and an appropriately large rule set is sufficient to
provide coverage of a bulk of the vocabulary.

However, for proper nouns such as surnames the letter-to-sound relationship is
exceedingly complex; and correspondingly the number of rules required to provide

adequate coverage over a representative name set is impractically large. A typical TTS
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system specialized for name synthesis may have an error rate of about 20% in terms of the
coverage provided by its rule set when evaluated on a random set of names [52]. Most
present-day systems address this problem using a two-fold strategy — very large rules sets
are built to obtain coverage of approximately 60% of the surname distribution, and a
specialized dictionary is used to look up the pronunciations for the remainder of the
names.

The foundation of the rule-based systems lies in the observation that in most
languages such as English, historically the alphabetical spelling representation of a word
was closely related to its intended pronunciation [53, 54]. Over time, the pronunciations
evolved to reflect sociolinguistic changes such as interaction with other languages [55]
and resulted in such complex conventions as compound letters (for instance “ch” and

“sh”), silent letters (e.g. “Psychology”) etc. [56].

Standard Rule-Based Systems

Early systems employing rule sets for pronouncing words exploited the fact that
the pronunciation of a letter or a pair of adjacent letters in the spelling of a word is closely
related to the adjacent letter context [57, 58]. Thus, rules were devised that would convert
letter n-tuples such as “ph”, “ee” etc. to the corresponding phoneme. A subsequent set of
conversion rules then assigned the remaining single letters to phones. The rules were
usually ordered to treat consonants first and use the context specification provided by the
consonants to convert vowels into phonemes.

From a perspective of text-to-speech synthesis, it was also found desirable to
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generate the stress patterns for the pronunciations of these words. This was achieved by
including stress rules such as the Chomsky-Halle set [59] used in [60], or the Hill and
Nessly rule set [61] used in [62]. A majority of TTS systems that employ
letter-to-phoneme rules also include stress pattern information for the syllables of that
word. However, since the focus of this research is to generate pronunciation models that
can be used both for recognition and synthesis, generation of stress patterns is not a
critical issue. Therefore, a detailed discussion on application of stress rules is omitted
here.

Due to the inherent variations in the letter-to-sound mapping of the language, even
a large set of rules fails to accurately predict the pronunciations of the different words. By
evaluating a large set of words on a purely rule-based system a list of exceptions can be
generated, and the pronunciations of these words stored separately in the system.

An exception-handling pronunciation dictionary is necessitated by two factors for
spelling-to-pronunciation conversion in typical TTS applications. First, a small number of
words — approximately 2000 — is sufficient to cover almost 70% of words regularly used
in English [63]. With a pronunciation dictionary for these words built into the system, a
majority of the input text does not need to be treated with the letter-to-sound rules.
Secondly, by adding other relatively frequent words that fail to be pronounced correctly
using the rules to the dictionary, the performance of the system can be improved
considerably [64, 65].

However, the size of the exceptions dictionary grows inversely proportional to the

guality and extent of the letter-to-phoneme rules. Thus the storage requirements on such
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Figure 9. Schematic procedure for generating pronunciation of a word from its spelling
using letter-to-phoneme rules and dictionary lookup.

rule-based systems are immense — either the rule set needs to be large to provide accurate
coverage of different letter contexts, or the dictionary gets heavily populated to
compensate for the deficiencies of the rules [66].

The standard procedure for generation of a pronunciation is depicted in Figure 9.
First, the input word is looked up in a small pronunciation dictionary built into the system
for handling exceptionally difficult words. If no match is found, the word is progressively
broken into smaller parts calledorphemesr graphemedy removing common prefixes

and suffixes and recovering the root form of the word. If the root word does not match the
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dictionary, the word is subject to the letter-to-phoneme rule set to generate its

pronunciation.

Morpheme-Based Rules

An alternative to bulky exception-handling dictionaries is to maintain a
pronunciations database of morphemes. Morphemes are often described as the smallest
meaningful unit of language [67]. Morphological analysis of words is important when
dealing with silent letters like “t” and disambiguating pronunciation of compounds such as
“hh” in “hitchhike”, since a rule-based system will break down on such words. The benefit
of morpheme-based methodologies is also supported by studies [68] which indicate that
good spellers seek out morphemes in words and reconstruct the word spelling by
concatenating its morphemic components.

The benefits of morpheme-based decomposition of words to generate
pronunciations was demonstrated early on in [69] with a small dictionary of 3,000
morphemes. This was extended in [70] where a dictionary of 12,000 morpheme
pronunciations was generated by interactive examination of the text of the Brown corpus
[71], and augmented with a set of heuristic scoring procedures that will select the most
plausible of the different possible morphemic parses of each word (e.g. “scar” + “city”
vis-a-vis “scarce” + “ity” for the word “scarcity”).

The MITalk system [72] was built around such a morpheme decomposition
algorithm with approximately 98% accuracy for words in regular text in addition to

pronunciation rules. A similar system at Bell Labs [73] used a dictionary of 43,000
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morphemes augmented with rules for stress assignment and affix analysis.

The most obvious advantage of morpheme-based pronunciation dictionaries is that
a relatively small number of morphemes is required to provide coverage of a fairly large
vocabulary, thus significantly reducing the memory requirements of the exceptions

dictionary.

Proper Noun Systems

With sufficiently large rule sets and exception dictionaries, the rule-based systems
described above performed fairly (accuracy of 95% at word level) well on generating
pronunciations for general English text. However, their performance on predicting proper
noun pronunciations degraded significantly — the early pronunciation systems geared
specifically towards proper nouns [74, 75] had an error rate of more than 20% [76].

A study of the performance of contemporary TTS systems on pronouncing proper
nouns [77] suggests that names often represent phenomena that pose problems for general
letter-to-sound rules. Particularly, a large number of proper nouns have origins in
languages other than English and therefore the letter-to-phoneme rules derived for English
text do not translate well to their pronunciation.

One approach to overcome this problem is to first identify the language of origin
for the name and then apply the rules specific to that language to generate the
pronunciation. Language identification can be achieved by using the statistics of the
frequency of occurrence of letter sequences in different languages and comparing these

against the input name [78]. Therefore, adapting a system to proper nouns involves
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Figure 10. Schematic procedure for generating pronunciation of a proper noun from its
spelling using dictionary lookup, morphology and letter-to-phoneme rules.

hand-crafting a very large number of restrictive letter-to-phoneme rules and a significant
increase in the size of the exceptions dictionary. Most state-of-the-art commercial systems
specially designed to generate proper noun pronunciations employ this strategy with some
modifications. Figure 10 describes the general procedure for rule-based systems to predict
pronunciations of proper nouns.
In the Orator system [39] from Bellcore, the name input to the system is first

compared against a small exception dictionary of approximately 2500 names. If the name
is not found in the dictionary, the system characterizes its language of origin and then

subjects it to morphological analysis. A morpheme pronunciation dictionary is used to
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determine the pronunciation of each morpheme. If the morpheme does not exist in the
dictionary, it is subjected to letter-to-sound rules. The rules were specifically designed for
pronunciation of names, taking into account factors such as the language, morpheme
boundaries and orthographic context. The rule set adheres closer to the Americanized
pronunciations of the names from foreign languages rather than the native pronunciations.
Since the rule set is fairly large, for efficiency reasons it is compiled into a finite-state
machine at run-time.

The DECvoice Il system [79] from DEC is built around a modernized version of
the DECtalk system [38] and follows a sequence of operations similar to the Orator to
predict the pronunciation of a name. The first pass consists of a dictionary look-up, which
is then followed by language identification if the name is not contained in the dictionary. A
two-step process comprising of a set of filter rules followed by a trigram analysis of letters
is used to characterize the language. The filter rules take into account characteristic latter
patterns in the name to eliminate non-candidate languages. The trigram analysis is
analogous to that described earlier in this section and in [78], and is required only if the
filter rules yield multiple candidate languages. Pronunciation rules specific to the
identified language are applied next to generate the pronunciation for the name.

The TTS system [40] from Bell labs relies heavily on a hierarchy of dictionary
look-up methods. The first and simplest of these is to search for the name in a
pronunciation dictionary of the 50,000 most common names found in the US. If this direct
look-up fails, it applies morphological analysis-synthesis techniques to find names in the

dictionary that are somehow related to the input name. These relationships include



50

rhyming analogies (e.g. “Mark” and “Stark”), appending or removing stress-neutral
affixes to/from a name to match a dictionary entry (e.g. “Robinson” - “son” = “Robin”) or
exchanging affixes (e.g. “Augustino” - “ino” + “elli” = “Augustelli”). The pronunciations

for each of these morphemes are looked up in the dictionary and the final name
pronunciation is constructed through similar operations. In the rare case where all such
dictionary-based techniques do not provide a satisfactory match, a rule-based system is
used to generate pronunciations for the exceptional morphemes.

The Anapron system [80] enhances the performance of a rule-based system using
case-based reasoning by drawing analogies to existing cases [81] in the pronunciation
dictionary when deriving letter-to-sound rules for an unknown name. It uses a dictionary
of 5,000 surnames, which consist of the 2,500 most common American surnames and
1,250 surnames each sampled at random from the 2,500 through 10,000 and 10,000
through 60,000 most frequent surnames in the US. Conversion to phonemes is performed
as a combination of rule-based and case-based reasoning. First, the system performs
language identification and corresponding morphological analysis of the input name. For
each morpheme, letter-to-phoneme rules are applied to generate its pronunciation. The
rule selected for a particular letter is used to index into the dictionary to retrieve names
that represent exceptions to the rule. If a strong analogy exists between any of the retrieved
names and the input name, then the pronunciation of the exception is used for that
morpheme. Analogies are determined by applying similarity metrics to the two names,
and through empirical verification that evaluates the generalization behind the analogy on

other similar names in the dictionary.
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Pronunciation Generation by Learning

An alternative approach to predicting pronunciations by rule stems from
psychological studies that suggest that people learn letter-to-sound conversions not by
memorization of rules, but using analogies with similar patterns of letter sequences in
words whose pronunciation is already familiar to them [82]. An early implementation of
this strategy on regular words, which coupled the information contained in the frequency
of occurrence of such analogous words [83], was found to match human performance in
predicting word pronunciations over 90% of the test cases.

A system based on such an approach of learning by analogy often needs to store a
pronunciation lexicon of words [84]. When a novel word is presented to the system, it
searches through the lexicon for morphologically similar words and subsequently modify
their phonetic transcription in accordance with the spelling of the input word. This is
sometimes referred to as “explicit analogy” [85]. Systems based on this technique are only
marginally better than rule-based systems, since they are still memory-intensive and slow
(they often need to make multiple search passes through the lexicon to generate a class of
words similar to the novel word).

Alternatively, systems can extract “implicit analogies” or generalized information
from a training lexicon of pronunciations [86]. This has inspired research into treating the
problem of letter-to-phoneme conversion as one of statistical pattern recognition. An
additional benefit of this approach is that the system can learn both the language and
pronunciation dependent aspects of the lexicon [87], and therefore can be applied to

multiple languages such as French [88] and German [89].
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A letter-pattern learning algorithm was developed in the early 1980s [90] that
defined feature sets related to random sequences of letters using a forward-backward
training algorithm analogous to one used in speech recognition systems. This algorithm
was trained on a lexicon of 50,000 regular English words to determine the optimal feature
sets for individual phonemes using a seven-letter context, and correspondingly a set of
probabilities was generated for a search tree recognition model. This system yielded a
letter-to-phoneme conversion accuracy of 94% for a 5,000 word test set.

A statistically learning neural network was implemented in the NETtalk system
[44] which accepted as input a similar window of seven-letter context, and output the
phoneme corresponding to the middle input letter. It used a set of 120 hidden neurons, 29
letter symbols for the input and a set of 40 phoneme symbols to represent the output
pronunciations. The network weights were initialized randomly and trained incrementally
using simulated annealing [28] over a lexicon of 20,000 words. In a closed-loop evaluation
(i.e. testing on the same set of words) this network was found to achieve 90% phoneme
classification accuracy — comparable to a contemporary rule-based system without an
exceptions dictionary. A similar network architecture was subsequently applied to
Spanish, with comparable performance [91].

An algorithm was defined in [92] in which a decision tree was developed to
perform comparison of substrings from the spelling of a word in an optimal and efficient
fashion. A moderate-sized decision tree trained on a pronunciation lexicon of 20,000
words was constructed with half the data held out for evaluation. The performance for

accurate classification of individual letters was found to be 93% on this held-out subset of
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data. A similar system [93] automatically maps groups of letters to phonemes by learning
from a training lexicon.

A review of the error modalities in these early classification systems reveals that
such systems failed to generalize in an optimal fashion over different classes of letters and
phones [51]. For instance, a vast majority of errors (about 80%) were found to occur
during classification of vowels. This can be attributed to the extent of letter context that
influences stress assignments and therefore the pronunciations of the vowels. In addition,
since pattern matching systems require an output for every input, compound letters such as
“sh” and compound words with letters that have no corresponding phones (e.g. “e” in
“lifeboat”) posed problems of alignment.

Recently, new data-driven techniques such as stochastic phonographic
transduction (SPT) [94] have emerged that model the spellings and pronunciations of
English words as the output of a stochastic grammar which is derived from a
pronunciation dictionary. The terminal symbols of this grammar are letter-to-phoneme
correspondences, and the rewrite (production) rules of the grammar specify how these are
combined to form acceptable spellings for English words and their pronunciations [95].
For a given word, its pronunciation is produced by parsing its spelling according to the
letter-part of the terminal symbols, and selecting the best sequence of corresponding
phoneme-part terminals according to some optimization criteria [96].

For practical systems that are efficiently trainable, the grammar is assumed to be
regular and that the pronunciation of a word is modeled as a Markov process of

concatenated letter-phoneme pairs. The SPT training algorithm then amounts to the
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inference of an optimal set of correspondences and the estimation of their associated
transition probabilities. Transduction to produce a pronunciation for a word given its
spelling is achieved by Viterbi decoding [97]. A phoneme classification rate of 93% was

reported using this technique on an open-loop test over regular English words.

Name Pronunciation Systems

Many of the statistical learning techniques described above have been attuned to
generate pronunciations of proper nouns. For instance, a modified version of the NETtalk
system classifies a phoneme for each letter of the input name, and then compares letter
sequences of different lengths from the name to entries in a pronunciation dictionary [98,
99]. If a match is found, the dictionary pronunciation closest to the generated phoneme is
used as the output.

Similarly, the TTS systems from AT&T [100] employ stochastic decision trees to
derive name pronunciations from coarse phonemic representations generated from a base
letter-to-sound pronunciation rule set.

The text-to-phone convertors developed at CMU [101] use pronunciation
dictionaries to train a system that produces a set of alignments between the letters and
phonemes given a set of word and its pronunciation. These are stored as an ordered list of
symbols and converted into feature vectors, one per letter, that include a given amount of
context. A stochastic decision tree is constructed based on the feature that splits the data
into the purest pair of subsets. Here, each feature vector can be thought of as a string

generated by a context-sensitive regular grammar. Therefore, the decision tree acts as a
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finite state transducer that maps the letter context to corresponding phonemes [102].

Modeling of Phoneme Sequence Probabilities

As described earlier (e.g. Equation (21)), the application of phoneme sequence
probabilities has a significant influence on the maximum likelihood prediction of the
pronunciation of a proper noun. The parallelism between the language modeling problem
in speech recognition and the phoneme sequence modeling for proper noun
pronunciations is obvious. Both problems deal with estimating likelihoods of units based
on their position in a sequence — words in the former case and phonemes in the latter.
Therefore, the techniques applied for language model estimation can also be used to
model the phoneme sequences.

The choice and scope of the phoneme sequence model has a significant influence
on the performance of the pronunciation generation system. It provides constraints on the
occurrence of particular phonemes and phoneme patterns depending on the nature of the
proper noun and its language of origin. Thus it plays a considerable role in determining
the search space for generating the best pronunciation for the given spelling.

Since the order of occurrence of phonemes in a pronunciation does not follow a
formal grammatical structure, the phoneme sequence probabilities need to be estimated

statistically over a large number of proper noun pronunciations.

Static Models

A phoneme sequence model can be used by a pronunciation generating system to
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apply various levels of linguistic constraints. uxiform model that assigns equal
probabilities to all phonemes in the dictionary does not impose any constraint on the
system and therefore is not very useful. As described in Chapter I, n-gram models [103]

provide information about the identity of a phoneme given its history i.e. the sequence of
the precedingn phonemes in the pronunciation.

N

P(0y, 05 - 0n) =[] P(O/ Oy 1, O _ v s O _ ) (59)
k=1

A value of n greater than 3 is not practicable for implementation, and hence is
typically limited to 2 (bigram model) or 3 (trigram model). A trigram is better than a
bigram model as it carries more information, but requires more training data.

The n-gram model is simple yet powerful [104], but it is static. It uses only the
very immediate history of the phoneme and does not depend on or vary with the data being
observed. Therefore it is not capable of adapting to a change in the linguistic style and
cannot exploit this to enhance the probabilities of related phonemes while suppressing

those of others.
Dynamic Models

An adaptive or dynamic model improves upon the performance of a static n-gram
model by changing estimates of the phoneme probabilities depending upon the part of the
pronunciation observed so far. This is particularly useful if a model trained on data
pertaining to a specific domain is used in another domain, as the model can adjust to the

new language.
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Also, if the pronunciation dictionary used for training can be partitioned into
different root languages, then an adaptive model trained on this heterogeneous source can
exploit the sub-language structure to improve performance. There are a number of
techniques used in language modeling that implement this approach to capture these
linguistic phenomena, and can be applied similarly to phoneme sequences.

» Long-distance n-gramsthese are similar to conventional n-grams except that

they precede the phonerog &y  positions [105].

» Triggers: A trigger pair [106, 107] consists of two phoneme sequences where
the occurrence of one changes the probability estimate of the other.
Constructing a trigger model involves eliminating all pairs of phoneme
sequences that are not significantly related. The effects of several triggers
towards the triggered sequence are combined and the trigger information is
integrated with the static model in a way that preserves the advantages of both.
A maximum entropy (ME) algorithm [108, 109] is used to train the
trigger-based model. While the ME approach is intuitively simple, easy to
implement for a variety of problems and guaranteed to converge to a solution,
it suffers from very high requirements of memory and computation and does
not have a well-defined rate of convergence.

» Cache ModelsOnce a phoneme (or phoneme sequence) occurs in a document,
its likelihood of recurrence is greatly increased. This tendency is most true of

rare phonemes, and reduces as the phoneme becomes more frequent in

occurrence. Based on this phenomenon, thellast phonemes (or phoneme
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sequences) of the pronunciations seen so far are stored in a cache. This cache is
used to estimate the dynamic unigram, bigram and trigram probabilities [110,
111, 112] and then incorporated with the static model using interpolation

techniques. Caches can also be formed based on the number of times the

phonemeo, already appeared in the history and based on distance i.e. the last

time o, occurred in the history.

Class Grammarsinstead of phonemes, classes of phonemes are taken as the
units of the model. The probability of phoneme occurrence is determined by
the probability of occurrence of that phoneme class [113].

Tree-based modeldhese models [114] generate a binary decision tree from
the training data to cluster phoneme histories. Each node of the tree is
associated with a state of the model and each leaf corresponds to a valid
phoneme sequence. The tree is constructed using yes/no questions that reduce
the uncertainty of predicting the next phoneme at every node and thus
minimize the average entropy at every leaf. However, these methods are
computationally expensive.

Mixture modelsThe phoneme sequence model is built as a mixture of several
component models, each of which is trained on the n-gram statistics of a
particular class of names. The component models can be combined using either
dynamic-weight mixtures at n-gram level [115] or static-weight mixtures at the

complete pronunciation level [116, 117]. The proper noun classes can be
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specified by hand, or can be determined automatically using clustering
techniques. Robustness of parameter estimation for mixture components is an
important issue here as each component model is trained only on a part of the

available data.

Other Techniques

There are various other techniques for language modeling with different properties
that can be used to model phoneme sequences. For instance, while context-free [118] and
unification [119] models do a more realistic job of capturing the distribution of the
phonemes, they are cumbersome and computationally expensive. On the other hand, finite
state [120, 121] models that try to model all pronunciations in a single network provide
more constraints on the distribution, but do not provide as realistic a representation of the

phoneme statistics.

Observations

The performance of the learning systems in accurately classifying letters to
phonemes has been comparable, if not worse, compared to the rule-based systems on
regular English text-to-speech applications. In case of proper nouns, the performance gap
is much wider. This is primarily due to the difficulty in capturing the stochastic
relationships between letters and phones which are inherently more complex for proper
nouns, since the systems require an appropriately representative training data set to
optimally generalize the letter-to-sound inferences.

In practice, most present-day commercial speech synthesizers rely on
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pronunciation rules, morphological analysis and exception look-up to create a
letter-phoneme alignment for the given names. Statistical techniques are then used to
model allophonic variations [122, 123], and to expand the preliminary alignments into
more refined pronunciations [124, 125] for better synthesis of the phonemes into speech
output, and to construct better pronunciation models for automatic recognition.

However, the data-driven properties of statistical systems make them amenable to
automatic updates with new training, and their strong theoretical foundations that have
been successfully applied to most other aspects of computerized processing of speech
warrant further research into their merits for generating pronunciations of proper nouns.
Moreover, all the rule-based systems described in this chapter deal with a single
pronunciation for each input word. Since the stochastic learning systems have the ability
to generate probabilistic estimates of the plausibility of different pronunciations for a
given letter context [126], research in developing algorithms to automatically generate

likelihood-ordered multiple pronunciation lists for proper nouns is particularly attractive.
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CHAPTER IV

PRONUNCIATIONS DATABASE

For a speech recognition / synthesis system to learn to generate a list of proper
noun pronunciations, the most obvious way would be to train the system on audio data that
exemplifies the different pronunciations for each name. However, no speech database that
provides comprehensive coverage of a range of proper nouns exists, and it is extremely
expensive to construct.

A resource that is readily and inexpensively available for most proper nouns
(especially personal names, surnames, places etc.) is an orthographic transcription or
spelling. It follows that an ability to train a voice interface system to automatically
generate multiple pronunciations for a given spelling of the name will be greatly
beneficial. Such a training methodology needs to exploit the statistics of the input data to
capture the inter-relationships between letters and sounds. Therefore, a database that
consists of a large number of proper nouns and their possible pronunciations is needed to
train the system.

Numerous data has been collected anecdotally on the problem of alternate
pronunciations of proper nouns, and there exist some proprietary databases that cover
restricted domains of proper nouns [128, 129]. However, none of this data has ever been
incorporated into a publicly available database. Thus there does not exist an appropriate
development database that provides comprehensive coverage of various kinds of proper

nouns and their pronunciations.
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As a result, a part of the effort expended in this research has been utilized for the
development of a proper noun pronunciations database that has been placed in the public
domain [130] for free distribution. Since a significant number of applications involving
voice-driven interfaces (e.g. medical data entry, directory assistance etc.) involve names of
people, the current phase of the database effort has been focused on surnames. The
database currently consists of 18494 surnames (last names) found in the United States of
America. A total of 25648 pronunciations have been transcribed for these names.

The surnames in the database represent a diverse set of proper nouns with
numerous ethnic origins, source languages and dialectic variations. Therefore, the phone
set spanning the English language is insufficient to provide full coverage of the variation
in pronunciations. Moreover, a phonetic convention that uses ASCII symbols for all the
phonemes facilitates transcription and subsequent processing of the pronunciations. From
this perspective, the Worldbet phonetic convention [8] is an ideal choice for transcription
of the pronunciations. It contains symbols for phonemes that appear in a large number of
languages besides English, and these can be represented in a manner amenable to
computerized processing. The subset of the Worldbet phoneme set used in the database,

along with illustrative pronunciations is listed in Table 1.

Collection And Transcription

Construction of a representative database of surnames that can be compiled with
reasonable requirements on resources of time and expenditure presents some peculiar

problems. While the interesting pronunciation problems occur in the outliers of the
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surname distribution — names occupying the bottom 0.01% of the total, the distribution is
also extremely skewed. The 2000 most common surnames account for about 15% of the

population, while the remaining 85% of the population covers almost 1.5 million

Phoneme Example Phoneme Example
I hee I mill
E bell @ adams
A aanstoos n tump
> allman & alba
U pool u bookman
al pine ei nate
> joy au cloud
oU close iU pure
&r easer p peabody
b baggs t sokes
d hady k culkin
g gaston h hermit
% vail D worthy
T roth S sandler
z rose S nah
Z leisure f fielding
m ames n nez
N golding dz johnson
tS chow I cdahan
or robinson j young
w willis ks fox
&k mcdowell _ baeman

Table 1.

nouns.

A list of phoneme symbols used for representing the pronunciations of proper
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surnames. In our database we have strived to achieve a reasonable mix of common names,
names with infrequent occurrence and names that are known to present problems for
letter-to-sound conversion because of complex morphology or difficult stress assignments.
A significant fraction of the surnames included in this database was obtained from
a study performed at Texas Instruments [37], which developed a small set of
surname-pronunciation pairs to evaluate the intelligibility of text-to-speech synthesis
systems on surnames. A few of the sources which contributed significantly to the list of
surnames covered by this database are enumerated below:
e The 2,000most common surnaméom the Social Security Administration
records compiled in 1964 [131].
» Alist of medium frequency surnamebtained from a random sampling of the
2,000 to 50,000 most common names in the 1964 Social Security
Administration records. This list was provided by M.F. Spiegel, Speech and
Image Processing Research Division, Bell Communications Research.
* Somechallenging surnamethat look for somewhat subtle distinctions among
letter sequences whose pronunciation differs significantly based on the
remainder of the name (e.g. “bos” in “Bostwick” and “Bose”); and/or common
patterns that appear in some foreign names (e.g. “Stein”, “Renoir” etc.). A list
of such names was provided by M.F. Spiegel, Speech and Image Processing
Research Division, Bell Communications Research.
* Surnames that arenorphologically complexand require knowledge and/or

analysis of the morphology of the name for an appropriate pronunciation (e.g.
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“Holinshead” can be mispronounced as “Holin Shead” if the “head”
morpheme is not identified correctly and separated for pronunciation). A
sampling of these was also provided by M.F. Spiegel, Speech and Image
Processing Research Division, Bell Communications Research.

A list of common but interesting namebkat demonstrate the prevalent
problems in generating automatic and accurate pronunciations was also
supplied by M.F. Spiegel, Speech and Image Processing Research Division,
Bell Communications Research. This includes foreign names (e.g.
“Subramanian”), morphologically complex names (such as “Blankenship”)
and names with unusual stress assignment (e.g. “Cadwallader”).

* A number of last names were generated at Texas Instruments as those
belonging to the people working at Texas Instruments Computer Science
Center circa 1990.

» Alist of surnames was extracted from electronic phone books compiled by the
Naval Research Laboratory. Another was created at MIT from people’s user
names on the MIT computers.

» A list of about 2000 surnames not already included in the previous lists was
obtained from the “30000 names” database being developed at the Oregon
Graduate Institute [132].

Automated transcription of these surnames would have required a commercial
rule-based text-to-speech synthesis system. A disadvantage of this approach, besides the

cost involved, was that this would have yielded only a single pronunciation for each name.
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Moreover, accuracy of these pronunciations was an important issue; especially for the
more complex and unusual names. Converting the generated pronunciations to the
Worldbet phoneme set would introduce additional complications in the process.

Therefore, the phonetic transcription was performed by hand where each name
was transcribed multiple times to obtain all the correct pronunciations possible. No effort
was made during this process to align letters or letter n-tuples in the spelling of the
surname to the corresponding phonemes in the pronunciations.

Strict quality control was maintained throughout the transcription process.
Linguistic experts were consulted for transcription of surnames with unusual
characteristics, while automated scripts were employed to ascertain the veracity of the

phone set used and to correct typographic errors.

Phoneme Alignment With Spelling

As described in Chapter Il, the phonetic classification paradigm is designed to look
at each letter of the input surname spelling one by one in context of its nearest neighbors,
and output a phoneme symbol in accordance. Thus for training purposes it is necessary
that there be a phoneme corresponding to every letter in the input spelling [133]. Since in
many cases a single phoneme encompasses a group of letters or vice-versa, such
one-to-one alignment is not possible for the pronunciations in their original transcribed
form.

Situations where a single letter corresponds to more than one phoneme (e.g.

“Max” is transcribed asm @ k $) appear relatively infrequently in the database, and
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Figure 1. The dynamic alignment procedure illustrated for the word “Wright” and nomi-
nal pronunciation9r al t’. The aligned pronunciation is “9ral _ 1.

have been handled by using compound phones (sucksidddr “k s’, so that “Max” is
pronouncedm @ k9).

On the other hand, the cases in which a grapheme (i.e. a sub-word unit or a group
of consecutive letters) of the surname maps to a single phoneme (for instance, “Wright” is
pronounced 9r al t” where the two letters “wr” account for a single phonef®e” ;
similarly the letters “igh” together correspond to the one phonerié)‘are quite
common. To correctly align such groups of letters in the spelling with the corresponding
phonetic expression, a nesilent phonemsymbol denoted as * has been introduced
(therefore, “Wright” now gets transcribed as9ral __ 1).

A dynamic programming algorithm has been developed to perform automatic
alignment of the spelling-pronunciation pairs by introducing such a silent phoneme at

appropriate positions in the pronunciation phoneme sequence. This algorithm assigns
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numeric scores to all possible letter-to-phone maps. A phoneme corresponding to a group
of letters is aligned with one of the letters according to a strategy that maximizes the total
alignment score for the entire word. The other letters are aligned with the blank phoneme.

An example of the dynamic alignment can be seen in Figure 1.
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CHAPTER V

PROPOSED EXPERIMENTS AND EVALUATION

As described in Chapter Il, the experimental framework for evaluating the
maximum likelihood estimation techniques for automatic generation of pronunciation lists
for proper nouns consists of a sliding window input of the context-dependent n-tuples of
letters derived from the spelling of the name, and its classification into the most likely
phoneme symbols. The output phonemes corresponding to each letter in the spelling will
be then used to construct a pronunciation network for the name which represents the
possible pronunciations along with the corresponding likelihood scores.

The surname pronunciations database described in Chapter IV will be used as the
test bed for all experiments and evaluations. This database currently consists of 18494
surnames, which will be divided into two sets as follows:

e A training set consisting of 15000 names and the corresponding
pronunciations will be picked randomly. The surname-pronunciation pairs in

this set will be used to train the statistical models that capture the

letter-to-sound dynamics of name pronunciations. Closed-loop evaluations (i.e.

testing on this data) will be performed to demonstrate the ability of the system

to learn from these exemplars.

* An evaluation sebf the remaining 3494 surnames and their pronunciations
will be held out for open-loop testing (pronunciation generation on previously

unseen names). This will evaluate the ability of the system to generalize its
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knowledge and extend it to unfamiliar inputs.

To cross-validate the results i.e. to ensure that the results are robust to the spurious
artefacts in the training data (such as the order of the names in which the system is trained
etc.), the above partitioning will be carried out three times. These partitions will be
designed to create three mutually exclusive evaluation sets, and correspondingly the

respective training sets will have about 60% overlap.

Error Metrics

Traditionally, a good measure of the performance of text-to-speech conversion
systems has been the voice quality of the output and the intelligibility of the generated
pronunciations [134]. Other factors that influence evaluation of a TTS system include
listener fatigue, cognitive load [135] and response latency [7]. On the other hand, the
effect of pronunciation modeling quality in a speech recognition application is most
apparent from the quality of the acoustic matching and the recognition performance
measured as the word error rate.

The performance of the pronunciation generation system will be measured in
terms of the proportion of surnames for which the system is able to generate at least one
accurate pronunciation. As the problem of text-to-phoneme conversion is essentially
unrelated to the transformation of phonemes to voice output, synthesis-based criteria will
not be employed to evaluate the quality of pronunciations.

For phonemic transcriptions of proper nouns to be useful for synthesis and/or

recognition, it is important to represent the possible variation in the pronunciations of each
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name. Therefore an error metric based on how well the generated pronunciations of a
name span its reference pronunciations in the dictionary is proposed. Since many
surnames have multiple reference pronunciations, and the system also generates multiple
pronunciations for each surname, the performance measurement involves a many-many
correspondence between the reference and hypothesis pronunciations. As a result, this
error metric will consist of three measurements:

» all correct— all the pronunciations in the reference dictionary are generated

by the system.

e some correct— at least one, but not all of the reference pronunciations are
included in the generated pronunciations.
* no correct— none of the reference pronunciations are found to match any of

the pronunciations generated by the system.

The no correctvalue represents the word-level error rate of the system in
generating pronunciations. The higher the numbealincorrect, the better is the
performance of the system. The sumatifcorrectandsome correchames for the output
of the system is an indication of its ability to generalize the letter-to-phoneme

correspondence learnt during training.

Scoring Methodology

The performance of the system in predicting multiple pronunciations for the input
names will be measured automatically using a scoring software that locates the reference

pronunciations in the dictionary and compares them with the pronunciations generated by
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the system. The resulting score file will thus contain each test case proper noun, the
number of reference and hypothesis (generated) pronunciations for it and the number of
correct pronunciations generated. The correctly hypothesized pronunciations and the
incorrect pronunciations can also be listed in decreasing order of likelihood scores. At the

end, the overall scoring statistics — the number of test case proper nouns, the number of
total reference pronunciations, the number of pronunciations generated and the error

statistics as described in the previous section will be calculated.

Initial Results

A set of preliminary experiments have already been conducted to demonstrate the
feasibility of some of the techniques proposed in this research, such as artificial neural
networks, statistical decision trees and a simple table look-up scheme based on the context
interpolation method. These experiments follow the framework defined in Equation (16),
and therefore do not assume any dependence of the predicted phoneme on the previously
identified phoneme (i.e. a uniform distribution is assumed for the occurrence of a
phoneme in the phoneme sequence).

Since the likelihood of the optimal phoneme sequence can be found by simply
multiplying the probabilities of the individually optimal phonemes, no search is required
to determine the best pronunciation for the given proper noun. Since the problem of
modeling the letter-to-phoneme mapping is treated as a pattern classification paradigm,
the phoneme classification error rate is the most significant factor contributing to the

performance metric for this system.
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Phoneme Classification Using Neural Networks

Pronunciation generation systems using Boltzmann machines — feed-forward
backpropagation networks with a stochastic component — were first trained on a small
subset of 1200 surnames using the standard simulated annealing techniques [28] and
tested on a held-out subset of 400 names [136] in the surname pronunciation dictionary. A
single and fixed context length was used, as opposed to a series of contexte.cdneect
pronunciation generation error rate was found to be approximately 50% on an open loop
evaluation, while the phoneme classification error rate was around 20%. When trained on
the full training set, an open loop evaluation on the full test set yielded @rrecterror
rate of 65% and a phoneme classification error rate of 30% [137] using 1-best
pronunciations i.e. a single output phone per letter.

Experiments conducted with neural networks having more than one hidden layer
yielded no significant improvement over those with a single hidden layer, but caused
considerable overhead in terms of the memory and time required for training.

While the neural network system was found to be highly accurate on smaller
phoneme classification tasks, its performance degraded on larger-scale applications [21].
An analysis of the error modalities revealed some inconsistencies with the training
database which have been rectified since then. With the improved training algorithms

presented in Chapter Il and a cleaner database, the performance is expected to improve.

Phoneme Classification Using Decision Trees

A parallel study that explored simple stochastic decision trees to classify letter
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system description % error
Orator dictionary lookup, language identification, rules 93.0d
DECvoice dictionary lookup, language identification, rules 93.0(
TTS progressively coarse dictionary lookup 89.00
Anapron rules and case-based transcription 86.00D
NETtalk NETtalk with block-decoding post-processot 78.00
Neural net multilayered feed-forward network 74.00
Decision tree Bayesian criteria for node-splitting 82.00

Table 2. Comparative performance of various name-pronunciation systems on a 400
surname test set (courtesy [49]) compared to performance of test systems on
a similar test set of 400 names.

strings derived from surname spellings into the corresponding phonemes was conducted
[138, 139]. Using Bayesian estimates of node likelihoods in the tree, a system trained on
5-letter contexts of the names from the surname pronunciations database repusted a
correctname pronunciation error rate of 38% on the evaluation set, and approximately

12% on a closed-loop evaluation [140].
Binary Tree Search / Table Look-up of Likelihoods

A system that generated all possible letter context sequences (up to a fixed length
of context) present in the training data, and for each partial letter sequence stored counts of
all the possible phoneme symbols in a binary search table [141] was developed and trained
on the surname dictionary. During evaluation, for each letter in the spelling of the input
name the longest matching partial letter sequence was found in the table, and the

corresponding phoneme symbol with the maximum count was looked up and output. This
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system, which uses the most elementary form of likelihood maximization, recorded close
to 40% ofno correcterror rate.

A comparative performance evaluation of surname pronunciation generation using
various text-to-speech systems is provided in [49]. Since the training and test data used for
this benchmark is not publicly available, it is difficult to compare the performance of the
algorithms discussed here against this benchmark. However, by selecting test data from
the surname pronunciation dictionary in an analogous manner, the test conditions were
approximated and a similar comparative evaluation was conducted. The results are
presented in Table 2. Even though a valid comparison is not possible, the system

performance was estimated to be comparable to many of the rule-based systems.

Proposed Evaluations

The proposed system designed to generate multiple pronunciations for proper
noun spellings will be trained using the surname pronunciations training database to
model the letter-to-phoneme posteriorilikelihoods using the various algorithms
developed in Chapter Il. The database will also be used to estimate n-gram models for the
phoneme sequence likelihoods.

For evaluation, a dynamic programming search technique [142, 143] will be used
to find phoneme sequences with the maximum cumulative scores obtained by combining
the computed score of the input letter n-tuples against the letter-to-phoneme models, and
the phoneme sequence probabilities. The letter-to-phoneme models explored will be

variations of the stochastic neural network, as well as the context interpolation models. A
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uniform phoneme distribution (i.e. no phoneme likelihoods included in the maximum
likelihood estimation), as well as unigram and bigram models will be used for the

phoneme sequence likelihood.

Evaluation of the Neural Network Model

The neural network system will be trained with letter n-tuples of multiple context
lengths simultaneously. These strings will capture the context information from non to
very near contexts (only immediately adjacent letters) through more distant features (2 or
3 neighbors on each side). The classification will be performed in the following different
fashions.

1. Each input vector will be classified to a single phoneme along with the
associated likelihood estimate, and a stochastic component with multiple
applications of the same input vector will be used to generate the phoneme
variants with different likelihoods.

2. For each input vector, the possible phoneme outputs will be simultaneously
classified using a multi-output network. A threshold value on the likelihood
estimates will be used to prune away poor-scoring alternatives and an N-best
list of phonemes will be output.

3. As avariation on 2 above, the outputs of the network will be weighed with the
a priori likelihood of the corresponding phoneme being mapped to the input
letter sequence. The priori distribution will be generated from the training

data and this weighing will be used in both training and evaluation, or only
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during evaluation.
4. A time-delayed version of the network, that receives a feedback input of the
phoneme predicted for the previous letter string will be implemented to include

the phonemic context in addition to the orthographic information.

Evaluation Using the Context Interpolation Models

Different sets of context interpolation models will be trained on the surnames
database using a range of contexts lengths, and the corresponding back-off weights also
estimated in the process. This will be done by generating all the partial letter sequences up
to the full context length with the same central letter, and keeping counts of the frequency
of occurrence of each phoneme. During the Viterbi search to determine the best phoneme
sequence, these models will be used to estimate the likelihood of the input letter n-tuple
against the models for each phoneme. Then a list of the highest-scoring hypotheses will be
generated as the optimal pronunciations.

Finally, an evaluation of each system output will be performed using the scoring
paradigms described earlier, and the performance of each system analyzed in comparison

with the others.
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