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� Agreement was moderate among eight experts for labeling the location of seizures in 1 h epochs of
continuous ICU EEG monitoring recordings.

� Inter-rater agreement for labeling periodic discharges was considerably lower than for labeling
seizures.

� Agreement among experts was improved by the use of EEG education modules.

a b s t r a c t

Objective: This study investigated inter-rater agreement (IRA) among EEG experts for the identification of
electrographic seizures and periodic discharges (PDs) in continuous ICU EEG recordings.
Methods: Eight board-certified EEG experts independently identified seizures and PDs in thirty 1-h EEG
segments which were selected from ICU EEG recordings collected from three medical centers. IRA was
compared between seizure and PD identifications, as well as among rater groups that have passed an
ICU EEG Certification Test, developed by the Critical Care EEG Monitoring Research Consortium
(CCEMRC).
Results: Both kappa and event-based IRA statistics showed higher mean values in identification of
seizures compared to PDs (k = 0.58 vs. 0.38; p < 0.001). The group of rater pairs who had both passed
the ICU EEG Certification Test had a significantly higher mean IRA in comparison to rater pairs in which
neither had passed the test.
Conclusions: IRA among experts is significantly higher for identification of electrographic seizures
compared to PDs. Additional instruction, such as the training module and certification test developed
by the CCEMRC, could enhance this IRA.
Significance: This study demonstrates more disagreement in the labeling of PDs in comparison to
seizures. This may be improved by education about standard EEG nomenclature.

Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.
1. Introduction

Evidence from several studies suggests that electrographic sei-
zures occur frequently in critically ill patients due to a variety of
insults to the brain (Privitera et al., 1994; Jordan, 1995; DeLorenzo
et al., 1998; Vespa et al., 1999, 2003; Towne et al., 2000; Pandian
et al., 2004; Claassen et al., 2004, 2007; Jette et al., 2006; Kilbride
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et al., 2009; Oddo et al., 2009). Approximately 90% of these seizures
are clinically unrecognized non-convulsive which can only be reli-
ably diagnosed by continuous EEG (cEEG) monitoring (Hirsch,
2010). For many ICU patients, non-convulsive seizures are poten-
tially harmful if the diagnosis and treatment are delayed (Jordan,
1993, 1999a; Waterhouse et al., 1998; Hirsch, 2004a,b; Hirsch and
Kull, 2004; Kull and Emerson, 2005; Kaplan, 2006; Jirsch and
Hirsch, 2007; Hyllienmark and Amark, 2007; Oddo et al., 2009;
Friedman et al., 2009). Therefore, cEEG monitoring has become stan-
dard practice in many ICUs and is rapidly spreading in use. Rapid
recognition of nonconvulsive seizures and other abnormal EEG pat-
terns such as periodic discharges can have significant impact on the
decision making including ordering neuro-imaging, modification of
antiepileptic drug regimen and optimization of cerebral perfusion
(Jordan, 1999b; Claassen et al., 2000).

With the lack of reliable automated detection, a major
constraint in recognizing nonconvulsive seizures is that there is
complete reliance on visual analysis of the raw EEG recordings
by clinical neurophysiologists. Furthermore, like interictal epilepti-
form discharges, although there are published criteria of EEG signal
characteristics for recognizing electrographic seizures and PDs, it is
not rare that inter-rater agreement (IRA) among EEG experts can
be very poor, especially for cases with equivocal patterns or with
more complex and abnormal background activities (Ronner et al.,
2009). Since IRA reliability in recognizing these critical EEG events
has significant implications for the value of EEG as a diagnostic
tool, it is important to design studies that are similar to the clinical
practice to assess IRA.

In spite of its importance, there has only been one published
study that quantitatively assessed IRA in recognizing electro-
graphic seizures in critically ill patients (Ronner et al., 2009), and
two which assessed IRA in recognizing PDs (Gerber et al., 2008;
Mani et al., 2012). Ronner et al. sampled discontinuous EEG epochs
(three 10 s epochs for each of the 30 EEG recordings), put them
into screenshots in PowerPoint slides, and the experts were asked
to determine whether a seizure was present. Although this study
was able to provide an assessment of inter-rater variability, the
EEG review the experts performed in this study is very different
from typical daily clinical practice because of three reasons. First,
the experts were provided with short duration EEG samples, which
limited an adequate informed review since determination of an
electrographic seizure often requires analysis of both the ictal pat-
tern and the background activity preceding it. Secondly, this study
did not allow the experts to adjust typical EEG visualization set-
tings (such as montage, signal sensitivity, filters, etc.) during the
EEG review. Third, there was only a measurement of the presence
or absence of patterns but not their durations (i.e., onset and off-
set), which is suboptimal since the length of an EEG pattern, espe-
cially seizures, is clinically important. In the study by Gerber et al.,
a conventional digital EEG review station was used to categorize
the EEG epochs with standardized terminology. As in Ronner
et al.’s study, most EEG epochs were 10 s in duration, selected from
11 ICU patients who all had the diagnosis of subarachnoid hemor-
rhage. In Mani et al.’s study, a large number of clinical neurophy-
siologists (16 experts) labeled a selection of EEG epochs of periodic
and rhythmic EEG activity based on the American Clinical Neuro-
physiology Society (ACNS) nomenclature. A high IRA was found
for labeling the location and pattern type but other diagnostic cri-
teria for the presence of fast activity and sharp/spike wave activity
showed a low IRA. Similarly, only a small number (<15) of EEG
samples with short duration (10 s) were used for this study and
the reviews were based on screen-captured images that the
experts could not adjust visualization settings. As in Ronner
et al.’s study, the experts in these two studies labeled only the
presence or absence of patterns but not their durations (i.e., onset
and offset).
The purpose of the present study was to statistically evaluate
IRA among EEG experts in identifying electrographic seizure and
PDs from continuous EEG recordings collected from prospective
ICU patients using a review system which replicates a typical dig-
ital EEG review station. Specifically, we aimed to investigate (1) the
degree of agreement in identifying seizures versus PDs, (2) the
agreement with respect to the duration of seizure and PD events,
and (3) the effect of studying and passing the ACNS CCEMRC ICU
EEG quiz on expert agreement levels for identifying and marking
the duration of these events.
2. Method

2.1. Subject population and test EEG dataset

EEG recordings used in this study were collected from critically
ill patients 18 years of age or older who were admitted to the Med-
ical University of South Carolina (Charleston, SC), Emory University
Hospital (Atlanta, GA), or Duke University Medical Center (Dur-
ham, NC). Collection of EEG data was approved by each institu-
tion’s Investigational Review Board, as well as the Western
Investigational Review Board (WIRB). The only criterion for includ-
ing a subject’s EEG recording in the study is that there should be at
least one seizure noted in the daily clinical EEG report. Therefore,
the ICU patients included in the study had a variety of etiologies,
background EEGs, and ictal EEG patterns. Based on the seizure
occurrences described in the clinical reports, a total of 30 1-h
EEG segments were randomly sampled from 20 subjects’ long-term
EEG recordings that contained seizures. Although selected patients
had at least one seizure documented in their report, the randomly
sampled 1 h EEG segments did not necessarily include seizures. All
recordings were made using the International 10–20 recording sys-
tem recorded on XLTEK or Nihon-Kohden equipment and were
acquired at a sampling rate of 200 or 256 Hz.

2.2. Expert raters

Eight board-certified academic EEG experts, who review and
interpret ICU EEGs for their clinical duties, were recruited to partic-
ipate in the study. At the time of the study, four experts had taken
and passed the ICU EEG Certification Test developed by CCEMRC
and based on the 2012 version of the ACNS Standardized Critical
Care EEG Terminology (Hirsch et al., 2013), which mainly focused
on periodic discharges and rhythmic delta activities. The task
was to independently mark the onset and offset of electrographic
seizures and PDs in each of the 1-h EEG segments. Experts were
not asked to differentiate between different locations of PDs (i.e.,
generalized vs. lateralized) but were asked to mark PDs of any loca-
tion or spatial distribution. Three expert raters were involved with
the collection of some test EEG segments and therefore were not
asked to review those EEG segments. As a result, five experts
reviewed and marked events on all 30 EEG segments, whereas
the other three experts only reviewed and marked events on 20
EEG segments. Therefore, each test EEG segment was indepen-
dently reviewed and marked by seven EEG experts.

2.3. Review process

A web-based EEG review and scoring system, EEGnet (Halford
et al., 2011, 2013), was used by the experts to perform the tasks.
All 30 sampled EEG segments were uploaded onto the EEGnet ser-
ver for access. A password-protected user account was created for
each of the experts and the files were assigned to each individual
rater by the study administrator. Once a rater logged into the
account, he/she would see a list of the test EEG segments with a
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‘‘Progress’’ column, which indicated whether the review of an indi-
vidual segment had been completed.

After the expert selected an EEG file to review, the first 10 s of
the EEG displayed on the screen, and the expert was able to change
the EEG display settings, including sensitivity, channel montage,
low-pass, high-pass, and notch filter parameters, as necessary at
any time during the review. Once the rater identified a seizure or
a PD, he/she marked a line (red for seizures and blue for PDs) at
the onset time of the event and another line for the offset time,
which completed the marking of an event with a gray area
between two vertical lines. An example of event marking in EEGnet
is demonstrated in Fig. 1.

2.4. Inter-rater agreement analysis

2.4.1. Kappa statistic
After collecting all of the marking results from all of the expert

raters, Cohen’s j (kappa) statistic was calculated for each pair of
raters in order to better observe the distribution of IRA. It is calcu-
lated as:

j ¼ PrðaÞ � PrðeÞ
1� PrðeÞ

where Pr(a) is the relative observed agreement between raters, and
Pr(e) is the hypothetical probability of chance agreement, using the
observed responses to calculate the probabilities of each observer
randomly assigned to each category. Kappa has been described as
the ideal statistic to quantify agreement for dichotomous variables.
Magnitude guidelines in the literature suggested that: values <0 as
indicating no agreement, 0–0.20 as slight, 0.21–0.40 as fair, 0.41–
0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost
perfect agreement (Landis and Koch, 1977).

Implicit in the kappa is the assumption that the rated items,
subjects, or targets are independent. However, identification of
‘‘transient events’’ during a serially observed process such as sei-
zures in EEG data contains responses that are highly correlated
Fig. 1. Marking of a seizure event – this 10-s EEG page contains t
among the neighboring responses, which violates the indepen-
dence assumption of kappa. Therefore, in this study, we applied a
Monte-Carlo-based permutation technique to produce an empiri-
cal distribution of kappa in the presence of dependence (Norman
and Scott, 2007). The main purpose of this technique is to calculate
expected agreement due to chance (i.e., Pr(e)) between two raters.
To achieve this, we first generated two sequences (one for seizure
events and the other for PDs) comprised of binary responses from
each rater’s markings. Each binary response represents the mark-
ing in each second – i.e., 1 if the second is within an event marking
and 0, otherwise. Secondly, for each binary sequence, 10,000 ran-
dom permutations of runs of 1 s and 0 s were sampled, and the
pairs of permuted sequences were cross-tabulated to create an
agreement table. Repetition of this permutation process provided
a sample from all possible random agreements of all possible pairs
of sequences. The R statistics and development system was used to
perform the simulations.

2.4.2. Positive event agreement and event duration agreement
The kappa statistic gives an overall assessment of the expert

agreement; however, its calculation is based on the binary
response for each of the arbitrarily pre-determined time epochs
and thus may lose some information regarding the characteristics
of the identified events. Therefore, in this study, we calculated an
additional IRA statistic that combines two event-related agreement
statistics: (1) the fraction of event agreement (FEA), and (2) the
fraction of event duration agreement (FEDA). One may interpret
FEA as the ‘‘inter-rater sensitivity’’, i.e., if an event is marked by
Rater A, how likely it will also be marked by Rater B, and vice versa.
The FEA is calculated between a pair of raters as the number of
events agreed (with a minimum overlap of 1 s) by both raters
divided by the sum of agreed and disagreed events. It is worth not-
ing that, if Rater B marked two events that both overlapped with
the same event marked by Rater A, only one ‘‘agreed’’ event was
included in the FEA calculation. Fig. 2 gives a schematic example
of the FEA calculation. In this example, Rater A marked a total of
he first 7 s of a seizure (onset marked by a red vertical line).



Fig. 2. A schematic example of FEA calculation.
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5 events, whereas Rater B marked 6 events, among which two
overlapped the fourth event marked by Rater A. Hence, the total
number of the agreed events by Raters A and B is 4 and the number
of disagreed events is 2, and therefore, the FEA between Raters A
and B is 0.67.

In order to take into account the agreement on event durations,
FEDA is calculated between two raters as the mean ratio of over-
lapped duration of an agreed event to the total duration of that
event. Mathematically speaking, suppose that an event is marked
by Rater A with a duration of X seconds and a (similar) event is
marked by Rater B with duration of Y seconds, and the two marked
events have an overlapped interval of Z seconds, then the FEA was
calculated as Z/(X + Y � Z). For cases that one marked event is
overlapped with multiple events marked by the other rater, the
calculation is extended to (Z1 + Z2 + � � �)/(X + Y1 � Z1 + Y2 � Z2 + � � �).
The FEDA gives a quantitation of how specific the agreement
between two raters is with respect to timing and duration of the
marked events.

Since both FEA and FEDA have a range between 0 and 1 and a
perfect event agreement between the two raters will have a value
of 1 for both FEA and FEDA, an additional IRA statistic can be cal-
culated as (FEA + FEDA)/2, which also has a range between 0 and
1. This combined IRA statistic quantifies the agreement between
two raters for both the occurrence and duration of each marked
event.

2.5. Statistical inference

With the observed IRA statistics from rater pairs, we examined
the distribution of IRA values and attempted to address the follow-
ing questions: (1) What is the shape of the distributions of the
IRAs? Are there any outliers? (2) Is there a statistically significant
difference between the IRAs for marking seizures and PDs? (3) Is
there a difference in the IRA of groups of pairs raters based on
whether neither, only one, or both had passed the CCEMRC Certifi-
cation Test? (4) Is the event-based IRA statistic we developed
correlated statistically with the commonly used kappa statistic?

To answer the questions listed above: (1) The Kolmogorov–
Smirnov test was utilized to test the normality of the distribution
as well as for the comparisons between distributions and boxplots
were used for checking outliers; (2) Landis and Koch’s guidelines
for kappa’s magnitude and the Wilcoxon sign-rank test (nonpara-
metric pair-t) were applied to measure the IRAs for marking
seizures and PDs; (3) the Kruskal–Wallis rank sum test (nonpara-
metric one-way ANOVA) was utilized to test if there was a
difference between raters based on CCEMRS certification status;
and (4) Pearson’s correlation coefficients were calculated and
compared with our event-based IRA statistic. The evidence from
a test was considered significant only if the resulting p-value was
less than 0.05.
3. Results

There was an average of 153.1 seizures (range 81–283) and
139.4 epochs of PDs (range 34–268) annotated by the 8 reviewers
in the 30 EEG sample recordings, which is an average of 5.1 sei-
zures and 4.6 PDs epochs per hour of recording. The total average
percentage of the EEG epochs marked as including seizure activity
was 81% (range 57–100%), and the average percentage of the
recording marked as including PDs was 65% (range 27–90%).

Fig. 3 illustrates how the scoring data from one EEG epoch is
used to calculate the IRA statistics. Event markings from 7 expert
raters for EEG segment 21 (Rater #7 was involved in the collection
of this EEG segment and therefore excluded) is shown. Note that,
on the timing and duration of seizures, two groups of reviewers
had a high level of agreement within the group (group #1 includes
reviewers 1, 2, and 5 and group #2 includes reviewers 4 and 6);
Reviewer 8 had moderate agreement with all other reviewers,
and Reviewer 3 had no agreement with any other reviewers
because this reviewer did not mark any seizures. There seemed
to be little agreement on identification of PD epochs, except for a
few regions marked by Reviewers 1, 4, 5, and 6.

Fig. 4 shows two IRA statistics (kappa and event-based) for each
of the rater agreements for seizure and PD identification, for EEG
segment 21 (as shown in Fig. 3). As observed from the visual anal-
ysis, for both statistics, the highest IRA values are in rater pairs
composed of Reviewers 1, 2, 4, 5, and 6, followed by rater pairs
including Reviewer 8, and no agreement between Reviewer 3 and
the other reviewers (IRA = 0). For identification of PDs, IRA statis-
tics suggest globally poor agreement for this EEG sample. Reviewer
5 and 6 had an agreed PD event with significant overlap in dura-
tion, and thus this rater pair had high event-based IRA statistic
for PD marking as well as the highest kappa statistic.

It is worth noting that the kappa statistic suggested a higher
‘‘agreement on the location of seizures between Reviewers 1 and
6 than between Reviewers 4 and 6, whereas the event-based IRA
statistic suggested the opposite, though both statistics showed
negligible difference between the two rater pairs. One explanation
is that, although Reviewers 1 and 6 had a different opinion in one
event (event #3 in Reviewer 6’s markings), it is relatively short, and
the two Reviewers had better agreement (61.4%) on the durations
for the events that they agreed on, compared to that between
Reviewers 4 and 6 (54.2%). Therefore, they had a higher kappa



Fig. 3. Seizure and PD event markings by 7 expert raters in a 1-h EEG segment.

Fig. 4. Inter-rater agreement statistics derived from the event markings in Fig. 3.
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value. Conversely, although Reviewers 4 and 6 had lower agree-
ment on durations, their ‘‘inter-rater sensitivity’’ was 100% and
thus had the higher value on the event-based IRA statistic.

For each of the rater pairs, the IRA statistics were averaged over
all EEG files that were reviewed by both reviewers and in which at
least one event was marked by at least one of the reviewers. If no
events were marked by either reviewer, the IRA statistics on that
EEG file could not be determined. Fig. 5 shows the distributions
of IRA statistics (kappa and event-based) over all rater pairs.

According to one-sample Kolmogorov–Smirnov test (for nor-
mality), only the distribution of the pair-wise kappa statistic for
PDs does not follow a normal distribution (rejected with p = 0.03).
p-Values for kappa-for-seizures, event-based-IRA-for-seizures,
and event-based-IRA-for-PDs are 0.453, 0.549, and 0.794, respec-
tively, indicating that these measures are distributed normally.
Based on the boxplot, there are outliers (horizontal lines outside
the upper and lower whiskers) in IRAs for seizures (both kappa
and event-based). For both seizure and PD identification, the
standard deviations are smaller with event-based statistics. With
a two-sample Kolmogorov–Smirnov test (for equality of two
distributions), in both kappa and event-based statistics, the
distribution of IRA statistics for identification of seizures is different
from identification of PDs (p < 0.001). Wilcoxon signed-rank tests
further confirm that the mean IRA for identification of seizures is
significantly greater than that for PDs (p < 0.001 for both IRA
statistics).

Based on Landis and Koch’s guidelines, a mean kappa value of
0.58 for identification of seizures suggests an overall moderate
agreement among raters. Among 28 rater pairs, 2 had fair agree-
ment, 16 had moderate agreement, 8 had substantial agreement,
and 2 had almost perfect agreement. For PD identification, a mean
kappa value of 0.38 suggests an overall fair agreement among rat-
ers: 4 had no agreement, 4 had slight agreement, 7 had fair agree-
ment, 12 had moderate agreement, and only 1 pair had substantial
agreement. Fig. 6 shows the distributions in levels of agreement
among rater pairs for recognition of seizures and PDs, respectively.



Fig. 5. Empirical distributions of IRA statistics over rater pairs. Top: Distributions of pair-wise kappa statistics and event-based IRA statistics for seizure markings and PD
markings. Bottom: Boxplots (with outliers) generated from the four distributions shown in the top and middle panels. The white band inside the box is the median; top and
bottom of the box are the third quartile (Q3) and first quartile (Q1), respectively; top and bottom whiskers are Q3 + 1.5(Q3 � Q1) and Q1 � 1.5(Q3 � Q1), respectively; the
horizontal lines above or below the whiskers are outliers.
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For both seizure and PD identification, mean kappa statistics are
not significantly different from kappa with an event-based
approach (p = 0.35 and 0.43 for seizures and PDs, respectively).
Furthermore, Pearson’s correlation tests suggest that the two IRA
statistics are highly correlated: the correlation coefficient between
the two IRA statistics in seizure markings is 0.98 (p < 0.001) and is
0.88 in PD markings (p < 0.001).

As described in Section 2, at the time of the study, four raters
had taken and passed the ICU EEG Certification Test developed
by CCEMRC, which mostly focused on the identification of PDs
and rhythmic delta activities. To investigate if this test certification
increased agreement in recognition of seizures and PDs, the rater
pairs were categorized into three groups: both passed the test
(G1), only one passed the test (G2), and neither passed the test
(G3). The mean IRA statistics (kappa/event-based) for identifying
seizures was: 0.66/0.66, 0.57/0.57, and 0.53/0.51 in G1, G2, and
G3, respectively, and for identifying PDs was: 0.47/0.45, 0.32/
0.34, and 0.15/0.23 in G1, G2, and G3, respectively. Using the bar
plots, Fig. 7 shows the group comparisons in each of the four IRA
analyses. It is clear that all four IRA statistics had the same trend:
G1 > G2 > G3 and the differences among the groups identifying PDs
were greater. A one-way ANOVA test suggests that at least one
group is significantly different (p = 0.04) from the others in
event-based IRA statistics for PD identification. Tukey’s multiple
comparison test further revealed that G3 rater pairs had signifi-
cantly lower agreement than G1 rater pairs.

We also calculated the positive agreement percentage between
raters as to whether either a seizure or PD is present in each



Fig. 6. Distribution of levels of agreement in marking seizures and PDs.

Fig. 7. Group comparisons in each of the four IRA analyses.

Table 1
Pairwise positive agreement percentage on the presence of seizures in each
recording.

Rater 1 2 3 4 5 6 7 8

1 63% 50% 67% 73% 70% 60% 90%
2 50% 67% 73% 70% 55% 90%
3 53% 57% 45% 50% 67%
4 73% 60% 60% 100%
5 95% 67% 100%
6 50% 100%
7 100%
8

Table 2
Pairwise positive agreement percentage on the presence of PDs in each recording.

Rater 1 2 3 4 5 6 7 8

1 43% 27% 70% 63% 70% 70% 60%
2 27% 47% 47% 35% 45% 60%
3 27% 27% 20% 25% 35%
4 70% 75% 80% 65%
5 65% 75% 65%
6 80% 60%
7 70%
8
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recording (Tables 1 and 2). This is important because clinical
decisions may be made in many cases not based on the number
of seizures/PDs present, but based on their presence or absence.
In this study, the mean positive agreement percentage on the pres-
ence of seizures is 70% (std. = 18%), which is significantly greater
(p < 0.001) than that for the presence of PDs (54%, std. = 19%). As
expected, with both seizures and PDs, the recording-based mean
positive agreement percentage is significantly larger than the
individual event-based mean fraction of event agreement (FEA)
(seizure: 0.70 vs. 0.57, p = 0.004; PD: 0.54 vs. 0.31, p < 0.001). In
other words, raters had much more agreement in determining
whether seizures/PDs are present in a recording than in determin-
ing the presence of a single event.
4. Discussion

Clinical decisions are often made based on the detection of sei-
zures and PDs in continuous EEG monitoring studies of critically-ill
patients. This study shows that there exists significant variability
in the IRA for the detection of seizures and PDs in these types of
recordings. IRA for the detection of seizures was 0.58, indicating
moderate agreement. This was considerably higher than the IRA
for the detection of PDs (which was 0.38), which is reassuring since
clinical decisions are generally driven more by the presence of
seizures than PDs. It is unclear why the IRA for marking PDs was
lower than for seizures. One possibility is that since PDs were
much more prevalent in the recording than seizures and since a
significant amount of the EEG recordings contained PDs, the
reviewers’ concentration wavered intermittently, which might
have resulted in accidental failure to label all of the PD epochs.
Another possibility is that some of the PDs were of lower ampli-
tude, leading some reviewers to ignore them since they may not
have thought that these PDs were as clinically-relevant. Another
possibility is that the criteria for determining a PD, even with the
ACNS terminology, are still more subjective and/or difficult to
apply than those for determining a seizure. Finally, at least one
reviewer stated they manually selected representative examples
of the PDs in the files, or occasionally brief runs of PDs but did
not label whole sections of PD activity. This would produce the
multiple to one comparison as shown in Fig. 2 and cause a reduced
agreement in the PDs.



Fig. 8. An example of brief rhythmic discharges (BRDs).
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This study also demonstrated the effectiveness of using a web-
based platform (EEGnet) for EEG review and annotation, which
enables the collection of a sizable amount of expert opinion with-
out having to mail out EEG recordings, install software on clinical
workstations, and collect annotation results on paper or in elec-
tronic documents from reviewers. All annotation actions of the
reviewers were collected on a single server in real-time, which
made data collection and tabulation easy. Hopefully EEGnet and
similar web-based research platforms like it will enable many
future studies to collect data on how experts label patterns in
EEG recordings.

This study showed that the IRA for the identification of seizures,
and even more so for PDs, was improved if reviewers had passed the
ICU EEG Certification Test developed by CCEMRC. This may be
because the reviewers who passed this test had studied the educa-
tional materials on the new proposed diagnostic criteria for labeling
seizures and PDs (Hirsch et al., 2013), which led to a more uniform
view of the morphology and application of the terminology used to
describe these patterns. This result suggests that education pro-
grams that promote standardized criteria for interpretation can
improve the agreement between readers in consistently applying
terminology for events reported in cEEG data, such as PDs and sei-
zures. The EEGnet system, which was used in this study to collect
expert opinion, could also be used as a convenient web-based plat-
form for educating neurologists and EEG technologists on how to
label these patterns using a standardized terminology, since it
allows users to manipulate typical EEG review station controls such
as montage, filter, and sensitivity settings providing the opportu-
nity to practically apply the proposed standards to real world EEG
data.

In this study we created new metrics for measuring IRA
between experts that incorporated the amount of temporal overlap
between detections. These metrics showed similar results to those
calculated with traditional kappa measures. For cases such as the
current study in assessing agreement on marking transient events
in continuous recordings, there are a few advantages in this new
event-based IRA statistic: (1) it can be calculated directly from
the markings and durations of the detections, and therefore avoids
using an arbitrarily chosen epoch length in calculating the kappa
statistic, (2) it can be combined with different weights on the
agreement of the event occurrence and of duration, depending on
the clinical questions, and (3) the interpretation is more straight-
forward for most clinical researchers.

This study provides a more accurate assessment than previous
studies of IRA for the identification of seizures and PDs for four
reasons. First, EEGnet web-based EEG review system accurately
simulated a typical clinical review system. Two of three previous
studies had used only screen-capture images of EEG (Ronner
et al., 2009; Mani et al., 2012). Secondly, the samples of EEG
viewed by experts were longer than in previous studies (which
had used 30 s to 20 min samples), and therefore more reflective
of daily clinical practice. Third, the time of onset and offset of sei-
zures and PDs were labeled in this study, unlike previous studies
which assessed the presence or absence of events, which allowed
more accurate measurement of event identification. Fourth, the
location of both seizures and PDs were identified, unlike previous
studies which had focused on either one or the other (Ronner
et al., 2009; Gerber et al., 2008; Mani et al., 2012).

There are significant limitations to this study. Only portions of
prolonged EEG recordings were reviewed, so it is not clear what
the IRA would be for the multi-day continuous EEG studies, which
are common in clinical practice. Perhaps the IRA would be lower in
a study that asked experts to review a 12–24 h EEG for each subject
(more consistent with daily clinical practice) since EEG review
would have to be performed more quickly, leading experts to acci-
dentally overlook additional seizures and PDs. It is possible that
the IRA found in this study could have been higher had we
expended more effort toward educating reviewers on how to mark
seizure and PD epochs by providing examples and testing each
reviewer on brief epochs before the study began. We will consider
doing this in the future. Several reviewers also commented that
there was no category for marking brief rhythmic discharges
(BRDs, an example shown in Fig. 8), which are part of the ACNS
nomenclature. The absence of this diagnostic category could have
led to some confusion about certain patterns in one EEG sample
that lay on the borderline between seizures and PDs. Another lim-
itation in this study is that there was no measure of intra-rater
agreement, so it is unclear how much of the difference of
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agreement between reviewers was a true difference in opinion
about the morphology of seizures or PDs could represent inconsis-
tency of one or more raters in performing the task. Finally, there
may have been a bias in the selection of the experts in this study
since experts who had taken the CCEMRC training and test may
have had more common knowledge about identification of seizures
and PDS in ICU EEG recordings due to their involvement in previ-
ous CCERMC research projects.

Because continuous EEG is likely to be an important diagnostic
measure of outcome for future treatment trials for non-convulsive
seizures and status epilepticus, it is important to understand the
degree of IRA for seizure detection and develop methods for
improving it. Future studies of IRA for the detection of seizures
and PDs could include an educational module and test designed
in EEGnet that a subset of reviewers could take before IRA is
measured again. Reviewers could be asked to perform the same
task twice, separated by an interval of a month or more, to measure
intra-rater agreement. Due to technical limitations with the EEG-
net system, review of long EEG recordings would have been diffi-
cult in this study because experts were only able to view up to
20–50 s of EEG per second. Our new version of EEGnet, recoded
to use the WebGL application programming interface, allows much
quicker review of EEG data, which would allow a more realistic
evaluation of IRA since experts could view EEG at a typical review
speed in much longer EEG recordings. Recent studies have shown
that trending tools, such as digital spectral array, can aid in the
visual identification of seizures (Pensirikul et al., 2013;
Williamson et al., 2014). Since some periodic patterns can be
missed with trending, incorporation of trending tools into EEGnet
could allow measurement of IRA for experts using visualization
of trends. We hope this advancement will lead to more precise
measurement of IRA for seizures and PDs and better training tools
in the future.
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