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CHAPTER 1

INTRODUCTION

Automatic speech recognition by machine has been a goal of speech resea

for more than 40 years. In recent years we have seen great advances in speech reco

technology. Some speech recognition techniques have entered into the market pla

been used in applications such as command-and-control, credit-card number recog

etc. However, the performance of automatic speech recognition in conversational spe

still far behind human performance [1].

What makes conversational speech recognition so difficult? How does a mac

recognize speech? The core of a speech recognition system is the decoder, which fin

most likely word sequence given all the knowledge resources. Decoding

resource-intensive and time-consuming process. In this thesis, I am going to inves

the efficient implementations for two kinds of decoding processes — the N-gram deco

and the network decoding. At first, let’s start with the principles of speech recognitio

1.1. Speech Signal, Phones and Features

A speech signal is a variable of time, amplitude and frequency. An exampl

speech signals is shown in Figure 1. The top panel shows the waveform of the sp

signal, i.e the plot of amplitude vs. time. The bottom one is the wideband spectrogra

the speech. Spectrogram is the three dimensional representation of the speech inten

different frequency bands, over time. The wideband spectrogram correspon
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performing a spectral analysis on 15-msec window data using a broad analysis

(125 Hz bandwidth) with the analysis advancing in intervals of 1msec. The spe

intensity at each point in time is indicated by the darkness of the plot at a partic

analysis frequency. If the spectral analysis is performed on 50-msec window data us

narrow analysis filter (40Hz bandwidth), the spectrogram is called the narrow-b

spectrogram [2].

The utterance corresponding to the speech signal in this example is “OKAY H

UM”. They can be further decomposed into phones. The term phone denotes the a

sound that is produced in speaking. The ideal linguistically distinct sound unit is ca

phoneme. In American English, there are about 42 phonemes including vow

diphthongs, semivowels and consonants. The international standard method to rep

phonemes is International Phonetic Alphabet (IPA) [3]. To enable computer represen
O-KAY HI HI UM
Figure 1. A speech signal and its spectrogram
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of the phonemes, it is convenient to code them as ASCII characters. The ARPA

format is usually used. A table shows the IPA and ARPABET representations is incl

in APPENDEX A [4]. If in ARPABET format, the word sequence “O-KAY HI HI UM”

can be represented as “ow k ey h ay h ay um”. Obviously, in Figure 1 the waveforms

the spectrograms of the first phone “ay” and the second “ay” are not the same. Ther

only from the waveform or the spectrogram of the speech, it is impossible to recog

what phones and words are being spoken.

There is another problem for automatic speech recognition. An analog sp

signal cannot be input directly into a machine for recognition. It has to be sampled

converted into a digital signal first. After sampling, certain acoustic features are extra

from the sampled speech data. This is done by the acoustic front-end of a sp

recognition system. These features are then input into the search engine of the s

recognition system — the decoder, for decoding. These acoustic features are the

acoustic data the decoder is seeing. For example, if the phone “iy” is uttered, input t

decoder are a set of feature vectors, each of which has multiple coefficients. Id

speaking, features of the phone “iy” and features of the phone “aa” should be differe

so, our recognition problem would just be an easy pattern matching problem. How

there exists overlap between features of different phones. For example, we select

features of the vowels “aa”, “iy” from the features of a large amount of speech

Alphadigit database [5]. Figure 2 shows the plot of the first two coefficients of tho

features. They are separated into 4 groups by gender and phones. From the figure 2

be seen that there is a significant feature overlap between vowels “iy” and “aa”.
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means, our measurements to speech data are ambiguous. For the features ins

overlap region, recognition errors can occur. Although higher dimensional features c

used to minimize the overlap, the feature overlap cannot be totally eliminated

conversational speech there are great pronunciation variations, speaker variation

noises. All of these make conversational speech recognition very difficult. The task o

speech recognition system is to minimize the recognition error rate.
ale,

-30.0 -20.0 -10.0 0.0 10.0 20.0 30.0
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0
Figure 2. The feature plot of vowels “iy” (blue male, red female), vs. “aa” (green m
black female) from the OGI alphadigit database
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1.2. The Statistical Speech Recognition Formula

How to recognize speech given the acoustic data? Most current speech recog

systems use the statistical method [6]. For a sequence of words ,A is the

acoustic features which the decoder can use to decide which words were spok

denotes the probability that wordsW were spoken given the acoustic featuresA

was observed, the decoder should choose the word sequences  which satisfying:

(1)

According to the Bayes rule, , where is th

probability that the word sequenceW will be uttered, is the probability that the

speaker saysW and the acoustic featuresA is observed. is the average probabilit

that A is observed. Maximizing (1) is carried out with respect to a fixedA, therefore

maximizing (1) is equivalent to find:

(2)

In short, statistical speech recognition is to solve the formula (2) — find the w

sequence which maximizes the probability . This formula determin

the processes and components of a speech recognition system. First, as mentioned

a speech signal has to be converted into a format that the decoder can deal with.

audio front-end is used to extract the acoustic featuresA from the sampled speech data

W w1w2…wn=

P W A⁄( )

Ŵ

Ŵ
max p W A⁄( )arg
W

=

p W A⁄( ) P W( )P A W⁄( )
P A( )

------------------------------------= p W( )

p A W⁄( )

p A( )

Ŵ
max p A W⁄( ) p W( )arg
W

=

Ŵ p A W⁄( ) p W( )
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Secondly, the decoder needs to be able to determine the value of that i

probability of producing acoustic featuresA when the word sequenceW is spoken. Hence

a statistical acoustic model is needed to model the relationship between a word

sub-units and the acoustic features. The most popularly used acoustic model is the H

Markov Model (HMM), which will be described in the next session. The last part in

formula (2) represents the language model, which gives the probability of a wo

a word sequence are uttered. Based on the above analysis, a basic speech reco

system can be constructed.

1.3. A Speech Recognition System

Figure 3 shows a typical speech recognition system. It consists of three m

components: an acoustic front-end, an acoustic model training component and a de

p A W⁄( )

p W( )
Front-end

Decoding

Language Model P(W)

Acoustic Models

Hypothesis

Features A

HMM Training

Input Speech

Acoustic

P(A/W)
Figure 3. Diagram of a typical speech recognition system
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The decoder is the core of the speech recognition system. All other components pr

the resources for the decoder.

The acoustic front-end provides the acoustic featuresA. It uses signal processing

algorithms, such as Fourier transform, window, cepstrum, derivative etc. to extrac

features from the sampled speech data [7]. The speech samples are processed in fra

typically 10-15 ms duration and overlapping windows are usually 25-30 ms long.

most popularly used features are the Mel-frequency cepstral coefficients (MFCC)

energy, along with their first and second order temporal derivatives. Typically, each

feature vector is of 39 dimension. Refer [8] for the implementation of the front-end.

The training component provides the acoustic models which hold the knowle

of . The standard acoustic model is the Hidden Markov Model (HMM). A

HMM corresponds to a sub-word unit such as a phone (context-independe

context-dependent) or a syllable. Each HMM consists of 3 or 5 states where each

models the onset, middle and end of the phonetic context respectively. Figure 4 s

some examples of the various HMM topologies used for acoustic modeling in sp

p A W⁄( )
Figure 4. Some typical HMM topologies used for acoustic modeli
— a) typical triphone b) short pause c) silence.
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recognition. As shown in the figure, each state can transit to the next state or loop ba

itself. This represents that the length of uttering a phone can vary. There is a stati

model of the weighted mixtures of multivariate Gaussian distributions associated

each state. The input feature vectors are evaluated by these statistical models and p

the probability . Originally, the statistical models of the states of HMMs a

unknown. This requires training to estimate the parameters of the statistical mo

including the mean, variances and the mixture weights of the Gaussian distribut

Accurately training HMMs needs a large amount of speech data from known speech

commonly used training algorithms are Viterbi algorithm and Baum-Welch forw

backward training algorithm [9]. Theoretically speaking, the HMM of a certain phone,

“aa” should give a higher probability when evaluating the features of the phone “aa”

evaluating other phones. Therefore the correct word sequence would have the h

probability and be correctly recognized. However, this is not always true becaus

acoustic models being trained can not be perfect. In addition, the problems addr

before such as pronunciation variations, feature overlap, noises etc. will also res

recognition errors.

Another knowledge input to the decoder is the language model (LM). T

language model constrains which word can follow which word and provides

probability. It integrates linguistic knowledge, domain knowledge and any other perti

information to constrain the word sequences being recognized. Since the probabilit

word being spoken often depends on the words spoken previously, this gives rise

N-gram LM. In the N-gram LM, each word can follow each other, and the probability

p A W⁄( )
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the current word only depends on theN-1 previous words. Typically, one-pass decodin

using an N-gram language model is called N-gram decoding. N-gram decoding is

resource-intensive and time-consuming. Sometimes an explicit network can serve

LM. This network can be a grammar that defines the structure of language used i

recognition task, or a word graph generated by a previous recognition pass. The ne

limits the search space to a relatively small amount of possible word sequences. On

word sequences in the network can be recognized. Decoding using the explicit netwo
Sentence level

Hello

Jon

Joe

l ow jh
ow

ao n

ow-jh+ao

Hello Joe
Hello Jon

Word level

Phone level
(Lex tree)

(Word graph)

Model &
state level
Figure 5. Hierarchical representation of the search space
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the high level constraint is called the network decoding. The N-gram decoding an

network decoding are the focuses of this thesis.

After obtaining speech features, acoustic models and language models, w

ready for decoding. Decoding is to search the most possible word sequences give

acoustic features. The search space is a large network composed of a hierarc

sentences, words, phones and states of HMMs. Figure 5 displays the hierarchical str

of the search space. The number of possible word sequences is quite large even for

vocabulary task. Therefore for large vocabulary speech recognition (LVCSR)

exhaustive search cannot work and an efficient search paradigm needs to be emp

Here, let me give a brief introduction on the typically-used search algorithm — the Vit

search algorithm.

1.4. Viterbi Search Algorithm

Viterbi search and its variant forms belong to a class of breadth-first dyna

programming techniques. Here, all hypotheses are pursued in parallel and grad

pruned away as the correct hypothesis emerges with the maximum score. In this ca

recognition system can be treated as a recursive transition network composed of the

of HMMs in which any state can be reached from any other state. The Viterbi se

algorithm builds a breadth-first search tree out of this network by the following steps

1. Generate a list of all states  for each frame  of the utterance.

2. Initialize each list by setting the probability of the initial state to 1 and the r
to 0.

S t( ) t
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3. For each state ,

for each possible transition from  to some state

• If the list for is uninitialized, initialize it with the transition score

and a back-pointer to .

• Else update the score for  only if this transition gives a better path score

4. Repeat step 3 with .

• If , the utterance duration, then trace back to get the best path.

Viterbi search is time-synchronous,i.e., at any stage, all partial hypothese

generated during the search terminate at the same point in time. Since these hypo

correspond to the same portion of the utterance, they can be directly compared with

other. Viterbi search is impractical for even moderate-sized tasks because of the larg

of the state space. Therefore, other constraints such as language models and p

techniques have to be applied to reduce the search space.

1.5. ISIP Speech-to-Text System

All the work in this thesis is based on the Institute for Signal and Informat

Processing (ISIP) public-domain speech-to-text (STT) systems [10]. I am one of the

members of developing and enhancing them. There are two notations about the ISIP

systems. The current ISIP STT system, which is publicly available, is referred to a

prototype system. This prototype system was started in 1998, and has been continu

enhanced. Now it has become a complete recognition system, and included the follo

s S t( )∈

s s' S t( )∈

s' p s' s⁄( )
s

s'

t t 1+=

t N=
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modules: an audio front-end, Baum-Welch (BW) training, Hidden Mark

Model-based (HMM) state-tying, and a hierarchical decoder based on the Vit

algorithm. The functions of the prototype decoder include network decoding

word-graph rescoring), word-graph generation and N-gram decoding etc. I have wo

on developing the front-end, the decision tree-based state-tying and the networ

N-gram decoding parts of this prototype STT system. The N-gram decoding algorith

the focus of Chapter 2.

The other ISIP speech recognition system is called the production system

goal is to combine our expertise in decoding algorithms and C++ programming langu

make the new system highly generalized and flexible, and make it easier to use

enhance. The production STT system is based on our extensible and flexible

Foundation Classes (IFCs). The ISIP Foundation Classes and software environ

provide researchers a friendly and stable environment, save their time to rewrite

common functions and data structures. The IFCs consist of system, I/O, math,

structure, algorithm, signal processing, and many more such useful classes. We hav

developing IFCs for over one year. They construct the solid ground for our produc

decoder. The development of the production decoder started from the beginning o

year. As the first step, we added the network decoding capability into the produc

decoder. The preliminary experiments of the production-format network decoding

shown promising results comparing with the prototype system. The network decoding

some design issues about the production system will be talked in Chapter 3.
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1.6. Organization of Thesis

The goal of this work is to investigate the correct and efficient implementation

the network and the N-gram decoding processes. The work is based on the ISIP pro

Speech-To-Text system and the ISIP foundation classes.

CHAPTER 1 gives an introduction to the speech recognition problem. It prov

basic knowledge about the components of a speech recognition system and the de

algorithms.

CHAPTER 2 describes the N-gram decoding based on our prototype decod

focuses on how to apply N-gram language models into decoding. Some prec

experiences we gained through our work are addressed. CHAPTER 3 talks abo

generalized network decoding and its design in our production decoder. This is the

step for us towards building the production STT system. The implementation is base

the ISIP foundation classes (IFCs). In CHAPTER 4, both systems are evaluated.

CHAPTER 5 concludes this thesis and points out some future work.
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CHAPTER 2

DECODING USING N-GRAM LANGUAGE MODEL

In chapter 1, we have looked at the typical structure of a speech recogn

system. Acoustic models and language models (LM) are two knowledge resources

into the decoder. For large vocabulary continuous speech recognition (LVCSR)

possible word sequences are extremely large. Exhaustive search is impossible. Ther

language model is required in order to constrain the search space during the dec

process. N-gram language model is the dominantly used language model since it pro

a relatively compact representation of the linguistically probable word sequences

N-gram LM can be applied into several types of decoding. This chapter deals with t

types of decoding which use N-gram language models.

2.1. N-gram Language Model

Every language consists of a sequence of words. A language model is to pr

the probability of next words given preceding words. An N-gram language model use

history of the immediately preceding words to compute the occurrence probabili

of the current word. The value of N is usually limited to 2 (bigram model) or 3 (trigr

model) for feasibility. If the vocabulary size is words, then to provide compl

coverage of all possible word sequences the language model needs to consist o

N-grams (i.e., sequences of words). This is prohibitively expensive (e.g., a bigram

language model for a 40,000 words vocabulary will require bigram pairs),

n 1– P

M

M
N

N

1.6 10
9×
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many such sequences have negligible probabilities. Obviously, it is not possible fo

N-gram language model to estimate probabilities for all possible word pairs. Typicall

N-gram LM lists only the most frequently occurring word pairs, and uses a bac

mechanism to compute the probability when the desired word pair is not found.

For instance, in a bigram LM, given , the probability of the next word is :

(3)

where  is the back-off weight for the word ,

 is the unigram probability of the

The backoff weight  is calculated to ensure that the total probability:

(4)

Similarly, for a trigram of words ,

(5)

N-gram language models have been effective in improving the efficiency

LVCSR significantly. However, even though N-gram language models store only a s

subset of all the possible sequences of words, they are still significantly large for

vocabulary applications. The language model score calculation is quite an expe

process in N-gram decoding. Many systems have been devised which try to improv

efficiency of N-gram decoding [14, 15]. In [16], an entropy-based pruning algorithm

wi wj

p̂ wj wi( )
p wj wi( ) wi wj,( ) exists

b wi( )p wj( ) otherwise



=

b wi( ) wi

p wi( ) wi

b wi( )

p̂ wi wj,( )
j

∑ 1=

whwiwj

p̂ wj whwi( )
p wj whwi( ) wh w, i wj,( ) exists

b whwi( ) p̂ wj wi( ) otherwise



=

N
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been applied to prune the language model size while not losing much informatio

addition to N-gram LM, statistical language models [17] are also being investigate

some universities. But so far, they are still not as popularly used as the N-gram LM.

2.2. Applying N-gram LM into Decoding

The usage of an N-gram LM in decoding is to provide the probability of one w

following the others. How to apply this depends on the type of decoding. According to

number of decoding passes, there are two types of decoding: one-pass decodin

multi-pass decoding. That means, the final best hypothesis may or may not be obt

from a one-pass decoding. An N-gram LM can be used directly as the constraints

search space. In this case, the search network is a fully connected word network con

of all the possible combinations of word sequences. The word sequence probabilitie

restricted by the N-gram LM. If only the one best hypothesis is generated by searc

though such a network, the decoding is called one-pass N-gram decoding. An alter

to the one-pass N-gram decoding is the word-graph generation. In the above pro

instead of keeping only the 1-best hypothesis, it keeps multiple hypotheses at each

end, and outputs them as a word graph. This word graph contains a set of nodes an

that form a large number of possible word sequences. There are both language

score and acoustic model score associated with each arc. The word graph then can b

in a second-pass decoding as the language model constraints. The second-pass dec

also often referred to as the word-graph rescoring or network decoding. Since the

graph is much smaller than the fully connected word network, word-graph rescorin
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much more efficient than the one-pass N-gram decoding. Although the proce

word-graph generation is time-consuming, once a word graph is generated, it ca

rescored using more complex acoustic models and language models. For example,

first pass, we can use the word-internal triphone HMMs and bigram LM to generate

word graphs. In the second pass, we rescore the word graphs using cross-word tri

HMMs and a trigram LM. This will give an overall better performance in terms of bo

speed and accuracy. In word-graph rescoring, to obtain the word sequence probab

we can either use the original LM score associated with the graph arcs which

obtained during word-graph generation or use N-gram LM again. In the latter case

only use the graph structure while throw away the language model score associate

graph arcs. The word sequence probabilities are calculated from the N-gram lang

model.

In short, N-gram language models can be used in one-pass N-gram deco

word-graph generation or word-graph rescoring. In all the above cases, the commo

is how to efficiently apply the LM into decoding. Efficient N-gram decoding is ve

difficult. It is a trade-off between accuracy and speed. The difficulties involve how

efficiently store and look up the LMs, calculate the LM scores and correctly apply th

2.3. N-gram Organization

Because of the large amount of N-gram models, the representation of N-g

model data structure has direct effect upon the memory size and the run-time spee

storage structure should occupy less memory and be easy to look up.
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Use a trigram LM (N=3) as an example. The unigrams (1st order gram) in this

are just single words. The bigrams are word pairs, whose second word follows the wo

unigram. So we can group all the words following the same 1st word together, point

to the unigram word, and only store the second word and its corresponding big

probabilities. For trigrams in this LM, it can be stored similarly. All the third word

following the same bigram are grouped together. Only the third word is stored, hav

pointer to its preceding bigram. Figure 6 shows a data structure organized a

description above. Each order N-gram is stored as a list. Each list is an array of N-

nodes. Each unigram node points to the head of a set of bigram successors, an
word, nextgram,
score, backoff

word, null,
score, 0

Unigrams Bigrams N-grams

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, nextgram,
score, backoff

word, null,
score, 0

word, null,
score, 0

word, null,
score, 0
Figure 6. N-gram language model storage structure
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bigram node points to the head of its trigram successors. An N-gram node ha

following components: word identity, N-gram probability, a backoff weight, and a poin

to the head of the next order N-gram successors. The word here only records the las

of an N-gram. This scheme can save a large amount of space to store the words. F

score calculation, the first word is found first, then the next. If the word sequence is

present in the explicit LM, backoff scheme is used to calculate the LM score.

LM lookup can be speeded up greatly if an index instead of a string is use

represent the word identity in the above data structure. In this way, when looking up

sequence in the LM, no string comparison is needed. This will significantly improve

LM lookup speed, since integer comparison is much faster than string comparison

The storage can be further minimized if the highest-order N-gram list is distinguished

others, because the highest-order grams do not have backoff weights and pointers t

next N-gram list. In addition, a lookup table can be used to minimize the total cost to s

the LM and backoff score [18]. That means to quantize those float numbers and limit

to a certain amount.

2.4. N-gram Histories

Understanding N-gram histories is a key to correctly apply N-gram LM in

decoding. During decoding, when two paths reach the same point, do we merge th

propagate them further as separate paths? The answer to this question is simple:

them when they have the same history. If so, only the path with a higher score can su

However when the search space involves words, phones and states, the path hi
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become confusing. In decoding using N-gram language models, at a cross point, if th

previous words (nodes) in the paths are all the same, we regard these two paths ha

same history at the word level.

Path merging has a profound impact on the computing resources (particu

memory) required for LVCSR. For decoding using a bigram LM, there is only one w

history. It is easy to handle. For trigram and above LM, it needs to pay attention to ho

handle the N-gram histories. For example, considering the word-graph rescoring pro

shown in Figure 7. The length of the history plays a major role in whether paths

merged, and how efficiently we can implement the merging process. In this word gr

there exist paths “YOU HARD ROCK”, “A HARD ROCK” and “ARE HARD ROCK”.

Each reaches the point “ROCK”. The decision to merge them depends on the length

history and/or the type of LM (bigram, trigram, and network will produce differe

results). If a bigram LM is used, at the point “ROCK”, only the previous one word ne

to be considered. Therefore when these three paths reach “ROCK”, since the pre
Figure 7. An example of a word graph that demonstrates how the LM is applied when
coring paths through this graph.
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word for “ROCK” in these three paths is at the same graph vertex (e.g., “HARD”), o

one path can survive and be propagated further. On the other hand, if a trigram LM is

the previous two words in the path have to be considered. Therefore these three path

different histories and cannot be merged. An easily made mistake would be

considering enough history words. This was also an error in the system we submitte

the Hub-5E Eval’2000 [12], in which our History object only has a pointer to the previ

one word/node. For the bigram case, this happened to be correct. But for the trigram

paths with different histories, such as “YOU HARD ROCK”, “A HARD ROCK”, wer

treated as having the same history. This resulted in a search error: extra path me

over-pruning and hence an incorrect likelihood calculation.

In our Hub-5E Eval system, only a bigram LM was used in the first pass

word-graph generation, so this problem did not affect the resulting word graphs. How

in the second pass, these word graphs were rescored with a trigram LM. This

essentially negated the potential benefits of using a trigram LM. This error was corre

by maintaining the previous N-1 words in the History object rather than only the prev

word. Depending on the decoding types (N-gram decoding or word-graph rescoring

previous words may come from a string word, a unigram node, or a word-graph n

which has a word entry. One thing to mention is that, even in N-gram decoding mode

can not just use a pointer to a lower order N-gram node as the history thinking that i

give you the previous N-1 words. For example, if we are doing trigram decoding, why

use a pointer to a bigram as the history? The reason is that not all word pairs have
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corresponding bigram node! That is also why the N-gram history issue is intuitiv

simple, but needs great attention to handle.

Now in our ISIP prototype STT system, the trigram LM scores are correc

applied. For the system we used for Hub-5E 2000 evaluation, fixing this bug reduce

WER by 0.5%. However run-time memory usage was increased by almost 30%. The

of WER with this correction was not as significant as we had expected. The reasons

• The language mode we used, which was provided by SRI, had been he
pruned [20]. The OOV (Out Of Vocabulary) percentage is high.

• The word graphs we generated in the first pass have a very high error rat
in the second pass, even the trigram is correctly applied now, its effect can
be fully accounted. The experiment results will be provided in Chapter 4.

2.5. N-gram Lexical Tree

In LVCSR, the lexicon is often organized as a tree since many words share

same start phone, and search the first phone of each word takes the most effort [21

tree-structured lexicon is called lexical tree. It can save a lot of computation and sto
k

aa

r

h

ey

r

ax

d

d

CARD

taa

HARD

HEART

HART

A

Figure 8. An example of a lexical tree
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An example of a lexical tree is shown in Figure 8. A lexical tree is used to generate p

hypotheses. Each lexical node contains a list of the words on that path covered b

monophone held in the lexical node. The dark circles represent starts and ends of w

In order to compute LM scores, each lexical tree also needs to maintain its word hist

The scores for word transitions are computed based on the position in this lexical tre

the current word histories. A problem of lexical tree is that the word identity is unkno

until a word-end lexical node is reached. When there is a transition from to ,

word is unknown until the end of the lexical tree. Therefore the LM score can no

applied immediately upon the transition. That means pruning based on language m

can not be applied as early as possible. An LM lookahead [22] technique is devis

overcome this problem. The highest language model score at each lexical node is ac

based on the current word(s) and the history word(s), and used as the LM score a

point.

Typically, in lexical tree-based searches, the LM scores are stored in the le

tree nodes. At each lexical node, a list of next words is maintained. When a word e

reached during the decoding process, the decoder constructs a new lexica

encompassing all the possible next words that are used to generate the next

hypotheses. For word-graph rescoring, constructing new lexical trees is necessary

the possible next words are different for each word, and the number of possible next w

is relatively small. However in N-gram decoding and word-graph generation, each

(except the sentence start word) can be followed by any other word. So for l

vocabulary speech recognition, the lexical tree would be very large. Even a few cop

W1 W2

W2



25

that

that

the

many

e of a

on in

xical

node,

an be

at the

ched,

the

eeds to

kely

o we

likely

w to

or.
the complete lexical tree will quickly overshoot the available memory. Since we know

the N-gram lexical tree structure is the same for all occurrences of each word, and

only the LM scores vary according to their N-gram histories, making many trees with

same structure is a waste of both time and memory. Therefore, instead of making

copies of the lexical tree, we reuse the same N-gram lexical tree for each occurrenc

word, disconnect the history words and LM scores from the lexical tree.

A data structure called instance is introduced to represent the unique positi

the search space which is determined by the corresponding history word(s), the le

node and the phone (the lexical node). LM lookahead is performed at each lexical

and the highest language model score is stored in the instance. Two instances c

merged if they have the same word histories, the same lexical node and phone, i.e.

same position in the search space regardless of time. Now when a word end is rea

this word and its N-2 previous history words (if any) will become the new history for

coming word. Since the instances are reused in the decoder, the score calculation n

be done only once. This minimizes the total access times to the N-gram LM.

2.6. Pruning

To save the computation and memory, it’s imperative to stop those less-li

partial paths from growing further. That is also the reason we use LM lookahead, s

can apply severe pruning earlier. The idea of pruning is to only prune away those un

paths. However it’s possible that a path with a lower score in the early frame may gro

be the best path later. If the best path is pruned way, it will result in a recognition err
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There are many pruning techniques [23]. We used the followings in our deco

The first one is the well-known beam pruning technique. A path is pruned away if its

score is below the current best hypothesis score minus a specified beam width.

width can be different at each level in the search hierarchy. Usually heavier pruni

applied at word end because there are much more possible next words at word en

possible next phones at phone end. Secondly, we set a maximum number of words a

at each frame. This is also to avoid fan-out at the word end. Thirdly, instance pruni

applied at each frame, which is limiting the number of model instances active at a g

time. The instances are sorted according to their scores. Only the instances having

scores can survive. Pruning has dramatic impact on the search speed and memor

The trade-off is accuracy. Heavy pruning with less decreasing in accuracy is importa

efficient N-gram decoding and word-graph generation.

In all, N-gram decoding is a complicated and resource intensive process. Alth

our decoding and pruning approaches improved the decoding efficiency and accurac

need to be and can be improved further. Also we realized it is important for a sp

recognition system to be extensible and flexible, because it often happens that we fo

flaw in our original design, or we wanted to add new modules to the system. F

public-domain speech recognition system, this need is more imperative. There

developing a more generalized and flexible system while keeping its efficiency is our

objective. We started to develop our production speech-recognition system in spring

As the first step, we developed the network decoding in a new fashion. The next chap

going to show how to design such a decoder.
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CHAPTER 3

NETWORK DECODING

3.1. Network Decoding

The network here means a word graph, i.e. a network of words. It is a subnet o

fully connected word network, as the one in N-gram decoding, and provides constrain

search space at the word level. This network could come from the first-pass word-g

generation as mentioned in the last chapter. If so, this second-pass network decod

often called word-graph rescoring. The network could also be constructed by s

grammars. For example, a network of telephone numbers should follow some

(grammars) such as area code, local phone number, to make the phone number ge

by this network valid.

As mentioned in Chapter 1, each word can be separated into phones. Each

can be modeled by a Hidden Markov Model (HMM). An HMM consists of several sta

associated with some statistical distributions. The final search space is actually com

by the expansion of these hierarchical networks. Fig. 9 illustrates the expanded s

space up to the phone-level. The term “triphone” denotes a context-dependent p

which has one left context and one right context. A phone without context is ca

monophone. A word-internal triphone denotes that the contexts of a triphone are rest

within a word. On the contrary, if its contexts can come from neighbor words, the triph

is called a cross-word triphone. Of course, for each phone, either monoph
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word-internal triphone or cross-word triphone, it needs corresponding HMM to mod

The parameters of HMMs (mean, variance, and/or mixture weights of the statis

models) came from training procedure [24]. The input speech features are evaluat

each state of an HMM. This produces the probability of those states generating

features.

The decoder is to search the best match to the speech features among many

It’s like there are many path markers travelling from the start point to the end point. A

marker remembers which path it came from, and represents a unique path. The total

time is fixed (the length of data). While which route a path marker goes though and

long a path marker stays at each state is not fixed. Path markers can split and merg

example, at time t, a path marker is at state s. At time t+1, the path marker may s

state s or go to the next state. Therefore the marker splits into two markers, which

have different routes from now on. Their path scores are the accumulated scores ob

by evaluating the speech features at a certain state and a certain time. If two path m

arrive at the same state at the same time, only the one with a better path score c

further. If a path marker arrives at the end of all the states belonging to a word, it will

again and enter into next words as restricted by the word graph. At that point, lang

model scores will also be accumulated into the path scores. Finally, time ends. Many

markers reach the end. Among those paths, the one with the highest score wins, b

along this path it’s most likely to produce the speech features matching the input one

states, phones, and words along the best path construct the final hypothesis. No

during the search process, there may exist two or more path markers that reac
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Figure 9. An example of expanded network. (a) the word level network (b) the pronu
ations for the words involved (c) The network expanded using the corresp
ing word-internal triphones
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triphone hh-aa+r at the same time. However, they cannot be merged into a single

because they belong to different words in the network at the word level.

The network shown in the above example consists of only three levels: w

phone and state. In fact, the number of hierarchies of a network is not only limited to t

It could also have sentence level, syllable level etc. No matter how many levels it ha

matter what each level is, the search space is always a hierarchical network. Each lev

one or more graphs or subgraphs. The search space can be expanded down to the

level. Search is hence performed on the expanded network. Therefore the dec

process can be viewed as a general search process over the expanded netwo

production decoder is designed to reflect such a general decoding process. It is ba

the ISIP Foundation Classes (IFCs).

3.2. ISIP Foundation Classes

Not many researchers and students can have their chances and time to write

own decoder, because there is a huge overhead before they can get to the point of w

the core decoding algorithms. They have to deal with IO with various files, such as

audio file, lexicon, states file, models file etc. They have to worry about the data struc

the command line parsing etc. Therefore we aim to provide users and ourselves an

and powerful software environment to work on. This is the ISIP foundation class (IFC

IFC is a highly object-oriented hierarchical package [25]. It is built fro

bottom-up. It consists of system, IO, math, data structure, shell etc. libraries. Memo

managed by a center MemoryManager class. An important class in the IO library is
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(Signal Object File). Sof is a unanimous file format used across all the objects in IFC

objects can read and write themselves into Sof file. The function format is consis

across all the classes, hence IO becomes very easy. The data structure libra

commonly used data structures such as node, linked list, hash table, graph, etc. F

shows the hierarchy of ISIP Foundation classes. Below the algorithm library, the cla

are not speech recognition specific. They can be used for general-purpose program

In the algorithm library, we developed algorithms useful for speech recognition, suc
HMM PCA SVM DT

AudioFile AudioDevice

DoubleLinkedList<> Stack<> Graph<>Vector<>

MVector<> VectorLong MMatrix<> MatrixDouble

MScalar<> Long Double

Integral SysString SysChar Error File Console MemoryManager

String

System

I/O

Math
(scalar, vector, matrix)

Data Structures

Multimedia

Pattern Recognition

Sof SofSymbol SofList SofParser

HashTable<>

AutoCorrelation FilterBankAmplitude LinearPrediction FourierTransformAlgorithms

FrontEndSignal Processing

DecoderTranscription LMASR

Search

Window

Features

HierarchicalSearch SearchLevel SearchNode History Trace

GaussianModel MixtureModelStatistics

Shell CommandLine Filename NameMap Parser Sdb

StatisticalModel
Figure 10. Hierarchy of ISIP Foundation classes
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FourierTransform, LinearPrediction and Cepstrum. Users could use lower level IFC

develop their own algorithms also. For reading / writing audio files in any format, the

the AudioFile class. The statistics library is used for evaluating data based on stati

model. There are many other such useful classes. They are very easy to use and m

On the top of IFC, it is the search library, which is the core of the production spe

recognition system. With all the low-level modules handy, we can focus on the deco

algorithms. With the experiences we gained during developing the prototype system

are able to incorporate the efficiency and generalization issues into the design o

production decoder very early.

3.3. Production Decoder

The search library is to implement a generalized hierarchical search algori

HierarchicalSearch and SearchLevel are the two main classes in the search li

HierarchicalSearch consists of any number of SearchLevels, such as a sentence

word level, phone level and a state level. Every SearchLevel is essentially the same

others. All of them can be represented by graphs. At the sentence level, it has a se

graph. At the word level, it has one or more word graphs, each of which is the subgra

a sentence in the sentence graph. At the phone level, there are some phone gra

represent the pronunciations of each word. Finally at the state level, the HMMs are

graphs and the subgraphs of states. Each SearchLevel holds one or more sub-graph

level. Connecting these graphs builds the entire search space. We store i

Graph<SearchNode>, where SearchNode is an embedded object inside the Graph
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Each SearchLevel also holds all the search symbol strings at that level. Thus i

Graph<SearchNode>, each SearchNode can be referenced by the symbol index ins

a string symbol. This avoids string comparisons and makes fast decoding possible

SearchNode object also has a pointer to a StatisticalModel object. Thus, data eval

can be done at each SearchNode at any level.

The network decoding has been implemented in the production decoder.

search graph is expanded dynamically at the run time. A path marker is propagated

the top level down to the bottom level, then propagated up. A path marker splits to se

path markers if different paths are taken. The path score is updated during propag

Viterbi pruning takes place at the lowest level after evaluating each statistical model.

markers remember their histories. Only path markers with the same history ca

compared and merged. The path marker with the best score can be propagated f

others are deleted. After traversing up, pruning can also be applied at each search l

The decoding algorithm is the same as the one in our prototype system. It’s s

hierarchical Viterbi decoding algorithm. We have made the context-independent net

decoding working. Its results could fully match the prototype decoder. The code in

production decoder is more modular and user friendly. It is easier to modify and ex

As the next step, we will do more complicated tasks, such as N-gram decod

word-graph generation. In those cases, fully expanding the hierarchical netwo

impossible. More efforts are needed to manage the size of the search space.

concerns are:
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• How to represent a lexical tree? In a lexical tree, many pronuciation gra
merge into one graph. This shared graph has to be generated dynamicall

• In N-gram decoding, how to represent the word graph? Certainly, storin
fully connected word graph inside SearchLevel is not a good choice.

• If using monophones, at the phone level, the subgraphs are just
pronunciation graphs. What if using word-internal or cross-word triphones
those cases, the phone graphs are complicated and not fixed. They need
generated dynamically.
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CHAPTER 4

EVALUATION

4.1. Baseline Systems

To build a baseline word-internal

triphone system, we trained 12-mixture

word-internal triphone models from the

scratch on the WS’97 training set [28], and

rescored using word graphs generated from

a bigram language model. The decoding

results are shown in Table 1. Our performance was slightly better than HTK’s [

performance under similar conditions. HTK is a commercially available spe

recognition system developed by Cambridge University. It is known to have a lea

recognition performance. So we felt confident that our acoustic training and word-g

rescoring were fully debugged and working well.

WER ISIP HTK

Substitutions 32.3% 32.2%

Deletions 14.7% 14.8%

Insertions 2.6% 2.9%

Overall 49.6% 49.8%

Table 1. A comparison of a word-internal
system with a similar HTK system
 (a)

WER ISIP HTK

Substitutions 31.0% 30.8%

Deletions 10.0% 11.3%

Insertions 4.1% 3.8%

Overall 45.1% 45.9%
(b)

WER ISIP HTK

Substitutions 28.5% 29.5%

Deletions 9.2% 9.4%

Insertions 4.0% 3.9%

Overall 41.7% 42.8%

ted
Table 2.  Performance (WER) of a cross-word system (a) using word graphs genera
from a bigram LM, and (b) using word graphs generated from a trigram LM
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We also generated cross-word triphone models, and rescored them using

graphs generated from a bigram and a trigram language model respectively. De

results are shown in Table 2. The WER of our cross-word systems are about 1% b

than HTK. For the trigram case, we obtained a WER close to 40%, which is the

number we ever obtained on this particular database.

4.2. A Complete Speech Recognition System

The system below was submitted for Hub-5E 2000 evaluation. It included

following features:

• Front-end: standard 39 MFCC (Mel-frequency Cepstrum Coefficien
features.

• Acoustic models: 16-mixture cross-word triphones models trained on 60 h
of SWB-I and 20 hours of English Call Home data. States were tied us
phonetic decision trees.

• Language model: a bigram and a trigram backoff language model w
provided by Andreas Stolcke at SRI [20]. They were trained fro
Switchboard, Callhome and Broadcast news. The full trigram LM generate
SRI has 3,246,315 bigrams and 9,966,270 trigrams. They were pruned u
SRI’s entropy-based method [16] to eliminate bigrams and trigrams w
negligible probabilities. The trigram LM we eventually used contained 13
trigrams, 320K bigrams, and 33K unigrams. The bigram LM simply exclud
the 138K trigrams.

• Lexicon: we expanded our standard 22K WS’97 test lexicon to include m
new words found in SRI’s lexicon. This increased the size of the lexicon
over 33K entries.

• Recognition: performed a two-pass decoding. The first pass is word-g
generation using word-internal triphones and a bigram language model
second pass is rescoring these word graphs using cross-word triphones
trigram language model.
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In the Hub-5E evaluation, our system achieved a 43.4% WER on the SWB pa

the dataset. However this number is not competitive with the results from other sites

After the official evaluation, we fixed several bugs mentioned previously, including

one about N-gram histories. We reevaluated our system on the SWB part of the Hu

2000 dataset and decreased the WER to 42.9%. I felt confident that the bug was fixe

the trigram LM is properly applied into decoding. But 0.5% is not the substan

reduction in WER we expected. One of the reasons for this is that the word graph

generated appear to have an excessively high word graph error rate — 19.8%. The

the language models could not affect much on rescoring those word graphs. To im

the accuracy of word-graph generation, we need to look into the word-graph gener

algorithm further. We also need to improve our acoustic features and models. It ap

that in the Hub-5E evaluation, our system was much simper than the systems from

sites. For example, the systems from Cambridge University and SRI used more

5-pass decoding. They also used more techniques in their feature extraction and

training. Another fact is that the coverage of the language models we used is not

enough. By comparing with the reference transcriptions, we measured the OOV (O

Vocabulary) percentages of the unigrams, bigrams and trigrams in the trigram LM

used. For unigrams, the OOV percentage is 0.6%; for bigrams, the OOV percenta

14.4%; the OOV percentage of trigrams is 64.5%. If a unigram is out of vocabulary a

happens to be the correct word, it surely results in a recognition error since the de

does not know this word at all. If bigrams or trigrams are OOV, they will be backof

unigrams or bigrams.
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4.3. Production System

We have performed some preliminary experiments on the context-indepen

network decoding of the production decoder on TIDIGITS task [31]. The network

small fully connected network composed by numbers “OH, ZERO, ONE, TWO

NINE”. In our experiments, the results and path scores of the production netw

decoding could fully match the prototype system. This shows that the algorithm in

production decoder is functioning correctly. Currently the speed of the production dec

is about twice slower than the prototype system. This is not a surprise since ther

overhead for generalization. We are looking at the speed problem and will overcome

the early stage of design and development.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis introduced the principle of speech recognition; described N-g

decoding and network decoding in detail. The work was based on our ISIP public-do

Speech to Text (STT) systems. The prototype ISIP STT system has been developed

full-fledged system, including an audio front-end, an HMM training module, an

hierarchical decoder. The decoder is the core of the speech recognition system.

network decoding (word-graph rescoring), word-graph generation and N-gram deco

etc. functionalities. Particularly, this thesis focused on how to apply N-gram langu

models into the decoding process. Language model storage, N-gram history han

search space organization and pruning are the key issues towards an efficient N

decoding. Through developing and debugging the decoder, we got deeper understa

about the algorithms and some efficiency issues. With the enhancements we mad

fixing some crucial bugs, the system performance has been improved and achiev

best number we got in internal experiments. Our systems are competitive to the

systems under similar conditions. For example, a WER of 41.7% was achieved u

cross-word models and rescoring word graphs generated by a trigram language mo

We are confident about our implementations of the decoding algorithms

improve the overall performance of our system, we need to introduce new technique

the recognition systems, such as gender dependent models, VTLN (Vocal Tract Le

Normalization) [32], maximum likelihood linear regression (MLLR) [33] for speak
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adaptation. Improving the speech features, acoustic models and language mode

result in significant improvement on performance.

Being extensible and generalizable are also our concerns to a speech recog

system. Therefore we started to develop our efficient and extensible production dec

The production decoder is based on the highly flexible ISIP foundation classes. We

incorporated the context-independent network decoding function into the produc

decoder. Preliminary experiments showed that the production network decoding c

fully match the prototype decoding. The production decoder is more generalized

easier to extend. As the next step, we will improve the speed of network decoder i

production decoder. Then we will work on context-dependent network decoding, N-g

decoding and word-graph generation. In short, there is still a lot of work to do.
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Table 1.IPA and ARPABET Representations of Phonemes
ARPABET Examples IPA

aa lOck α

ae bAt æ

ah bUt Λ1

ao bOUght

aw cOW αu

ax About

ay bUY aΙ

b Bet b

ch CHurch

d Debt d

dh THat

eh bEt e

el battLE l

en buttON n

er bIRd

ey bAIt eI

f Fat f

g Get g

hh hello h

ih bIts Ι1

iy bEAt i

c

e
c
∨

xo

à’‘
jh Judge

k Kit k

l Let l

m Met m

n Net n

ng siNG η

ow bOAt o

oy bOY

p Pet p

r Rent

s Sat s

sh SHut ∫

t Ten t

th THree θ

uh bOOk U

uw tOO u

v Vat v

w Wit w

y You j

z Zoo z

zh pleaSure ℑ

ARPABET Examples IPA

j
∨

ic

r
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