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CHAPTER 1

INTRODUCTION

Automatic speech recognition by machine has been a goal of speech researchers
for more than 40 years. In recent years we have seen great advances in speech recognition
technology. Some speech recognition techniques have entered into the market place and
been used in applications such as command-and-control, credit-card number recognition
etc. However, the performance of automatic speech recognition in conversational speech is
still far behind human performance [1].

What makes conversational speech recognition so difficult? How does a machine
recognize speech? The core of a speech recognition system is the decoder, which finds the
most likely word sequence given all the knowledge resources. Decoding is a
resource-intensive and time-consuming process. In this thesis, | am going to investigate
the efficient implementations for two kinds of decoding processes — the N-gram decoding

and the network decoding. At first, let’s start with the principles of speech recognition.

1.1. Speech Signal, Phones and Features

A speech signal is a variable of time, amplitude and frequency. An example of
speech signals is shown in Figure 1. The top panel shows the waveform of the speech
signal, i.e the plot of amplitude vs. time. The bottom one is the wideband spectrogram of
the speech. Spectrogram is the three dimensional representation of the speech intensity, in

different frequency bands, over time. The wideband spectrogram corresponds to



performing a spectral analysis on 15-msec window data using a broad analysis filter
(125 Hz bandwidth) with the analysis advancing in intervals of 1msec. The spectral
intensity at each point in time is indicated by the darkness of the plot at a particular
analysis frequency. If the spectral analysis is performed on 50-msec window data using a
narrow analysis filter (40Hz bandwidth), the spectrogram is called the narrow-band
spectrogram [2].

The utterance corresponding to the speech signal in this example is “OKAY HI HlI
UM”. They can be further decomposed into phones. The term phone denotes the actual
sound that is produced in speaking. The ideal linguistically distinct sound unit is called
phoneme. In American English, there are about 42 phonemes including vowels,
diphthongs, semivowels and consonants. The international standard method to represent

phonemes is International Phonetic Alphabet (IPA) [3]. To enable computer representation

O-KAY HI HI UM

Figure 1. A speech signal and its spectrogram



of the phonemes, it is convenient to code them as ASCII characters. The ARPABET
format is usually used. A table shows the IPA and ARPABET representations is included
in APPENDEX A [4]. If in ARPABET format, the word sequence “O-KAY HI HI UM~

can be represented as “ow k ey h ay h ay um”. Obviously, in Figure 1 the waveforms and
the spectrograms of the first phone “ay” and the second “ay” are not the same. Therefore
only from the waveform or the spectrogram of the speech, it is impossible to recognize
what phones and words are being spoken.

There is another problem for automatic speech recognition. An analog speech
signal cannot be input directly into a machine for recognition. It has to be sampled and
converted into a digital signal first. After sampling, certain acoustic features are extracted
from the sampled speech data. This is done by the acoustic front-end of a speech
recognition system. These features are then input into the search engine of the speech
recognition system — the decoder, for decoding. These acoustic features are the actual
acoustic data the decoder is seeing. For example, if the phone “iy” is uttered, input to the
decoder are a set of feature vectors, each of which has multiple coefficients. Ideally
speaking, features of the phone “iy” and features of the phone “aa” should be different. If
S0, our recognition problem would just be an easy pattern matching problem. However,
there exists overlap between features of different phones. For example, we selected the
features of the vowels “aa”, “iy” from the features of a large amount of speech in
Alphadigit database [5]. Figure 2 shows the plot of the first two coefficients of those
features. They are separated into 4 groups by gender and phones. From the figure 2, it can

be seen that there is a significant feature overlap between vowels “iy” and “aa”. This



means, our measurements to speech data are ambiguous. For the features inside the
overlap region, recognition errors can occur. Although higher dimensional features can be
used to minimize the overlap, the feature overlap cannot be totally eliminated. In
conversational speech there are great pronunciation variations, speaker variations and
noises. All of these make conversational speech recognition very difficult. The task of the

speech recognition system is to minimize the recognition error rate.
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Figure 2. The feature plot of vowels “iy” (blue male, red female), vs. “aa” (green male,
black female) from the OGI alphadigit database



1.2. The Statistical Speech Recognition Formula

How to recognize speech given the acoustic data? Most current speech recognition
systems use the statistical method [6]. For a sequence of Wérds wyw,,...w,, Alis the
acoustic features which the decoder can use to decide which words were spoken. If

P(W/ A denotes the probability that wordlg were spoken given the acoustic featufes
was observed, the decoder should choose the word seq¥nces  which satisfying:

argmax p(W/ A 1)

W = W

According to the Bayes rulep(W/ A) = P(W)PI?EQ/M , wheng(W) is the

probability that the word sequen®éwill be uttered,p(A” W) is the probability that the

speaker say®/ and the acoustic featurésis observedp(A) is the average probability
thatA is observed. Maximizing (1) is carried out with respect to a fixedherefore

maximizing (1) is equivalent to find:

W = arg\r;]vax pP(A/ W) p(W) )

In short, statistical speech recognition is to solve the formula (2) — find the word

sequencdV which maximizes the probabilgya/ w)p(w) - This formula determines

the processes and components of a speech recognition system. First, as mentioned before,
a speech signal has to be converted into a format that the decoder can deal with. So an

audio front-end is used to extract the acoustic featdr&®m the sampled speech data.



Secondly, the decoder needs to be able to determine the valpgfafW) that is the
probability of producing acoustic featur@svhen the word sequend# is spoken. Hence

a statistical acoustic model is needed to model the relationship between a word or its
sub-units and the acoustic features. The most popularly used acoustic model is the Hidden
Markov Model (HMM), which will be described in the next session. The last part in the
formula (2) p(W) represents the language model, which gives the probability of a word or

a word sequence are uttered. Based on the above analysis, a basic speech recognition

system can be constructed.

1.3. A Speech Recognition System

Figure 3 shows a typical speech recognition system. It consists of three major

components: an acoustic front-end, an acoustic model training component and a decoder.

Language Model P(W)

Hypothesis

Decoding

Input Speech Features A

Lo

Acoustic
Front-end

HMM Training

Figure 3. Diagram of a typical speech recognition system



@) (b)

Figure 4. Some typical HMM topologies used for acoustic modeling
— a) typical triphone b) short pause c) silence.
The decoder is the core of the speech recognition system. All other components provide
the resources for the decoder.

The acoustic front-end provides the acoustic featéds uses signal processing
algorithms, such as Fourier transform, window, cepstrum, derivative etc. to extract the
features from the sampled speech data [7]. The speech samples are processed in frames of
typically 10-15 ms duration and overlapping windows are usually 25-30 ms long. The
most popularly used features are the Mel-frequency cepstral coefficients (MFCC) and
energy, along with their first and second order temporal derivatives. Typically, each mfcc
feature vector is of 39 dimension. Refer [8] for the implementation of the front-end.

The training component provides the acoustic models which hold the knowledge
of p(A/W). The standard acoustic model is the Hidden Markov Model (HMM). An
HMM corresponds to a sub-word unit such as a phone (context-independent or
context-dependent) or a syllable. Each HMM consists of 3 or 5 states where each state
models the onset, middle and end of the phonetic context respectively. Figure 4 shows

some examples of the various HMM topologies used for acoustic modeling in speech



recognition. As shown in the figure, each state can transit to the next state or loop back to
itself. This represents that the length of uttering a phone can vary. There is a statistical
model of the weighted mixtures of multivariate Gaussian distributions associated with
each state. The input feature vectors are evaluated by these statistical models and produce
the probability p(A/ W) . Originally, the statistical models of the states of HMMs are
unknown. This requires training to estimate the parameters of the statistical models,
including the mean, variances and the mixture weights of the Gaussian distributions.
Accurately training HMMs needs a large amount of speech data from known speech. The
commonly used training algorithms are Viterbi algorithm and Baum-Welch forward
backward training algorithm [9]. Theoretically speaking, the HMM of a certain phone, say
“aa” should give a higher probability when evaluating the features of the phone “aa” than
evaluating other phones. Therefore the correct word sequence would have the highest
probability and be correctly recognized. However, this is not always true because the
acoustic models being trained can not be perfect. In addition, the problems addressed
before such as pronunciation variations, feature overlap, noises etc. will also result in
recognition errors.

Another knowledge input to the decoder is the language model (LM). The
language model constrains which word can follow which word and provides its
probability. It integrates linguistic knowledge, domain knowledge and any other pertinent
information to constrain the word sequences being recognized. Since the probability of a
word being spoken often depends on the words spoken previously, this gives rise to the

N-gram LM. In the N-gram LM, each word can follow each other, and the probability of
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the current word only depends on tNel previous words. Typically, one-pass decoding
using an N-gram language model is called N-gram decoding. N-gram decoding is very
resource-intensive and time-consuming. Sometimes an explicit network can serve as an
LM. This network can be a grammar that defines the structure of language used in the
recognition task, or a word graph generated by a previous recognition pass. The network
limits the search space to a relatively small amount of possible word sequences. Only the

word sequences in the network can be recognized. Decoding using the explicit network as

Hello Joe Sentence level

Hello Jon
Word level E
(Word graph) @
ow
I—»ow—»‘—»jh/

Phone level

“Xao—en (Lex tree)

Model &
state level

Figure 5. Hierarchical representation of the search space
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the high level constraint is called the network decoding. The N-gram decoding and the
network decoding are the focuses of this thesis.

After obtaining speech features, acoustic models and language models, we are
ready for decoding. Decoding is to search the most possible word sequences given the
acoustic features. The search space is a large network composed of a hierarchy of
sentences, words, phones and states of HMMs. Figure 5 displays the hierarchical structure
of the search space. The number of possible word sequences is quite large even for a small
vocabulary task. Therefore for large vocabulary speech recognition (LVCSR), an
exhaustive search cannot work and an efficient search paradigm needs to be employed.
Here, let me give a brief introduction on the typically-used search algorithm — the Viterbi

search algorithm.
1.4. Viterbi Search Algorithm

Viterbi search and its variant forms belong to a class of breadth-first dynamic
programming techniques. Here, all hypotheses are pursued in parallel and gradually
pruned away as the correct hypothesis emerges with the maximum score. In this case, the
recognition system can be treated as a recursive transition network composed of the states
of HMMs in which any state can be reached from any other state. The Viterbi search

algorithm builds a breadth-first search tree out of this network by the following steps:

1. Generate a list of all stat&f)  for each frdme of the utterance.

2. Initialize each list by setting the probability of the initial state to 1 and the rest
to 0.
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3. Foreachstats[] §)
for each possible transition fro81  to some statel )

 If the list for S is uninitialized, initialize it with the transition scone(S/'S)
and a back-pointer t8

« Else update the score f8r  only if this transition gives a better path score.
4. Repeatstep3with=t+1

« If t = N, the utterance duration, then trace back to get the best path.

Viterbi search is time-synchronouse., at any stage, all partial hypotheses
generated during the search terminate at the same point in time. Since these hypotheses
correspond to the same portion of the utterance, they can be directly compared with each
other. Viterbi search is impractical for even moderate-sized tasks because of the large size
of the state space. Therefore, other constraints such as language models and pruning

techniques have to be applied to reduce the search space.
1.5. ISIP Speech-to-Text System

All the work in this thesis is based on the Institute for Signal and Information
Processing (ISIP) public-domain speech-to-text (STT) systems [10]. | am one of the key
members of developing and enhancing them. There are two notations about the ISIP STT
systems. The current ISIP STT system, which is publicly available, is referred to as the
prototype system. This prototype system was started in 1998, and has been continuously

enhanced. Now it has become a complete recognition system, and included the following
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modules: an audio front-end, Baum-Welch (BW) training, Hidden Markov
Model-based (HMM) state-tying, and a hierarchical decoder based on the Viterbi
algorithm. The functions of the prototype decoder include network decoding (or
word-graph rescoring), word-graph generation and N-gram decoding etc. | have worked
on developing the front-end, the decision tree-based state-tying and the network and
N-gram decoding parts of this prototype STT system. The N-gram decoding algorithm is
the focus of Chapter 2.

The other ISIP speech recognition system is called the production system. Our
goal is to combine our expertise in decoding algorithms and C++ programming language,
make the new system highly generalized and flexible, and make it easier to use and
enhance. The production STT system is based on our extensible and flexible ISIP
Foundation Classes (IFCs). The ISIP Foundation Classes and software environment
provide researchers a friendly and stable environment, save their time to rewrite some
common functions and data structures. The IFCs consist of system, I/O, math, data
structure, algorithm, signal processing, and many more such useful classes. We have been
developing IFCs for over one year. They construct the solid ground for our production
decoder. The development of the production decoder started from the beginning of this
year. As the first step, we added the network decoding capability into the production
decoder. The preliminary experiments of the production-format network decoding have
shown promising results comparing with the prototype system. The network decoding and

some design issues about the production system will be talked in Chapter 3.
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1.6. Organization of Thesis

The goal of this work is to investigate the correct and efficient implementation of
the network and the N-gram decoding processes. The work is based on the ISIP prototype
Speech-To-Text system and the ISIP foundation classes.

CHAPTER 1 gives an introduction to the speech recognition problem. It provides
basic knowledge about the components of a speech recognition system and the decoding
algorithms.

CHAPTER 2 describes the N-gram decoding based on our prototype decoder. It
focuses on how to apply N-gram language models into decoding. Some precious
experiences we gained through our work are addressed. CHAPTER 3 talks about the
generalized network decoding and its design in our production decoder. This is the first
step for us towards building the production STT system. The implementation is based on
the ISIP foundation classes (IFCs). In CHAPTER 4, both systems are evaluated.

CHAPTER 5 concludes this thesis and points out some future work.
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CHAPTER 2

DECODING USING N-GRAM LANGUAGE MODEL

In chapter 1, we have looked at the typical structure of a speech recognition
system. Acoustic models and language models (LM) are two knowledge resources input
into the decoder. For large vocabulary continuous speech recognition (LVCSR), the
possible word sequences are extremely large. Exhaustive search is impossible. Therefore a
language model is required in order to constrain the search space during the decoding
process. N-gram language model is the dominantly used language model since it provides
a relatively compact representation of the linguistically probable word sequences. An
N-gram LM can be applied into several types of decoding. This chapter deals with those

types of decoding which use N-gram language models.
2.1. N-gram Language Model

Every language consists of a sequence of words. A language model is to provide

the probability of next words given preceding words. An N-gram language model uses the
history of then—1 immediately preceding words to compute the occurrence probability
of the current word. The value of N is usually limited to 2 (bigram model) or 3 (trigram

model) for feasibility. If the vocabulary size id  words, then to provide complete

coverage of all possible word sequences the language model needs to condist of

N-grams {.e., sequences o  words). This is prohibitively expensiegy( a bigram

language model for a 40,000 words vocabulary will reqiggex 10 bigram pairs), and
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many such sequences have negligible probabilities. Obviously, it is not possible for an
N-gram language model to estimate probabilities for all possible word pairs. Typically an
N-gram LM lists only the most frequently occurring word pairs, and uses a backoff
mechanism to compute the probability when the desired word pair is not found.

For instance, in a bigram LM, giver} , the probability of the next wovd is

Dp(wj |Wi) (w;, Wj) exists

Eb(wi) p(w;) otherwise 3)

pw; |Wi) =

whereb(w:) is the back-off weight for the wong
p(w:) is the unigram probability of the;

The backoff weighb(w:) is calculated to ensure that the total probability:
z p(w;, wy) =1 (4)
J

Similarly, for a trigram of Words/hwiwj ,

0 P(W; |thi) (Wh, W;, W)) exists

p(w; |WhWi) = %3 (5)

(W,w,) f)(wj |Wi) otherwise

N-gram language models have been effective in improving the efficiency in
LVCSR significantly. However, even though N-gram language models store only a small
subset of all the possible sequencedNof  words, they are still significantly large for large
vocabulary applications. The language model score calculation is quite an expensive

process in N-gram decoding. Many systems have been devised which try to improve the

efficiency of N-gram decoding [14, 15]. In [16], an entropy-based pruning algorithm has
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been applied to prune the language model size while not losing much information. In
addition to N-gram LM, statistical language models [17] are also being investigated by

some universities. But so far, they are still not as popularly used as the N-gram LM.

2.2. Applying N-gram LM into Decoding

The usage of an N-gram LM in decoding is to provide the probability of one word
following the others. How to apply this depends on the type of decoding. According to the
number of decoding passes, there are two types of decoding: one-pass decoding and
multi-pass decoding. That means, the final best hypothesis may or may not be obtained
from a one-pass decoding. An N-gram LM can be used directly as the constraints to the
search space. In this case, the search network is a fully connected word network consisting
of all the possible combinations of word sequences. The word sequence probabilities are
restricted by the N-gram LM. If only the one best hypothesis is generated by searching
though such a network, the decoding is called one-pass N-gram decoding. An alternative
to the one-pass N-gram decoding is the word-graph generation. In the above process,
instead of keeping only the 1-best hypothesis, it keeps multiple hypotheses at each word
end, and outputs them as a word graph. This word graph contains a set of nodes and arcs
that form a large number of possible word sequences. There are both language model
score and acoustic model score associated with each arc. The word graph then can be used
in a second-pass decoding as the language model constraints. The second-pass decoding is
also often referred to as the word-graph rescoring or network decoding. Since the word

graph is much smaller than the fully connected word network, word-graph rescoring is
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much more efficient than the one-pass N-gram decoding. Although the process of
word-graph generation is time-consuming, once a word graph is generated, it can be
rescored using more complex acoustic models and language models. For example, in the
first pass, we can use the word-internal triphone HMMs and bigram LM to generate the
word graphs. In the second pass, we rescore the word graphs using cross-word triphone
HMMs and a trigram LM. This will give an overall better performance in terms of both
speed and accuracy. In word-graph rescoring, to obtain the word sequence probabilities,
we can either use the original LM score associated with the graph arcs which were
obtained during word-graph generation or use N-gram LM again. In the latter case, we
only use the graph structure while throw away the language model score associated with
graph arcs. The word sequence probabilities are calculated from the N-gram language
model.

In short, N-gram language models can be used in one-pass N-gram decoding,
word-graph generation or word-graph rescoring. In all the above cases, the common task
is how to efficiently apply the LM into decoding. Efficient N-gram decoding is very
difficult. It is a trade-off between accuracy and speed. The difficulties involve how to

efficiently store and look up the LMs, calculate the LM scores and correctly apply them.

2.3. N-gram Organization

Because of the large amount of N-gram models, the representation of N-gram
model data structure has direct effect upon the memory size and the run-time speed. The

storage structure should occupy less memory and be easy to look up.
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Use a trigram LM (N=3) as an example. The unigrams (1st order gram) in this LM
are just single words. The bigrams are word pairs, whose second word follows the word in
unigram. So we can group all the words following the same 1st word together, point them
to the unigram word, and only store the second word and its corresponding bigram
probabilities. For trigrams in this LM, it can be stored similarly. All the third words
following the same bigram are grouped together. Only the third word is stored, having a
pointer to its preceding bigram. Figure 6 shows a data structure organized as the
description above. Each order N-gram is stored as a list. Each list is an array of N-gram

nodes. Each unigram node points to the head of a set of bigram successors, and each

word, nextgram, word, nextgram, word, null,
score, backoff | score, backoff — score, 0
word, nextgram, word, nextgram, .
score, backoff score, backoff .
word, nextgram, . ~—a|  Wword, null,
score, backoff o score, 0
word, nextgram, .
Wsocrgr,en%x;glr(%?;, score, backoff 0
word, nextgram, LX) word, null,
V\g%rg;en%x;glr(%?, score, bagkoff \ score, 0
word, nextgram, \ word, null,
Wsocrgr,en%x;glr(%?;, score, bagkoff score, 0
Unigrams Bigrams N-grams

Figure 6. N-gram language model storage structure




20

bigram node points to the head of its trigram successors. An N-gram node has the
following components: word identity, N-gram probability, a backoff weight, and a pointer

to the head of the next order N-gram successors. The word here only records the last word
of an N-gram. This scheme can save a large amount of space to store the words. For LM
score calculation, the first word is found first, then the next. If the word sequence is not
present in the explicit LM, backoff scheme is used to calculate the LM score.

LM lookup can be speeded up greatly if an index instead of a string is used to
represent the word identity in the above data structure. In this way, when looking up word
sequence in the LM, no string comparison is needed. This will significantly improve the
LM lookup speed, since integer comparison is much faster than string comparison in C.
The storage can be further minimized if the highest-order N-gram list is distinguished with
others, because the highest-order grams do not have backoff weights and pointers to their
next N-gram list. In addition, a lookup table can be used to minimize the total cost to store
the LM and backoff score [18]. That means to quantize those float numbers and limit them

to a certain amount.

2.4. N-gram Histories

Understanding N-gram histories is a key to correctly apply N-gram LM into
decoding. During decoding, when two paths reach the same point, do we merge them or
propagate them further as separate paths? The answer to this question is simple: merge
them when they have the same history. If so, only the path with a higher score can survive.

However when the search space involves words, phones and states, the path histories
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2 YOU

ISENT_END

Figure 7. Anexample of a word graph that demonstrates how the LM is applied when res-
coring paths through this graph.

become confusing. In decoding using N-gram language models, at a cross point, if the N-1
previous words (nodes) in the paths are all the same, we regard these two paths have the
same history at the word level.

Path merging has a profound impact on the computing resources (particularly
memory) required for LVCSR. For decoding using a bigram LM, there is only one word
history. It is easy to handle. For trigram and above LM, it needs to pay attention to how to
handle the N-gram histories. For example, considering the word-graph rescoring problem
shown in Figure 7. The length of the history plays a major role in whether paths are
merged, and how efficiently we can implement the merging process. In this word graph,
there exist paths “YOU HARD ROCK”, “A HARD ROCK” and “ARE HARD ROCK”".

Each reaches the point “ROCK”. The decision to merge them depends on the length of the
history and/or the type of LM (bigram, trigram, and network will produce different
results). If a bigram LM is used, at the point “ROCK?”, only the previous one word needs

to be considered. Therefore when these three paths reach “ROCK?”, since the previous



22

word for “ROCK” in these three paths is at the same graph vertex (e.g., “HARD”), only
one path can survive and be propagated further. On the other hand, if a trigram LM is used,
the previous two words in the path have to be considered. Therefore these three paths have
different histories and cannot be merged. An easily made mistake would be not
considering enough history words. This was also an error in the system we submitted for
the Hub-5E Eval’2000 [12], in which our History object only has a pointer to the previous
one word/node. For the bigram case, this happened to be correct. But for the trigram case,
paths with different histories, such as “YOU HARD ROCK”, “A HARD ROCK”, were
treated as having the same history. This resulted in a search error: extra path merging,
over-pruning and hence an incorrect likelihood calculation.

In our Hub-5E Eval system, only a bigram LM was used in the first pass for
word-graph generation, so this problem did not affect the resulting word graphs. However,
in the second pass, these word graphs were rescored with a trigram LM. This flaw
essentially negated the potential benefits of using a trigram LM. This error was corrected
by maintaining the previous N-1 words in the History object rather than only the previous
word. Depending on the decoding types (N-gram decoding or word-graph rescoring), the
previous words may come from a string word, a unigram node, or a word-graph node
which has a word entry. One thing to mention is that, even in N-gram decoding mode, one
can not just use a pointer to a lower order N-gram node as the history thinking that it can
give you the previous N-1 words. For example, if we are doing trigram decoding, why not

use a pointer to a bigram as the history? The reason is that not all word pairs have their
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corresponding bigram node! That is also why the N-gram history issue is intuitively
simple, but needs great attention to handle.

Now in our ISIP prototype STT system, the trigram LM scores are correctly
applied. For the system we used for Hub-5E 2000 evaluation, fixing this bug reduced the
WER by 0.5%. However run-time memory usage was increased by almost 30%. The drop
of WER with this correction was not as significant as we had expected. The reasons are:

* The language mode we used, which was provided by SRI, had been heavily
pruned [20]. The OOV (Out Of Vocabulary) percentage is high.

» The word graphs we generated in the first pass have a very high error rate. So
in the second pass, even the trigram is correctly applied now, its effect can not
be fully accounted. The experiment results will be provided in Chapter 4.

2.5. N-gram Lexical Tree

In LVCSR, the lexicon is often organized as a tree since many words share the
same start phone, and search the first phone of each word takes the most effort [21]. The

tree-structured lexicon is called lexical tree. It can save a lot of computation and storage.

CARD

HART

HEART

HARD

Figure 8. An example of a lexical tree
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An example of a lexical tree is shown in Figure 8. A lexical tree is used to generate phone
hypotheses. Each lexical node contains a list of the words on that path covered by the
monophone held in the lexical node. The dark circles represent starts and ends of words.
In order to compute LM scores, each lexical tree also needs to maintain its word histories.
The scores for word transitions are computed based on the position in this lexical tree and

the current word histories. A problem of lexical tree is that the word identity is unknown

until a word-end lexical node is reached. When there is a transition om W.to | the

word W, is unknown until the end of the lexical tree. Therefore the LM score can not be

applied immediately upon the transition. That means pruning based on language models
can not be applied as early as possible. An LM lookahead [22] technique is devised to
overcome this problem. The highest language model score at each lexical node is acquired
based on the current word(s) and the history word(s), and used as the LM score at that
point.

Typically, in lexical tree-based searches, the LM scores are stored in the lexical
tree nodes. At each lexical node, a list of next words is maintained. When a word end is
reached during the decoding process, the decoder constructs a new lexical tree
encompassing all the possible next words that are used to generate the next phone
hypotheses. For word-graph rescoring, constructing new lexical trees is necessary since
the possible next words are different for each word, and the number of possible next words
is relatively small. However in N-gram decoding and word-graph generation, each word
(except the sentence start word) can be followed by any other word. So for large

vocabulary speech recognition, the lexical tree would be very large. Even a few copies of
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the complete lexical tree will quickly overshoot the available memory. Since we know that
the N-gram lexical tree structure is the same for all occurrences of each word, and that
only the LM scores vary according to their N-gram histories, making many trees with the
same structure is a waste of both time and memory. Therefore, instead of making many
copies of the lexical tree, we reuse the same N-gram lexical tree for each occurrence of a
word, disconnect the history words and LM scores from the lexical tree.

A data structure called instance is introduced to represent the unique position in
the search space which is determined by the corresponding history word(s), the lexical
node and the phone (the lexical node). LM lookahead is performed at each lexical node,
and the highest language model score is stored in the instance. Two instances can be
merged if they have the same word histories, the same lexical node and phone, i.e. at the
same position in the search space regardless of time. Now when a word end is reached,
this word and its N-2 previous history words (if any) will become the new history for the
coming word. Since the instances are reused in the decoder, the score calculation needs to

be done only once. This minimizes the total access times to the N-gram LM.

2.6. Pruning

To save the computation and memory, it’'s imperative to stop those less-likely
partial paths from growing further. That is also the reason we use LM lookahead, so we
can apply severe pruning earlier. The idea of pruning is to only prune away those unlikely
paths. However it's possible that a path with a lower score in the early frame may grow to

be the best path later. If the best path is pruned way, it will result in a recognition error.
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There are many pruning techniques [23]. We used the followings in our decoder.
The first one is the well-known beam pruning technique. A path is pruned away if its path
score is below the current best hypothesis score minus a specified beam width. Beam
width can be different at each level in the search hierarchy. Usually heavier pruning is
applied at word end because there are much more possible next words at word end than
possible next phones at phone end. Secondly, we set a maximum number of words allowed
at each frame. This is also to avoid fan-out at the word end. Thirdly, instance pruning is
applied at each frame, which is limiting the number of model instances active at a given
time. The instances are sorted according to their scores. Only the instances having better
scores can survive. Pruning has dramatic impact on the search speed and memory cost.
The trade-off is accuracy. Heavy pruning with less decreasing in accuracy is important for
efficient N-gram decoding and word-graph generation.

In all, N-gram decoding is a complicated and resource intensive process. Although
our decoding and pruning approaches improved the decoding efficiency and accuracy, they
need to be and can be improved further. Also we realized it is important for a speech
recognition system to be extensible and flexible, because it often happens that we found a
flaw in our original design, or we wanted to add new modules to the system. For a
public-domain speech recognition system, this need is more imperative. Therefore
developing a more generalized and flexible system while keeping its efficiency is our next
objective. We started to develop our production speech-recognition system in spring 2000.
As the first step, we developed the network decoding in a new fashion. The next chapter is

going to show how to design such a decoder.
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CHAPTER 3

NETWORK DECODING

3.1. Network Decoding

The network here means a word graph, i.e. a network of words. It is a subnet of the
fully connected word network, as the one in N-gram decoding, and provides constraints on
search space at the word level. This network could come from the first-pass word-graph
generation as mentioned in the last chapter. If so, this second-pass network decoding is
often called word-graph rescoring. The network could also be constructed by some
grammars. For example, a network of telephone numbers should follow some rules
(grammars) such as area code, local phone number, to make the phone number generated
by this network valid.

As mentioned in Chapter 1, each word can be separated into phones. Each phone
can be modeled by a Hidden Markov Model (HMM). An HMM consists of several states
associated with some statistical distributions. The final search space is actually composed
by the expansion of these hierarchical networks. Fig. 9 illustrates the expanded search
space up to the phone-level. The term “triphone” denotes a context-dependent phone,
which has one left context and one right context. A phone without context is called
monophone. A word-internal triphone denotes that the contexts of a triphone are restricted
within a word. On the contrary, if its contexts can come from neighbor words, the triphone

is called a cross-word triphone. Of course, for each phone, either monophone,
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word-internal triphone or cross-word triphone, it needs corresponding HMM to model it.
The parameters of HMMs (mean, variance, and/or mixture weights of the statistical
models) came from training procedure [24]. The input speech features are evaluated by
each state of an HMM. This produces the probability of those states generating such
features.

The decoder is to search the best match to the speech features among many paths.
It's like there are many path markers travelling from the start point to the end point. A path
marker remembers which path it came from, and represents a unique path. The total travel
time is fixed (the length of data). While which route a path marker goes though and how
long a path marker stays at each state is not fixed. Path markers can split and merge. For
example, at time t, a path marker is at state s. At time t+1, the path marker may stay at
state s or go to the next state. Therefore the marker splits into two markers, which will
have different routes from now on. Their path scores are the accumulated scores obtained
by evaluating the speech features at a certain state and a certain time. If two path markers
arrive at the same state at the same time, only the one with a better path score can go
further. If a path marker arrives at the end of all the states belonging to a word, it will split
again and enter into next words as restricted by the word graph. At that point, language
model scores will also be accumulated into the path scores. Finally, time ends. Many path
markers reach the end. Among those paths, the one with the highest score wins, because
along this path it's most likely to produce the speech features matching the input one. The
states, phones, and words along the best path construct the final hypothesis. Note that

during the search process, there may exist two or more path markers that reach the
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(a) SILENCE HARD

SILENCE

SILENCE

(b) SILENCE sil HART haart
A ax HEART haart
A ey RAW rao
ARE aar ROCK raok
CARD kaard WRONG raong
HARD haard YOU y uw
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Figure 9. An example of expanded network. (a) the word level network (b) the pronunci-
ations for the words involved (c) The network expanded using the correspond-
ing word-internal triphones
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triphone hh-aa+r at the same time. However, they cannot be merged into a single path
because they belong to different words in the network at the word level.

The network shown in the above example consists of only three levels: word,
phone and state. In fact, the number of hierarchies of a network is not only limited to three.
It could also have sentence level, syllable level etc. No matter how many levels it has, no
matter what each level is, the search space is always a hierarchical network. Each level has
one or more graphs or subgraphs. The search space can be expanded down to the bottom
level. Search is hence performed on the expanded network. Therefore the decoding
process can be viewed as a general search process over the expanded network. Our
production decoder is designed to reflect such a general decoding process. It is based on

the ISIP Foundation Classes (IFCs).

3.2. ISIP Foundation Classes

Not many researchers and students can have their chances and time to write their
own decoder, because there is a huge overhead before they can get to the point of writing
the core decoding algorithms. They have to deal with 10 with various files, such as the
audio file, lexicon, states file, models file etc. They have to worry about the data structures,
the command line parsing etc. Therefore we aim to provide users and ourselves an easy
and powerful software environment to work on. This is the ISIP foundation class (IFC).

IFC is a highly object-oriented hierarchical package [25]. It is built from
bottom-up. It consists of system, 10, math, data structure, shell etc. libraries. Memory is

managed by a center MemoryManager class. An important class in the IO library is Sof
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(Signal Object File). Sof is a unanimous file format used across all the objects in IFC. All
objects can read and write themselves into Sof file. The function format is consistent
across all the classes, hence 10 becomes very easy. The data structure library has
commonly used data structures such as node, linked list, hash table, graph, etc. Fig. 10
shows the hierarchy of ISIP Foundation classes. Below the algorithm library, the classes
are not speech recognition specific. They can be used for general-purpose programming.

In the algorithm library, we developed algorithms useful for speech recognition, such as

ASR

CI'ranscriptiorD (Decoder) ( LM )

Search (HierarchicaISearch) (SearchLeveD(SearchNod@ (HistorD (Trace)
Pattern Recognition (HMM) (PCA) (SVM)
Signal Processing (Features) (FrontEnd)

Algorithms l@utoCorreIatioD(FiIterBankAmpIitu@(Windo@ Q_inearPredictioD @ourierTransfor@

Statistics (GaussianMode]) (MixtureModel ) (StatisticalModel )
Multimedia (AudioFile ) ( AudioDevice )
Shell (CommandLine)( Filename ) Namemap )(_Parser ) ('Sdb )
Data Structures (Vector<>) (DoubleLinkedList<>) (Stack<>) (Graph<>) (HashTable<>)
Math (Wvector<>) (VectorLong ) (MMatrix<>) (MatrixDouble)

(scalar, vector, matrix)
110 (SofSymboD @ofLisD (SofParser)
System (Integral) (SysString) @ysChaD (Conso@ @IemoryManag@

Figure 10. Hierarchy of ISIP Foundation classes




32

FourierTransform, LinearPrediction and Cepstrum. Users could use lower level IFCs to
develop their own algorithms also. For reading / writing audio files in any format, there is
the AudioFile class. The statistics library is used for evaluating data based on statistical
model. There are many other such useful classes. They are very easy to use and modify.
On the top of IFC, it is the search library, which is the core of the production speech
recognition system. With all the low-level modules handy, we can focus on the decoding
algorithms. With the experiences we gained during developing the prototype system, we
are able to incorporate the efficiency and generalization issues into the design of the

production decoder very early.

3.3. Production Decoder

The search library is to implement a generalized hierarchical search algorithm.
HierarchicalSearch and SearchLevel are the two main classes in the search library.
HierarchicalSearch consists of any number of SearchLevels, such as a sentence level,
word level, phone level and a state level. Every SearchLevel is essentially the same as the
others. All of them can be represented by graphs. At the sentence level, it has a sentence
graph. At the word level, it has one or more word graphs, each of which is the subgraph of
a sentence in the sentence graph. At the phone level, there are some phone graphs to
represent the pronunciations of each word. Finally at the state level, the HMMs are also
graphs and the subgraphs of states. Each SearchLevel holds one or more sub-graphs at that
level. Connecting these graphs builds the entire search space. We store it as a

Graph<SearchNode>, where SearchNode is an embedded object inside the GraphVertex.
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Each SearchLevel also holds all the search symbol strings at that level. Thus in the
Graph<SearchNode>, each SearchNode can be referenced by the symbol index instead of
a string symbol. This avoids string comparisons and makes fast decoding possible. The
SearchNode object also has a pointer to a StatisticalModel object. Thus, data evaluation
can be done at each SearchNode at any level.

The network decoding has been implemented in the production decoder. Each
search graph is expanded dynamically at the run time. A path marker is propagated from
the top level down to the bottom level, then propagated up. A path marker splits to several
path markers if different paths are taken. The path score is updated during propagation.
Viterbi pruning takes place at the lowest level after evaluating each statistical model. Path
markers remember their histories. Only path markers with the same history can be
compared and merged. The path marker with the best score can be propagated further;
others are deleted. After traversing up, pruning can also be applied at each search level.

The decoding algorithm is the same as the one in our prototype system. It’s still a
hierarchical Viterbi decoding algorithm. We have made the context-independent network
decoding working. Its results could fully match the prototype decoder. The code in the
production decoder is more modular and user friendly. It is easier to modify and extend.
As the next step, we will do more complicated tasks, such as N-gram decoding,
word-graph generation. In those cases, fully expanding the hierarchical network is
impossible. More efforts are needed to manage the size of the search space. Some

concerns are.
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* How to represent a lexical tree? In a lexical tree, many pronuciation graphs
merge into one graph. This shared graph has to be generated dynamically.

* In N-gram decoding, how to represent the word graph? Certainly, storing a
fully connected word graph inside SearchLevel is not a good choice.

e If using monophones, at the phone level, the subgraphs are just the
pronunciation graphs. What if using word-internal or cross-word triphones? In
those cases, the phone graphs are complicated and not fixed. They need to be
generated dynamically.
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CHAPTER 4

EVALUATION

4.1. Baseline Systems

To build a baseline word-interne

WER ISIP HTK

triphone system, we trained 12-mixtu | Substitutions 32.3% 32.2%
Deletions 14.7% 14.8%

word-internal triphone models from th Insertions 2.6% 2.9%
Overall 49.6% 49.8%

scratch on the WS’97 training set [28], al

rescored using word graphs generated frTable 1. A comparison of a word-internal
system with a similar HTK system

a bigram language model. The decodi

results are shown in Table 1. Our performance was slightly better than HTK’s [29]

performance under similar conditions. HTK is a commercially available speech

recognition system developed by Cambridge University. It is known to have a leading

recognition performance. So we felt confident that our acoustic training and word-graph

rescoring were fully debugged and working well.

(a) (b)
WER ISIP HTK WER ISIP HTK
Substitutions 31.0% 30.8% Substitutions 28.5% 29.5%
Deletions 10.0% 11.3% Deletions 9.2% 9.4%
Insertions 4.1% 3.8% Insertions 4.0% 3.9%
Overall 45.1% 45.9% Overall 41.7% 42.8%

Table 2. Performance (WER) of a cross-word system (a) using word graphs generated
from a bigram LM, and (b) using word graphs generated from a trigram LM
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We also generated cross-word triphone models, and rescored them using word

graphs generated from a bigram and a trigram language model respectively. Detailed

results are shown in Table 2. The WER of our cross-word systems are about 1% better

than HTK. For the trigram case, we obtained a WER close to 40%, which is the best

number we ever obtained on this particular database.

4.2. A Complete Speech Recognition System

The system below was submitted for Hub-5E 2000 evaluation. It included the

following features:

Front-end: standard 39 MFCC (Mel-frequency Cepstrum Coefficients)
features.

Acoustic models: 16-mixture cross-word triphones models trained on 60 hours
of SWB-I and 20 hours of English Call Home data. States were tied using
phonetic decision trees.

Language model: a bigram and a trigram backoff language model were
provided by Andreas Stolcke at SRI [20]. They were trained from
Switchboard, Callhome and Broadcast news. The full trigram LM generated by
SRI has 3,246,315 bigrams and 9,966,270 trigrams. They were pruned using
SRI’s entropy-based method [16] to eliminate bigrams and trigrams with
negligible probabilities. The trigram LM we eventually used contained 138K
trigrams, 320K bigrams, and 33K unigrams. The bigram LM simply excluded
the 138K trigrams.

Lexicon: we expanded our standard 22K WS’97 test lexicon to include many
new words found in SRI's lexicon. This increased the size of the lexicon to
over 33K entries.

Recognition: performed a two-pass decoding. The first pass is word-graph
generation using word-internal triphones and a bigram language model; the
second pass is rescoring these word graphs using cross-word triphones and a
trigram language model.
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In the Hub-5E evaluation, our system achieved a 43.4% WER on the SWB part of
the dataset. However this number is not competitive with the results from other sites [30].
After the official evaluation, we fixed several bugs mentioned previously, including the
one about N-gram histories. We reevaluated our system on the SWB part of the Hub-5E
2000 dataset and decreased the WER to 42.9%. | felt confident that the bug was fixed, and
the trigram LM is properly applied into decoding. But 0.5% is not the substantial
reduction in WER we expected. One of the reasons for this is that the word graphs we
generated appear to have an excessively high word graph error rate — 19.8%. Therefore
the language models could not affect much on rescoring those word graphs. To improve
the accuracy of word-graph generation, we need to look into the word-graph generation
algorithm further. We also need to improve our acoustic features and models. It appears
that in the Hub-5E evaluation, our system was much simper than the systems from other
sites. For example, the systems from Cambridge University and SRI used more than
5-pass decoding. They also used more techniques in their feature extraction and HMM
training. Another fact is that the coverage of the language models we used is not high
enough. By comparing with the reference transcriptions, we measured the OOV (Out of
Vocabulary) percentages of the unigrams, bigrams and trigrams in the trigram LM we
used. For unigrams, the OOV percentage is 0.6%; for bigrams, the OOV percentage is
14.4%; the OOV percentage of trigrams is 64.5%. If a unigram is out of vocabulary and it
happens to be the correct word, it surely results in a recognition error since the decoder
does not know this word at all. If bigrams or trigrams are OOV, they will be backoff to

unigrams or bigrams.



38

4.3. Production System

We have performed some preliminary experiments on the context-independent
network decoding of the production decoder on TIDIGITS task [31]. The network is a
small fully connected network composed by numbers “OH, ZERO, ONE, TWO ...,
NINE”. In our experiments, the results and path scores of the production network
decoding could fully match the prototype system. This shows that the algorithm in the
production decoder is functioning correctly. Currently the speed of the production decoder
is about twice slower than the prototype system. This is not a surprise since there are
overhead for generalization. We are looking at the speed problem and will overcome it in

the early stage of design and development.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis introduced the principle of speech recognition; described N-gram
decoding and network decoding in detail. The work was based on our ISIP public-domain
Speech to Text (STT) systems. The prototype ISIP STT system has been developed into a
full-fledged system, including an audio front-end, an HMM training module, and a
hierarchical decoder. The decoder is the core of the speech recognition system. It has
network decoding (word-graph rescoring), word-graph generation and N-gram decoding
etc. functionalities. Particularly, this thesis focused on how to apply N-gram language
models into the decoding process. Language model storage, N-gram history handling,
search space organization and pruning are the key issues towards an efficient N-gram
decoding. Through developing and debugging the decoder, we got deeper understanding
about the algorithms and some efficiency issues. With the enhancements we made and
fixing some crucial bugs, the system performance has been improved and achieved the
best number we got in internal experiments. Our systems are competitive to the HTK
systems under similar conditions. For example, a WER of 41.7% was achieved using
cross-word models and rescoring word graphs generated by a trigram language model.

We are confident about our implementations of the decoding algorithms. To
improve the overall performance of our system, we need to introduce new technigues into
the recognition systems, such as gender dependent models, VTLN (Mocal Tract Length

Normalization) [32], maximum likelihood linear regression (MLLR) [33] for speaker
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adaptation. Improving the speech features, acoustic models and language models can
result in significant improvement on performance.

Being extensible and generalizable are also our concerns to a speech recognition
system. Therefore we started to develop our efficient and extensible production decoder.
The production decoder is based on the highly flexible ISIP foundation classes. We have
incorporated the context-independent network decoding function into the production
decoder. Preliminary experiments showed that the production network decoding could
fully match the prototype decoding. The production decoder is more generalized, and
easier to extend. As the next step, we will improve the speed of network decoder in the
production decoder. Then we will work on context-dependent network decoding, N-gram

decoding and word-graph generation. In short, there is still a lot of work to do.



Table 1.IPA and ARPABET Representations of Phonemes

APPENDIX A

ARPABET | Examples IPA
aa IOck a
ae bAt &
ah bUt Al
ao bOUght o)
aw cOW au
ax About 9
ay bUY al

b Bet b
ch CHurch E
d Debt d
dh THat 5
eh bEt e
el battLE |
en buttON n
er bIRd &
ey bAIt el
f Fat f
g Get
hh hello

ih blts 11
iy bEAt i

ARPABET | Examples IPA
jh Judge jD
k Kit k
I Let I
m Met m
n Net n
ng SING n
ow bOAt 0
oy bOY 9i
p Pet p
r Rent ]
S Sat S
sh SHut |
t Ten t
th THree 0
uh bOOk U
uw tOO u
v Vat v
w Wit w
y You ]
z Z00
zh pleaSure 0
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