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Abstract:  8 

Background: Common quantitative scalar evaluation metrics such as sensitivity and specificity can 9 

often be misleading for sequential data applications. There is a lack of standardization of scoring 10 

metrics in biomedical applications involving sequential data.  11 

Methods: We analyze three popular scoring metrics and introduce two new metrics for a seizure 12 

detection task. We compare and contrast their results collected from machine learning models 13 

developed on the TUH EEG Corpus. Performance evaluated in terms of sensitivity and specificity 14 

does not address the time scales over which the scoring must occur. This is critical for sequential data 15 

applications. To address these issues, our proposed metrics introduce two classes of scoring metrics: 16 

term-based and time-aligned. We also compare these metrics using a more holistic view based on a 17 

Detection Error Trade-off curve.  18 

Results: We show that time-aligned scoring is consistent with popular scoring approaches but 19 

provides more accurate assessments and diagnostics by comparing the degree of match. We also 20 

evaluate existing metrics adapted from the speech recognition community, where sequential scoring 21 

techniques are very mature. 22 

Conclusion: The metrics proposed in the study are excellent candidates for standardizing scoring 23 
across the industry. These metrics will be used in several upcoming open-source seizure detection 24 
challenges. 25 

Keywords: electroencephalograms; EEG; machine learning; evaluation metrics; scoring  26 
 27 

1. Introduction 28 

Electroencephalograms (EEGs) are the primary means by which physicians diagnose, evaluate and 29 

manage brain-related illnesses such as epilepsy, seizures and sleep disorders 1. Automatic 30 

interpretation of EEGs has been extensively studied in the past decade 2-6. However, even though 31 

many researchers report impressive levels of accuracy in publications, widespread adoption of 32 

commercial technology has yet to happen in clinical settings primarily due to the high false alarm 33 

(FA) rates of these systems 789. In this paper, we investigate the gap in performance between research 34 

and commercial technology and discuss how these perceptions are influenced by a lack of a 35 

standardized scoring methodology. 36 
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There are in general two types of ways to evaluate machine learning technology: user acceptance 37 

testing 1011 and objective performance metrics based on annotated reference data 1213. User 38 

acceptance testing is time-consuming and expensive. It has never been a practical way to guide 39 

technology development because algorithm developers need rapid turnaround times on evaluations. 40 

Hence evaluations using objective performance metrics, such as sensitivity and specificity, are 41 

common in the machine learning field 141516. With this approach, it is very important to have a rich 42 

evaluation dataset and a performance metric that correlates well with user and application needs. 43 

The metric must have a certain level of granularity so that small differences in algorithms can be 44 

investigated and parameter optimizations can be evaluated. For example, in speech recognition 45 

applications, word error rate has been used for many years because it correlates well with user 46 

acceptance testing but provides the necessary level of granularity to guide technology development. 47 

Despite many years of research focused on finding better performance metrics 1718, word error rate 48 

remains a valid metric for technology development and assessment. 49 

Sequential pattern recognition applications, such as speech recognition, keyword search or EEG 50 

analysis, require additional considerations. Data, typically organized in files on a computer, are not 51 

simply assessed with an overall judgment (e.g., “did a seizure occur somewhere in this file?”). 52 

Instead, the locality of the hypothesis must be considered – to what extent did the start and end times 53 

of the hypothesis match the reference transcription. This is a complex issue since a hypothesis can 54 

partially overlap with the reference annotation, and a consistent mechanism for scoring such events 55 

must be adopted. Unfortunately, there is no such standardization in the EEG literature. For example, 56 

Wilson et al. 19 advocates using a term-based metric involving sensitivity and specificity. A term was 57 

defined as a connection of consecutive decisions from the same type of event. A hypothesis is counted 58 

as a true positive when it overlaps with one or more reference annotations. A false positive 59 

corresponds to an event in which a hypothesis annotation does not overlap with any of the reference 60 

annotations. Kelly et al. 20 recommends using a metric that measures sensitivity and FAs. A 61 

hypothesis is considered a true positive when the time of detection is within two minutes of the 62 

seizure onset. Otherwise it is considered a false positive. Baldassano et al. 21 uses an epoch-based 63 

metric that measures false positive and negative rates as well as latency. The development, evaluation 64 

and ranking of various machine learning approaches is highly dependent on the choice of a metric. 65 

A large class of bioengineering problems, including seizure detection, involve prediction as well as 66 

classification. In prediction problems, we are often concerned with how far in advance of an event 67 

(or after the event has occurred) we can predict an outcome. Accuracy of prediction varies with 68 

latency, so this type of performance evaluation adds some complexity to the process. Winterhalder 69 

et al. 22 have studied this problem extensively and argue for a scoring based on long-term 70 

considerations. In this paper, we are not concerned with these types of prediction problems. We are 71 

focused mainly on assessing the accuracy of classification and assessing the proximity of these 72 

classifications to the actual event. 73 

Therefore, we analyze several popular scoring metrics and discuss their strengths and weaknesses 74 

on sequential decoding problems. We introduce several alternatives, such as the Actual Term-75 

Weighted Value (ATWV) 2324 that have proven successful in other fields, and discuss their relevance 76 

to EEG applications. We present a comparison of performance for several systems using these metrics 77 

and discuss how this correlates with overall user acceptance. 78 



Sensors 2019, 19, Shah et al.: Objective evaluation metrics 3 of 26 

 

2. Materials and Methods 79 

Researchers in biomedical fields typically report performance in terms of sensitivity and specificity 80 

25. In a two-class classification problem such as seizure detection, we can define four types of errors: 81 

True Positives (TP):  the number of ‘positives’ detected correctly 82 

True Negatives (TN): the number of ‘negatives’ detected correctly 83 

False Positives (FP): the number of ‘negatives’ detected as ‘positives’ 84 

False Negatives (FN): the number of ‘positives’ detected as ‘negatives’  85 

Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are derived from these quantities. There are a 86 

large number of auxiliary measures that can be calculated from these four basic quantities that are 87 

used extensively in the literature. These are summarized concisely in 26. For example, in information 88 

retrieval applications, systems are often evaluated using accuracy ((TP+TN)/(TP+FN+TN+FP)), 89 

precision (TP/(TP+FP)), recall (another term for sensitivity) and F1 score 90 

((2·Precision·Recall)/(Precision + Recall)). However, none of these measures address the time scale on 91 

which the scoring must occur, which is critical in the interpretation of these measures for many real-92 

time bioengineering applications. 93 

In some applications, it is preferable to score every unit of time. With multichannel signals, such as 94 

EEGs, scoring for each channel for each unit of time might be appropriate since significant events 95 

such as seizures occur on a subset of the channels present in the signal. However, it is more common 96 

in the literature to simply score a summary decision per unit of time that is based on an aggregation 97 

of the per-channel inputs (e.g., a majority vote). We refer to this type of scoring as epoch-based 2728. 98 

An alternative, that is more common in speech and image recognition applications, is term-99 

based 2429, in which we consider the start and stop time of the event, and each event identified in 100 

the reference annotation is counted once. There are fundamental differences between the two 101 

conventions. For example, one event containing many epochs will count more heavily in an epoch-102 

based scoring scenario. Epoch-based scoring generally weights the duration of an event more heavily 103 

since each unit of time is assessed independently. 104 

Time-aligned scoring is essential to sequential decoding problems. But to implement such scoring in 105 

a meaningful way, there needs to be universal agreement on how to assess overlap between the 106 

reference and the hypothesis. For example, Figure 1 demonstrates a typical issue in scoring. The 107 

machine learning system correctly detected 5 seconds of a 10-sec event. Essentially 50% of the event 108 

is correctly detected, but how that is reflected in the scoring depends on the specific metric. Epoch-109 

based scoring with an epoch duration of 1 sec would count 5 FN errors and 5 TP detections. Term-110 

 

Figure 1. A typical situation where a hypothesis (HYP) has a 50% overlap with the reference (REF). 
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based scoring would potentially count this as a correct recognition depending on the way overlaps 111 

are scored.  112 

Term-based metrics score on an event basis and do not count individual frames. A typical approach 113 

for calculating errors in term-based scoring is the Any-Overlap Method (OVLP) 3031. TPs are counted 114 

when the hypothesis overlaps with reference annotation. FPs correspond to situations in which a 115 

hypothesis does not overlap with the reference. The metric ignores the duration of the term in the 116 

reference annotation. In Figure 2, we demonstrate two extreme cases for which the OVLP metric fails. 117 

In each case, 90% of the event is incorrectly scored. In example 1, the system does not detect 118 

approximately 9 seconds of a seizure event, while in example 2, the system incorrectly labels an 119 

additional 9 seconds of time as seizure. OVLP is considered a very permissive way of scoring, 120 

resulting in artificially high sensitivities. In Figure 2, the OVLP metric will score both examples as 121 

100% TP. 122 

It is very difficult to compare the performance of various systems when only two values are reported 123 

(e.g. sensitivity and specificity) and when the prior probabilities vary significantly (in seizure 124 

detection, the a priori probability of a seizure is very low, which means assessment of background 125 

events dominate the error calculations). Often a more holistic view is preferred, such as a Receiver 126 

Operating Characteristic (ROC) 15 or a Detection Error Trade-off (DET) curve 16. An ROC curve 127 

displays the TP rate as a function of the FP rate while a DET curve displays the FN rate as a function 128 

of the FP rate. When a single metric is preferred, the area under an ROC curve (AUC) 3233 is also an 129 

effective way of comparing the performance. A random guessing approach to classification, 130 

assuming equal priors for each class, will give an AUC of 0.5 while a perfect classifier will give an 131 

AUC of 1.0. 132 

The proper balance between sensitivity and FA rate is often application specific and has been studied 133 

extensively in a number of research communities. For example, evaluation of voice keyword search 134 

technology was carefully studied in the Spoken Term Detection (STD) evaluations conducted by 135 

NIST 232434. These evaluations resulted in the introduction of a single metric, ATWV, to address 136 

concerns about tradeoffs for the different types of errors that occur in voice keyword search systems. 137 

Despite being popular in the voice processing community, ATWV has not been used in the 138 

bioengineering community. 139 

Therefore, in this paper, we compare and contrast five popular scoring metrics and one derived 140 

measure: 141 
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(1) NIST Actual Term-Weighted Value (ATWV): based on NIST’s popular scoring package 142 

(F4DE v3.3.1), this metric, originally developed for the NIST 2006 Spoken Term Detection 143 

evaluation, uses an objective function that accounts for temporal overlap between the 144 

reference and hypothesis using the detection scores assigned by the system. 145 

(2) Dynamic Programming Alignment (DPALIGN): similar to the NIST package known as 146 

SCLite 35, this metric uses a dynamic programming algorithm to align terms. It is most often 147 

used in a mode in which the time alignments produced by the system are ignored. 148 

(3) Epoch-Based Sampling (EPOCH): treats the reference and hypothesis as temporal signals, 149 

samples each at a fixed epoch duration, and counts errors accordingly. 150 

(4) Any-Overlap (OVLP): assesses the overlap in time between a reference and hypothesis event, 151 

and counts errors using binary scores for each event.  152 

(5) Time-Aligned Event Scoring (TAES): similar to (4), but considers the percentage overlap 153 

between the two events and weights errors accordingly. 154 

(6) Inter-Rater Agreement (IRA): uses EPOCH scoring to estimate errors, and calculates Cohen’s 155 

Kappa coefficient 36 using the measured TP, TN, FP and FN. 156 

It is important to understand that each of these measures estimates TP, TN, FP and FN through some 157 

sort of error analysis. From these estimated quantities, traditional derived measures such as 158 

sensitivity and specificity are computed. As a result, we will see that sensitivity is a function of the 159 

underlying metric, and this is why it is important there be community-wide agreement on a specific 160 

metric. 161 

We now briefly describe each of these approaches and provide several examples that illustrate 162 
their strengths and weaknesses. These examples are drawn on a compressed time-scale for illustrative 163 
purposes and were carefully selected because they are indicative of scoring metric problems we have 164 
observed in actual evaluation data collected from our algorithm research.  165 

2.1. NIST Actual Term-Weighted Value (ATWV) 166 

 

Figure 2. TP scores for the Any-Overlap method are 100% even though large portions of the event are 

missed. 
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ATWV is a measure that balances sensitivity and FA rate. ATWV essentially assigns an application-167 

dependent reward to each correct detection and a penalty to each incorrect detection. A perfect 168 

system results in an ATWV of 1.0, while a system with no output results in an ATWV of 0. It is 169 

possible for ATWV to be less than zero if a system is doing very poorly (for example a high FA rate). 170 

Experiments in voice keyword search have shown that an ATWV greater than 0.5 typically indicates 171 

a promising or usable system for information retrieval by voice applications. We believe a similar 172 

range is applicable to EEG analysis. 173 

The metric accepts as input a list of N-tuples representing the hypotheses for the system being 174 

evaluated. Each of these N-tuples consists of a start time, end time and system detection score. These 175 

entries are matched to the reference annotations using an objective function that accounts for both 176 

temporal overlap between the reference and hypotheses and the detection scores assigned by the 177 

system being evaluated. These detection scores are often likelihood or confidence scores 23. The 178 

probabilities of miss and FA errors at a detection threshold θ are computed using: 179 

𝑃𝑀𝑖𝑠𝑠(𝑘𝑤,𝜃) = 1 − 
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑘𝑤,𝜃)

𝑁𝑅𝑒𝑓(𝑘𝑤)
⁄  ,  (1) 180 

𝑃𝐹𝐴(𝑘𝑤,𝜃) =
𝑁𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠(𝑘𝑤,𝜃)

𝑁𝑁𝑇(𝑘𝑤) 
⁄ , (2) 181 

where 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑘𝑤,𝜃) is the number of correct detections of terms with a detection score greater than 182 

or equal to θ, 𝑁𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠(𝑘𝑤,𝜃) is the number of incorrect detections of terms with a detection score 183 

greater than or equal to θ, and 𝑁𝑁𝑇(𝑘𝑤) is number of non-target trials for the term kw in the data. The 184 

number of non-target trials for a term is related to the total duration of source signal in 185 

seconds, 𝑇𝑆𝑜𝑢𝑟𝑐𝑒, and is computed as 𝑁𝑁𝑇(𝑘𝑤) = 𝑇𝑆𝑜𝑢𝑟𝑐𝑒 −𝑁𝑅𝑒𝑓(𝑘𝑤). 186 

A term-weighted value is then computed that specifies a trade-off of misses and FAs. ATWV is 187 

defined as the value of TWV at the system’s chosen detection threshold. Using a predefined constant, 188 

β, that was optimized experimentally (β = 999.9) 24, ATWV is computed using: 189 

𝑇𝑊𝑉(𝑘𝑤,𝜃) = 1 − 𝑃𝑀𝑖𝑠𝑠(𝑘𝑤,𝜃) − 𝛽 𝑃𝐹𝐴(𝑘𝑤,𝜃) . (3) 190 

A standard implementation of this approach is available at 37. This metric has been widely used 191 

throughout the human language technology community for 15 years. This is a very important 192 

consideration in standardizing such a metric – researchers are using a common shared software 193 

implementation that ensures there are no subtle implementation differences between sites or 194 

researchers. 195 

To demonstrate the features of this approach, consider the case shown in Figure 3. The hypothesis 196 

for this segment consists of several short seizure events while the reference consists of one long event. 197 

The ATWV metric will assign a TP score of 100% because the midpoint of the first event in the 198 
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hypothesis annotation is mapped to the long seizure event in the reference annotation. This is 199 

somewhat generous given that 50% of the event was not detected. The remaining 5 events in the 200 

hypothesis annotation are counted as false positives. The ATWV metric is relatively insensitive to the 201 

duration of the reference event, though the 5 false positives will lower the overall performance of the 202 

system. The important issue here is that the hypothesis correctly detected about 70% of the seizure 203 

event, and yet because of the large number of false positives, it will be penalized heavily.  204 

In Figure 4 we demonstrate a similar case in which the metric penalizes the hypothesis for missing 205 

three seizure events in the reference. Approximately 50% of the segment is correctly identified. This 206 

type of scoring penalizing repeated events that are part of a larger event in the reference might make 207 

sense in an application like voice keyword search because in human language each word hypothesis 208 

serves a unique purpose in the overall understanding of the signal. However, for a two-class event 209 

detection problem such as seizure detection, such scoring too heavily penalizes the hypothesis for 210 

splitting a long event into a series of short events. 211 

2.2. Dyamic Programming Alignment (DPALIGN) 212 

The DPALIGN metric essentially performs a minimization of an edit distance (the Levenshtein 213 

distance) 12 to map the hypothesis onto the reference. DPALIGN determines the minimum number 214 

of edits required to transform the hypothesis string into the reference string. Given two strings, the 215 

source string X = [x1, x2, ..., xn] of length n, and target string Y = [y1, y2, ..., ym]  of length m, we 216 

define 𝑑𝑖,𝑗, which is the edit distance between the substring x1:xi and y1:yj, as: 217 

 𝑑𝑖,𝑗 = {

𝑑𝑖−1,𝑗 + 𝑑𝑒𝑙

𝑑𝑖,𝑗−1 + 𝑖𝑛𝑠

𝑑𝑖−1,𝑗−1 + 𝑠𝑢𝑏

 , (4) 218 

The quantities being measured here are often referred to as substitution (sub), insertion (ins) and 219 

deletion (del) penalties. For this study, these three penalties are assigned equal weights of 1. A 220 

dynamic programming algorithm is used to find the optimal alignment between the reference and 221 

 

Figure 3. ATWV scores this segment as 1 TP and 5 FPs. The first event’s mid-point overlaps with the 

reference. The remaining five of the fully overlapping hypothesis events are considered as FPs. 

 

Figure 4. ATWV scores this segment as 0 TP and 3 FNs. The mid-point of the hypothesis event does not 

overlap with any of the reference events so all three reference events are considered as FNs. 
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hypothesis based on these weights. Though there are versions of this metric that perform time-222 

aligned scoring in which both the reference and hypothesis must include start and end times, this 223 

metric is most commonly used without time alignment information.  224 

The metric is best demonstrated using the two examples shown in Figure 5. In the first example, the 225 

reference annotation has a series of 5 events, while the hypothesis contains two additional events. 226 

The latter are counted as insertion errors. In the second example, the reference annotation now has 227 

two additional events which are missing from the hypothesis. These are counted as deletion errors. 228 

For convenience, lowercase symbols indicate correct detections while uppercase symbols indicate 229 

errors. The asterisk symbol is used to denote deletion and insertion errors. Note that there is 230 

ambiguity in these alignments. For example, it is not really clear which of the three seizure events in 231 

the second example corresponded to each of the seizure events in the hypothesis. Nevertheless, this 232 

ambiguity doesn’t really influence the overall scoring. Though this type of scoring might at first seem 233 

highly inaccurate since it ignores time alignments of the hypotheses, it has been surprisingly effective 234 

in scoring machine learning systems in sequential data applications (e.g., speech recognition) 1235. 235 

2.3. Epoch-Based Sampling (EPOCH) 236 

Epoch-based scoring uses a metric that treats the reference and hypothesis as signals. These signals 237 

are sampled at a fixed epoch duration. The corresponding label in the reference is compared to the 238 

hypothesis. Similar to DPALIGN, substititions, deletions and insertion errors are tabulated with an 239 

equal weight of 1 for each type of error. This process is depicted in Figure 6. Epoch-based scoring 240 

requires that the entire signal be annotated, which is normally the case for sequential decoding 241 

evaluations. It attempts to account for the amount of time the two annotations overlap, so it directly 242 

addresses the inconsistencies demonstrated in Figure 3 and Figure 4. 243 

One important parameter to be tweaked in this algorithm is the frequency with which we sample the 244 

two annotations, which we refer to as the scoring epoch duration. It is ideally set to an amount of 245 

time smaller than the unit of time used by the classification system to make decisions. For example, 246 

the hypothesis in Figure 6 outputs decisions every 1 sec. The scoring epoch duration should be set 247 

smaller than this. We use a scoring epoch duration of 0.25 sec for most of our work because our 248 

analysis system epoch duration is typically 1 sec. We find in situations like this the results are not 249 

overly sensitive to the choice of the epoch duration as long as it is below 1 sec. This parameter simply 250 

controls how much precision one expects for segment boundaries.  251 

Because EPOCH scoring samples the annotations at fixed time intervals, it is inherently biased to 252 

weigh long seizure events more heavily. For example, if a signal contains one extremely long seizure 253 

event (e.g., 1000 secs) and two short events (e.g., each 10 secs in duration), the accuracy with which 254 

Ref: bckg seiz bckg seiz bckg **** **** 

Hyp: bckg seiz bckg seiz bckg SEIZ BCKG 

(Hits: 5 Sub: 0 Ins: 2 Del: 0 Total Errors: 2) 

Ref: bckg seiz bckg seiz bckg SEIZ BCKG 

Hyp: bckg seiz bckg seiz bckg **** **** 

(Hits: 5 Sub: 0 Ins: 0 Del: 2 Total Errors: 2) 

Figure 5. DPALIGN aligns symbol sequences based on edit distance and ignores time alignments. 
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the first event is detected will dominate the overall scoring. Since seizure events can vary dramatically 255 

in duration, this is a cause for concern. 256 

2.4. Any-Overlap Method (OVLP) 257 

We previously introduced the OVLP metric as a popular choice in the neuroengineering community 258 

3031. OVLP is a more permissive metric that tends to produce much higher sensitivities. If an event 259 

is detected in close proximity to a reference event, the reference event is considered correctly detected. 260 

If a long event in the reference annotation is detected as multiple shorter events in the hypothesis, 261 

the reference event is also considered correctly detected. Multiple events in the hypothesis annotation 262 

corresponding to the same event in the reference annotation are not typically counted as FAs. Since 263 

the FA rate is a very important measure of performance in critical care applications, this is another 264 

cause for concern. 265 

 

Figure 6. EPOCH scoring directly measures the similarity of the time-aligned annotations. TP, FN and FP 

are 5, 2 and 1 respectively. TPs are considered for epoch 3, 4 and 6-9. Epochs 2 and 5 are missed (counted 

as FNs). Epoch 9 adds an FP. 

 

 

Figure 7. OVLP scoring is very permissive about the degree of overlap between the reference and 

hypothesis. The TP score for example 1 is 1 with no false alarms. In example 2, the system detects 2 out of 

3 seizure events, so the TP and FN scores are 2 and 1 respectively.  
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The OVLP scoring method is demonstrated in Figure 7. It has one significant tunable parameter – a 266 

guard band that controls the degree to which a misalignment is still considered as a correct match. In 267 

this study, we use a fairly strict interpretation of this band and require some overlap between the two 268 

events in time – essentially a guard band of zero. The guard band needs to be tuned based on the 269 

needs of the application. Sensitivity generally increases as the guard band is increased.  270 

2.5. Time-Aligned Event Scoring (TAES) 271 

Though EPOCH scoring directly measures the amount of overlap between the annotations, there is a 272 

possibility that this too heavily weighs single long events. Seizure events can vary in duration from 273 

a few seconds to many hours. In some applications, correctly detecting the number of events is as 274 

important as their duration. Hence, the TAES metric was designed as a compromise between these 275 

competing constraints. The essential parameters for calculation of sensitivity and specificity such as 276 

TP, TN and FP for TAES scoring metric are defined as follows: 277 

𝑇𝑃 =  
𝐻𝑠𝑡𝑜𝑝−𝐻𝑠𝑡𝑎𝑟𝑡

𝑅𝑒𝑓𝑑𝑢𝑟
, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑠𝑡𝑎𝑟𝑡  ≤ 𝐻 ≤  𝑅𝑠𝑡𝑜𝑝 ,   (5)  278 

𝑇𝑁 =  
1−(𝑇𝐻𝑠𝑡𝑜𝑝−𝑇𝐻𝑠𝑡𝑎𝑟𝑡)

𝑅𝑒𝑓𝑑𝑢𝑟
, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑠𝑡𝑎𝑟𝑡  ≤ 𝐻 ≤  𝑅𝑠𝑡𝑜𝑝 , (6)  279 

𝐹𝑃 =

{
 

 

 

 
𝐻𝑠𝑡𝑜𝑝− 𝑅𝑠𝑡𝑜𝑝

𝑅𝑒𝑓𝑑𝑢𝑟
, 𝑖𝑓  𝐻𝑠𝑡𝑜𝑝 ≥ 𝑅𝑠𝑡𝑜𝑝, 𝐻𝑠𝑡𝑎𝑟𝑡 ≥ 𝑅𝑠𝑡𝑎𝑟𝑡  𝑎𝑛𝑑 𝐻𝑠𝑡𝑜𝑝 − 𝑅𝑠𝑡𝑜𝑝 ≤ 1,

𝑅𝑠𝑡𝑎𝑟𝑡− 𝐻𝑠𝑡𝑎𝑟𝑡

𝑅𝑒𝑓𝑑𝑢𝑟
, 𝑖𝑓  𝑅𝑠𝑡𝑎𝑟𝑡 ≥ 𝐻𝑠𝑡𝑎𝑟𝑡 , 𝑅𝑠𝑡𝑜𝑝 ≥ 𝐻𝑠𝑡𝑜𝑝𝑎𝑛𝑑 𝑅𝑠𝑡𝑎𝑟𝑡 − 𝐻𝑠𝑡𝑎𝑟𝑡 ≤ 1,

 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (7)  280 

where H and R represent the reference and hypothesis events respectively, and 𝑅𝑒𝑓𝑑𝑢𝑟  represents 281 

the duration of the reference events. 282 

TAES gives equal weight to each event, but it calculates a partial score for each event based on the 283 

amount of overlap. The TP score is the total duration of a detected term divided by the total duration 284 

of the reference term. The FN score is the fraction of the time the reference term was missed divided 285 

by the total duration of the reference term. The FP score is the total duration of the inserted term 286 

divided by total amount of time this inserted term was incorrect according to the reference 287 

annotation. FPs are limited to a maximum of 1 per event. Therefore, like TP and FN, a single FP event 288 

contributes only a fractional amount to the overall FP score if it correctly detects a portion of the same 289 

event in the reference annotation (partial overlap). Moreover, if multiple reference events are detected 290 

by a single long hypothesis event, all but the first detection are considered as FNs. These properties 291 

of the metric help manage the tradeoff between sensitivity and FAs by balancing the contributions 292 

from short and long duration events. An example of TAES scoring is depicted in Figure 8. 293 

2.6. Inter-Rater Agreement (IRA) 294 

Inter-rater agreement (IRA) is a popular measure when comparing the relative similarity of two 295 

annotations. We refer to this metric as a derived metric since it is computed from error counts 296 

collected using one of the other five metrics. IRA is most often measured using Cohen’s Kappa 297 

coefficient 36, which compares the observed accuracy with the expected accuracy. It is computed 298 

using: 299 
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𝜅 =  
𝑝0−𝑝𝑒

1−𝑝𝑒
,  (8) 300 

where 𝑝𝑜 is the relative observed agreement among raters and 𝑝𝑒 is the hypothetical probability of 301 

chance agreement. 302 

The Kappa coefficient ranges between 𝜅 = 1 (complete agreement) and −1 ≤ 𝜅 ≤  0  (no 303 

agreement). It has been used extensively to assess inter-rater agreement for experts manually 304 

annotating seizures in EEG signals. Values in the range of 0.5 ≤ 𝜅 ≤  0.8 are common for these types 305 

of assessments 38. The variability amongst experts mainly involves fine details in the annotations, 306 

such as the exact onset of a seizure. These kinds of details are extremely important for machine 307 

learning and hence we need a metric that is sensitive to small variations in the annotations. For 308 

completeness, we use this measure as a way of evaluating the amount of agreement between two 309 

annotations. 310 

2.7. A Brief Comparison of Metrics 311 

A simple example of how these metrics compare on a specific segment of a signal is shown in Figure 312 

9. A 10-sec section of an EEG signal is shown subdivided into 1-sec segments. The reference has three 313 

isolated events. The system being evaluated outputs one hypothesis that starts in the middle of the 314 

first event and continues through the remaining two events. ATWV scores the system as 1 TP and 2 315 

FNs since it assigns the extended hypothesis event to the center reference event and leaves the other 316 

two undetected. The ATWV score is 0.33 for seizure events, 0.25 for background events, resulting in 317 

an average ATWV of 0.29. The sensitivity and FA rates for seizure events for this metric are 33% and 318 

0 per 24 hrs. respectively. DPALIGN scores the system the same way since time alignments are 319 

 

Figure 8. TAES scoring accounts for the amount of overlap between the reference and hypothesis. TAES 

scores example 1 as 0.71 TP, 0.29 FN and 0.14 FP. Example 2 is scored as 1 TP (due to event at epoch 3), 1 

FN for the second reference event spanning epochs 6 and 7, and 1 FP for the remaining epochs that were 

incorrectly detected as seizures. 
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ignored and the first event in each annotation are matched together, leaving the other two events 320 

undetected. 321 

The EPOCH method scores the alignment 5 TP, 3 FP and 1 FN using a 1-sec epoch duration because 322 

there are 4 epochs for which the annotations do not agree and 5 epochs where they agree. The 323 

sensitivity is 83.33% and the FA rate per 24 hrs. is very high because of the 3 FPs. The OVLP method 324 

scores the segment as 3 TP and 0 FP because detected events have partial to full overlap with all the 325 

reference events, giving a sensitivity of 100% with an FA rate of 0. TAES scores this segment as 0.5 326 

TP and 2.5 FN because the first event is only 50% correct and there are FN errors for the 5th to 7th 327 

and 9th epochs (an example of multiple overlapping reference events), giving a sensitivity of 16.66% 328 

and a corresponding high FA rate. 329 

IRA for seizure events evaluated using Cohen’s Kappa statistic is 0.09 for this example because there 330 

are essentially 4 errors for 6 seizure events. IRAs below 0.5 indicate a poor match between the 331 

reference and the hypothesis. 332 

It is difficult to conclude from this example which of these measures are most appropriate for EEG 333 

analysis. However, we see that ATWV and DPALIGN generally produce similar results. The EPOCH 334 

metric produces larger counts because it samples time rather than events. OVLP produces a high 335 

sensitivity while TAES produces a low sensitivity but a relatively higher FA rate. 336 

3. Results 337 

This To demonstrate the differences between these metrics on a realistic task, we have evaluated a 338 

range of machine learning systems on a seizure detection task based on the TUH EEG Seizure Corpus 339 

39. An overview of the corpus is given in Table 1. This is the largest open source corpus of its type. It 340 

consists of clinical data collected at Temple University Hospital, and represents a very challenging 341 

machine learning task because it contains a rich 342 

variety of common real-world problems found in 343 

clinical data (e.g., patient movement). There are 50 344 

patients in the evaluation corpus, making it large 345 

enough to accurately assess fine differences in 346 

algorithm performance.  347 

A general architecture for the five machine 348 

learning systems evaluated is shown in Figure 10. 349 

An EEG signal is input using a European Data 350 

Format (EDF) file. The signal is converted to a 351 

sequence of feature vectors. LFCC (Linear 352 

 

Figure 9. An example that summarizes the differences between scoring metrics. 

 

Table 1. The TUH EEG Seizure Corpus (v1.1.1) 

Description Train Eval 

Patients 196 50 

Sessions 456 230 

Files 1,505 984 

No. Seizure Events 870 614 

Seizure (secs) 51,140 53,930 

Non-Seizure (secs) 877,821 547,728 

Total (secs) 928,962 601,659 
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Frequency Cepstral Coefficient) features are created using a 0.1 sec frame duration and a 0.2 second 353 

analysis window for each channel 40. We use first 7 cepstral coefficients along with their first and 354 

second derivatives. A group of frames are classified into an event on a per-channel basis using 355 

combination of deep learning networks. The deep learning system essentially looks across multiple 356 

epochs, which we refer to as the temporal context, and multiple channels, which we refer to as the 357 

spatial context since each channel is associated with a location of an electrode on a patient’s head. 358 

There are a wide variety of algorithms that can be used to produce a decision from these inputs. Even 359 

though seizures occur on a subset of the channels input to such a system, we focus on a single decision 360 

made across all channels at each point in time. 361 

The five systems selected were carefully chosen because they represent a range of performance that 362 

is representative of state of the art on this task and because these systems exhibit different error 363 

modalities on this task. The performance of these systems is sufficiently close so that the impact of 364 

these different scoring metrics becomes apparent. The systems selected were: 365 

(1) HMM/SdA: a hybrid system consisting of a hidden Markov model (HMM) decoder and a 366 

postprocessor that uses a Stacked Denoising Autoencoder (SdA). An N-channel EEG was 367 

transformed into N independent feature streams using a standard sliding window based 368 

approach. The hypotheses generated by the HMMs were postprocessed using a second stage 369 

of processing that examines the temporal and spatial context. We apply a third pass of 370 

postprocessing that uses a stochastic language model to smooth hypotheses involving 371 

sequences of events so that we can suppress spurious outputs. This third stage of 372 

postprocessing provides a moderate reduction in the false alarm rate. 373 

Standard three state left-to-right HMMs with 8 Gaussian mixture components per state were 374 

used for sequential decoding. We divide each channel of an EEG into 1-second epochs, and 375 

further subdivide these epochs into a sequence of frames. Each epoch is classified using an 376 

HMM trained on the subdivided epoch, and then these epoch-based decisions are 377 

postprocessed by additional statistical models in a process similar to the language modeling 378 

component of a speech recognizer. 379 

The output of the epoch-based decisions was postprocessed by a deep learning system. The 380 

SdA network has three hidden layers with corruption levels of 0.3 for each layer. The number 381 

of nodes per layer are: first layer = 800, second layer = 500, third layer = 300. The parameters for 382 

pre-training are: learning rate = 0.5, number of epochs = 150, batch size = 300. The parameters 383 

for fine-tuning are: learning rate = 0.1, number of epochs = 300, batch size = 100. The overall 384 

result of the second stage is a probability vector of dimension two containing a likelihood that 385 

each label could have occurred in the epoch. A soft decision paradigm is used rather than a 386 

hard decision paradigm because this output is smoothed in the third stage of processing. 387 

(2) HMM/LSTM: an HMM decoder postprocessed by a Long Short-Term Memory (LSTM) 388 

network. Like the HMM/SdA hybrid approach previously described, the output of the HMM 389 

system is a vector of dimension 2 × number of channels (22) × the window length (7). Therefore, 390 

we also use PCA before LSTM in this approach to reduce the dimensionality of the data to 20. 391 

For this study, we used a window length of 41 for LSTM, and this layer is composed of one 392 

hidden layer with 32 nodes. The output layer nodes in this LSTM level use a sigmoid function. 393 

The parameters of the models are optimized to minimize the error using a cross-entropy loss 394 
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function. Adaptive Moment Estimation (Adam) is used in the optimization process. 395 

(3) IPCA/LSTM: a preprocessor based on Incremental Principal Component Analysis (IPCA) 396 

followed by an LSTM decoder. The EEG features are delivered to an IPCA layer for spatial 397 

context analysis and dimensionality reduction. A batch size of 50 is used in IPCA and the 398 

output dimension is 25. The output of IPCA is delivered to a LSTM for classification. We used 399 

a one-layer LSTM with a hidden layer size of 128 and batch size of 128 is used along with Adam 400 

optimization and a cross–entropy loss function. 401 

(4) CNN/MLP: a pure deep learning-based approach that uses a Convolutional Neural Network 402 

(CNN) decoder and a Multi-Layer Perceptron (MLP) postprocessor. The network contains six 403 

convolutional layers, three max pooling layers and two fully-connected layers. A rectified 404 

linear unit (ReLU) non-linearity is applied to the output of every convolutional and fully-405 

connected layer. 406 

(5) CNN/LSTM: a pure deep learning-based architecture that uses a combination of CNN and 407 

LSTM networks. In this architecture, we integrate 2D CNNs, 1D CNNs and LSTM networks to 408 

better exploit long-term dependencies. Exponential Linear Units (ELU) are used as the 409 

activation functions for the hidden layers. Adam is used in the optimization process along with 410 

a mean squared error loss function. 411 

Comprehensive details about the architectures are available in 4040. The details of these systems are 412 

not critical to this study. We selected these systems because we needed a range of typical system 413 

performance that would expose differences in the scoring metrics. What is most important is how the 414 

range of performance is reflected in these metrics. 415 

A comparison of the performance of the different architectures is presented in Table 2. Though the 416 
relative rankings of these systems not surprisingly vary with the metric, the ranking of these systems 417 
is accurately represented by the overall trends in Table 2. HMM/SdA generally performs the poorest 418 
of these systems, delivering a respectable sensitivity but at a high FA rate. CNN/LSTM typically 419 
delivers highest performance and has a low FA rate, which is very important in this type of 420 
application.  section may be divided by subheadings. It should provide a concise and precise 421 

 

Figure 10. A typical hybrid machine learning model architecture that incorporates spatial and temporal 

features 
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description of the experimental results, their interpretation as well as the experimental conclusions 422 
that can be drawn. 423 

4. Discussion 424 

Evaluating systems from a single operating point is always a bit tenuous. Therefore, in Figure 11, we 425 

provide DET curves for the systems and in Table 3 we provide AUCs for these DET curves calculated 426 

using OVLP and TAES for comparison. This is due to our emphasis on using OVLP and TAES metrics 427 

for seizure detection-like applications. The DET curves were derived from output from the OVLP 428 

scoring metric. The shapes of the DET curves do not change significantly with the scoring metric 429 

though the absolute numbers vary similarly to what we see in Table 2. AUC values from Table 3 also 430 

follow similar trends but the differences between the AUC and TAES metrics is less pronounced 431 

compared to the differences between AUC and OVLP. It is clear from this data that CNN/LSTM 432 

performance is significantly different from the other systems. This is primarily because of its low FA 433 

rate. For this particular application, sensitivity drops rapidly as the FA rate is lowered. Therefore, 434 

comparing a single data point for each system is dangerous because the systems are most likely 435 

operating at different points on a DET curve if the sensitivities are significantly different. We find 436 

tuning these systems to have a comparable FA rate is important when comparing two systems only 437 

based on sensitivity. 438 

In Table 2 we can examine the sensitivity of the different metrics by looking at the variation in 439 

sensitivity. For example, for HMM/SdA, we see the lowest sensitivities are produced by TAES and 440 

EPOCH scoring, while the highest sensitivities are produced by OVLP and DPALIGN. This makes 441 

sense because OVLP and DPALIGN are very forgiving of time alignment errors, while TAES and 442 

Table 2. Performance vs. scoring metric 

Metric Measure HMM/SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/LSTM 

ATWV 

Sensitivity 30.35% 26.73% 24.73% 29.52% 30.34% 

Specificity 61.38% 68.93% 64.51% 65.87% 93.15% 

FAs/24 hrs 98 75 94 94 11 

ATWV -0.8392 -0.8469 -0.4628 -0.7971 0.1737 

OVLP 

Sensitivity 35.35% 30.05% 32.97% 39.09% 30.83% 

Specificity 73.35% 80.53% 77.57% 76.84% 96.86% 

FAs/24 hrs 77 60 73 77 7 

DPALIGN 

Sensitivity 44.11% 33.77% 35.77% 43.35% 32.46% 

Specificity 66.87% 72.99% 69.59% 71.49% 95.17% 

FAs/24 hrs 86 66 81 77 8 

TAES 

Sensitivity 17.29% 22.84% 22.12% 31.58% 12.48% 

Specificity 66.04% 70.41% 66.64% 64.75% 95.24% 

FAs/24 hrs 82 68 83 91 8 

EPOCH 

Sensitivity 20.71% 50.46% 51.02% 65.03% 9.784% 

Specificity 98.22% 94.82% 94.09 91.55% 99.84% 

FAs/24 hrs 1418 4133 4711 6738 126 
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EPOCH penalize time alignment errors heavily. We see 443 

similar trends for CNN/LSTM though the range of 444 

differences between the three highest scoring metrics is 445 

smaller. We also see that the five algorithms are ranked 446 

similarly by each scoring metric. HMM/SdA consistently 447 

scores the lowest and CNN/LSTM consistently scores the 448 

highest. The other three systems are very similar in their 449 

performance. 450 

The ATWV scores for all algorithms are extremely low. 451 

The ATWV scores are below 0.5 which indicates that 452 

overall performance is poor. However, the ATWV score for CNN/LSTM is significantly higher than 453 

the other four systems. ATWV attempts to reduce the information contained in a DET curve to a 454 

single number, and does a good job reflecting the results shown in Figure 11. The DET curves for 455 

HMM/LSTM and HMM/SdA overlap considerably for an FP rate between 0.25 and 1.0, and this is a 456 

primary reason why their ATWV scores are similar. However, for the seizure detection application 457 

we are primarily interested in the low FP rate region, and in that range, HMM/LSTM and IPCA/LSTM 458 

perform similarly. 459 

While sensitivity and specificity are commonly used metrics in the bioengineering community, from 460 

Table 2 and Figure 11 we see that the FA rate also plays a major role in determining the usability of a 461 

system. A commonly used metric in the machine learning community that is somewhat intuitive is 462 

accuracy. The accuracy of the five systems is shown in Table 4. Accuracy weights all types of errors 463 

as equally important. This is acceptable if the dataset is balanced. However, for many bioengineering 464 

applications, such as seizure detection, the target class, or class of interest, occurs infrequently. We 465 

 

Figure 11. A comparison of DET curves (FNR Vs. FPR) for all 5 machine learning architectures 

 
Table 3. A comparison of AUC based on 

the OVLP and TAES metrics 

Algorithm AUC 

(OVLP) 

AUC 

(TAES) 

HMM/SdA 0.44 0.72 

HMM/LSTM 0.44 0.71 

IPCA/LSTM 0.39 0.72 

CNN/MLP 0.38 0.65 

CNN/LSTM 0.21 0.56 
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see that CNN/LSTM is significantly more accurate than the other four systems, but that the 466 

differences between these remaining four systems is minimal when using accuracy as a metric.  467 

Another popular metric that attempts to aggregate performance into a single data point, and is 468 

popular in the information retrieval communities, is the F1 score. These scores for the five systems 469 

are shown in Table 5. We see there are significant variations in F1 scores. For example, for the TAES 470 

and EPOCH metrics, which stress time alignments, the best performing system is not CNN/LSTM. 471 

F1 scores do not adequately emphasize FAs for applications such as seizure detection. 472 

We generally prefer operating points where performance in terms of sensitivity, specificity and FAs 473 

is balanced. The ATWV metric explicitly attempts to balance these by assigning a reward to each 474 

correct detection and a penalty to each incorrect detection. None of the conventional metrics 475 

described here consider the fraction of a detected event that is correct. This is the inspiration behind 476 

the development of TAES scoring. TAES scoring requires the time alignments to match, which is a 477 

more stringent requirement than, for example, OVLP. Consequently, the sensitivity produced by the 478 

TAES and EPOCH metrics tends to be lower. 479 

Finally, comparing results across these five metrics can provide useful diagnostic information and 480 

provide insight into the system’s behavior. For example, the IPCA/LSTM and HMM/LSTM systems 481 

have relatively higher sensitivities according to the EPOCH metric, indicating that these systems tend 482 

to detect longer seizure events. Conversely, since the CNN/LSTM system has relatively low 483 

sensitivities according to the TAES and EPOCH metrics, it can be inferred that this system misses 484 

longer seizure events. Similarly, if the sensitivity was relatively high for TAES and relatively low for 485 

EPOCH, it would indicate that the system tends to detect a majority of smaller to moderate events 486 

precisely regardless of the duration of an event. Similarly, a comparison of ATWV scores with other 487 

metrics gives diagnostic information such as whether a system accurately detects the onset and end 488 

of an event or whether the system splits long events into multiple short events. Examining the 489 

ensemble of scores can be revealing for these six metrics. 490 

To understand the pairwise statistical difference between these evaluation metrics and deep 491 

Table 4. Accuracy vs. scoring metric 

Metric HMM/SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/LSTM 

ATWV 54.0% 54.0% 52.1% 54.9% 70.7% 

OVLP 65.1% 66.5% 65.6% 66.9% 78.9% 

DPALIGN 61.5% 60.2% 59.2% 62.9% 73.6% 

TAES 56.6% 57.3% 55.4% 57.2% 69.7% 

EPOCH 92.3% 91.5% 90.8 % 89.5% 91.5% 

Table 5. F1 score vs. scoring metric 

Metric HMM/ SdA HMM/LSTM IPCA/LSTM CNN/MLP CNN/LSTM 

ATWV 0.24 0.28 0.24 0.28 0.42 

OVLP 0.31 0.33 0.34 0.38 0.45 

DPALIGN 0.35 0.36 0.35 0.42 0.45 

TAES 0.16 0.26 0.24 0.31 0.19 

EPOCH 0.29 0.47 0.46 0.49 0.14 

 



Sensors 2019, 19, Shah et al.: Objective evaluation metrics 18 of 26 

 

architectures, we have performed several tests: Kolmogorov-Smirnov (KS), Pearson’s R (correlation 492 

coefficient) and Z-test. These tests were performed to evaluate results of hybrid deep learning 493 

architectures on the basis of sensitivity and specificity. Each individual patient from the TUSZ dataset 494 

was evaluated separately. Outliers were removed by rejecting all input values collected from patients 495 

which have no seizures and from those for which deep learning systems detected no seizures. 496 

Prior to performing tests for evaluating statistically differences, such as a z-test, t-test or ANOVA, it 497 

must first be determined whether or not the group sample, in our case individual metric’s score on 498 

per patient evaluation, is normally distributed. We performed KS tests on each separate evaluation 499 

metric and confirmed that the group distribution is indeed Gaussian. The KS values for normal 500 

distributions collected range from 0.61 – 0.71 for sensitivity and 0.99 – 1.00 for specificity with the p-501 

values equal to zero. We then evaluate the correlation coefficient (Pearson’s R) between pairs of 502 

metrics. 503 

Correlations for each pair of scoring metrics are shown in Table 6 (for sensitivity) and Table 7 (for 504 

specificity). It can be seen that the pairs ATWV-EPOCH and DPALIGN-EPOCH, have minimum 505 

correlation (~0.5). The pairwise correlations between OVLP, ATWV and DPALIGN are much higher. 506 

The EPOCH method has a low correlation with all other metrics but TAES. This makes sense because 507 

the EPOCH method scores events on a constant time scale instead of on individual events. TAES 508 

takes into account the duration of the overlap, so it is the closest method to EPOCH in this regard. 509 

Since OVLP and TAES both score overlapping events independently, we also expect these two 510 

methods to be correlated (sensitivity: 0.78; specificity: 0.95). ATWV on the other hand has fairly low 511 

correlations with the other metrics for specificity because of its stringent rules for FPs when there are 512 

multiple overlapping events. The overall highest correlation is between ATWV and OVLP for 513 

sensitivity, and OVLP and TAES for specificity. All the correlation values (Pearson’s R) collected in 514 

these tables are statistically significant with the p-values < 0.001. 515 

To understand the statistical significance of each system, we perform two-tailed Z-tests on all the 516 

recognition system pairs for sensitivity as shown in Table 8 and for specificity as shown in Table 9. 517 

Table 6. Correlation of the scoring metrics (for sensitivity) 

Metric ATWV DPALIGN OVLP TAES EPOCH 

ATWV --- 0.87 (p < 0.001) 0.92 (p < 0.001) 0.71 (p < 0.001) 0.50 (p < 0.001) 

DPALIGN 
 

--- 0.90 (p < 0.001) 0.69 (p < 0.001) 0.48 (p < 0.001) 

OVLP 
  

--- 0.78 (p < 0.001) 0.62 (p < 0.001)  

TAES 
   

--- 0.87 (p < 0.001) 

EPOCH 
  

  
 

--- 

Table 7. Correlation of the scoring metrics (for specificity) 

Metric ATWV DPALIGN OVLP TAES EPOCH 

ATWV --- 0.49 (p < 0.001) 0.45 (p < 0.001) 0.54 (p < 0.001) 0.32 (p < 0.001) 

DPALIGN 
 

--- 0.94 (p < 0.001) 0.89 (p < 0.001) 0.38 (p < 0.001) 

OVLP 
  

--- 0.95 (p < 0.001) 0.44 (p < 0.001) 

TAES 
   

--- 0.56 (p < 0.001) 

EPOCH 
    

--- 
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Cells in these tables contain entries that consist of the sensitivity/specificity differences between the 518 

systems and a binary classification value (Yes/No) based on extracted p-values from the Z-test with 519 

95% confidence. Here again, the data was prepared by scoring systems on individual patients. Prior 520 
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to performing Z-tests, the Gaussianity of each sample was evaluated using a KS test. All the samples 521 

were confirmed as normal with p-values < 0.001.  522 

From Table 8, it can be observed that, aside from the EPOCH and TAES scoring metrics, the 523 

Table 8. Significance calculated for scoring metrics using Z-tests for α-value 0.05 (for sensitivity) 

ATWV (Abs. sensitivity difference (%), Significant/Non-significant) 

ML Systems (Sens.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(30.34%) --- (00.82%) Y (03.61%) Y (00.01%) Y (05.61%) Y 

CNN-MLP(29.52%)  --- (02.79%) N (00.83%) N (04.79%) N 

HMM-LSTM(26.73%)   --- (03.62%) N (02.00%) N 

HMM-SDA(30.35%)    --- (05.62%) N 

IPCA-LSTM(24.73%)    
 

--- 

DPALIGN (Abs. sensitivity difference) 

ML Systems (Sens.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(32.46%) --- (10.89%) Y (01.31%) Y (11.65%) Y (03.31%) Y 

CNN-MLP(43.35%)  --- (09.58%) N (00.76%) N (07.58%) N 

HMM-LSTM(33.77%)   --- (10.34%) N (02.00%) N 

HMM-SDA(44.11%)    --- (08.34%) N 

IPCA-LSTM(35.77%)     --- 

EPOCH (Abs. sensitivity difference) 

ML Systems (Sens.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(09.78%) --- (55.25%) N (40.68%) N (10.93%) Y (41.24%) N 

CNN-MLP(65.03%)  --- (14.57%) Y (44.32%) Y (14.01%) N 

HMM-LSTM(50.46%)   --- (29.75%) Y (00.56%) N 

HMM-SDA(20.71%)    --- (30.31%) Y 

IPCA-LSTM(51.02%)     --- 

OVLP (Abs. sensitivity difference) 

ML Systems (Sens.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(30.83%) --- (08.26%) Y (02.14%) Y (04.52%) Y (02.14%) Y 

CNN-MLP(39.09%)  --- (09.04%) N (03.74%) N (06.12%) N 

HMM-LSTM(30.05%)   --- (05.30%) N (02.92%) N 

HMM-SDA(35.35%)    --- (02.38%) N 

IPCA-LSTM(32.97%)     --- 

TAES (Abs. sensitivity difference) 

ML Systems (Sens.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(12.48%) --- (19.10%) N (10.36%) N (04.81%) Y (09.64%) N 

CNN-MLP(31.58%)  --- (08.74%) N (14.29%) Y (09.46%) N 

HMM-LSTM(22.84%)   --- (05.55%) Y (00.72%) N 

HMM-SDA(17.29%)    --- (04.83%) Y 

IPCA-LSTM(22.12%)     --- 
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differences between the CNN-LSTM system and all the other systems are statisticially significant 524 

(rejecting the null hypothesis with p-values < 0.05). On the other hand, the EPOCH and TAES metrics 525 

fail to reject the null hypothesis for CNN-LSTM. According to these metrics, the performance of 526 

Table 9. Significance calculated for scoring metrics using Z-tests for α-value 0.05 (for specificity) 

ATWV (Abs. specificity difference (%), Significant/Non-significant) 

ML Systems (Spec.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(93.15%) --- (27.28%) Y (24.22%) Y (31.77%) Y (28.64%) Y 

CNN-MLP(65.87%)  --- (03.06%) N (04.49%) N (01.36%) N 

HMM-LSTM(68.93%)   --- (07.55%) Y (04.42%) N 

HMM-SDA(61.38%)    --- (03.13%) N 

IPCA-LSTM(64.51%)    
 

--- 

DPALIGN  (Abs. specificity difference (%), Significant/Non-significant) 

ML Systems (Spec.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(95.17%) --- (23.68%) Y (22.18%) Y (28.30%) Y (25.58%) Y 

CNN-MLP(71.49%)  --- (01.50%) N (04.62%) Y (01.90%) N 

HMM-LSTM(72.99%)   --- (06.12%) Y (03.40%) N 

HMM-SDA(66.87%)    --- (02.72%) Y 

IPCA-LSTM(69.59%)     --- 

EPOCH  (Abs. specificity difference (%), Significant/Non-significant) 

ML Systems (Spec.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(99.84%) --- (08.29%) N (05.02%) N (01.62%) N (05.75%) N 

CNN-MLP(91.55%)  --- (03.27%) N (06.67%) N (02.54%) N 

HMM-LSTM(94.82%)   --- (03.40%) N (00.73%) N 

HMM-SDA(98.22%)    --- (04.13%) N 

IPCA-LSTM(94.09%)     --- 

OVLP  (Abs. specificity difference (%), Significant/Non-significant) 

ML Systems (Spec.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(96.86%) --- (20.02%) Y (16.33%) Y (23.51%) Y (19.29%) Y 

CNN-MLP(76.84%)  --- (03.69%) N (03.49%) Y (00.73%) N 

HMM-LSTM(80.53%)   --- (07.18%) Y (02.96%) N 

HMM-SDA(73.35%)    --- (04.22%) Y 

IPCA-LSTM(77.57%)     --- 

TAES  (Abs. specificity difference (%), Significant/Non-significant) 

ML Systems (Spec.) CNN-LSTM CNN-MLP HMM-LSTM HMM-SDA IPCA-LSTM 

CNN-LSTM(95.24%) --- (31.21%) Y (24.83%) Y (29.20%) Y (28.60%) Y 

CNN-MLP(64.03%)  --- (06.38%) N (02.01%) Y (02.61%) N 

HMM-LSTM(70.41%)   --- (04.37%) Y (03.77%) N 

HMM-SDA(66.04%)    --- (00.60%) Y 

IPCA-LSTM(66.64%)     --- 
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HMM-SDA is statistically different from the other systems, confirming its poor performance. This 527 

can also be observed from EPOCH/TAES results of Table 2.  528 

Table 9 indicates a different trend than Table 8. The EPOCH metric fails to reject null-hypothesis for 529 

all the systems. Since specificity is calculated from TN and FP values, for an evaluation set 167 hours 530 

in duration and an epoch size 0.25, a few thousand seconds of FPs do not make any significant 531 

difference in terms of specificity. This can also be directly observed in Table 2 where the specificity 532 

of all systems according to the EPOCH metric is always greater than 90%. The huge difference 533 

between the duration of background and seizure events is the primary reason for such high 534 

specificities. On the other hand, the OVLP and TAES metrics completely agree with each other’s Z-535 

test results for specificity.  536 

5. Conclusions 537 

Standardization of scoring metrics is an extremely important step for a research community to take 538 

in order to make progress on machine learning problems such as automatic interpretation of EEGs. 539 

There has been a lack of standardization in most bioengineering fields. Popular metrics such as 540 

sensitivity and specificity do not completely characterize the problem and neglect the importance 541 

that FA rate plays in achieving clinically acceptable solutions. In this paper, we have compared 542 

several popular scoring metrics and demonstrated the value of considering the accuracy of time 543 

alignments in the overall assessment of a system. We have proposed the use of a new metric, TAES 544 

scoring, which is consistent with popular scoring approaches such as OVLP, but provides more 545 

accurate assessments by producing fractional scores for recognition of events based on the degree of 546 

match in the time alignments. We have also demonstrated the efficacy of an existing metric, ATWV, 547 

that is popular in the speech recognition community.  548 

We have also not discussed the extent to which we can tune these metrics by weighting various types 549 

of errors based on feedback from clinicians and other ‘customers’ of the technology. Optimization of 550 

the metric is a research problem in itself, since many considerations, including usability of the 551 

technology and a broad range of applications, must be involved in this process. Our informal 552 

attempts to optimize ATWV and OVLP for seizure detection have not yet produced significantly 553 

different results than what was presented here. Feedback from clinicians has been consistent that FA 554 

rate is perhaps the single most important measure once sensitivity is above approximately 75%. As 555 

we move more technology into operational environments we expect to have more to contribute to 556 

this research topic.  557 

Finally, the Python implementation of these metrics is available at the project web site: 558 

https://www.isip.piconepress.com/projects/tuh_eeg/downloads/nedc_eval_eeg. Readers are 559 

encouraged to refer to the software for detailed questions about the specific implementations of these 560 

algorithms and the tunable parameters available. 561 
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