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Abstract— Nonparametric Bayesian models use a Bayesian framework to learn model 

complexity automatically from the data and eliminate the need for a complex model selection 

process. A Hierarchical Dirichlet Process Hidden Markov Model (HDPHMM) is the 

nonparametric Bayesian equivalent of a hidden Markov model (HMM), but is restricted to an 

ergodic topology that uses a Dirichlet Process Model (DPM) to achieve a mixture distribution-

like model. For applications involving ordered sequences (e.g., speech recognition), it is 

desirable to impose a left-to-right structure on the model. In this paper, we introduce a model 

based on HDPHMM that: (1) shares data points between states, (2) models non-ergodic 

structures, and (3) models non-emitting states. The first point is particularly important because 

Gaussian mixture models, which support such sharing, have been very effective at modeling 

modalities in a signal (e.g., speaker variability). Further, sharing data points allows models to be 

estimated more accurately, something that is also important for an application such as speech 

recognition in which some mixture components occur infrequently. We demonstrate that this 

new model produces a 20% relative reduction in error rate for phoneme classification and an 

18% relative reduction on a speech recognition task on the TIMIT Corpus.  

Index Terms— nonparametric Bayesian models; hierarchical Dirichlet processes; hidden 

Markov models; speech recognition 
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 2

1  INTRODUCTION 

Hidden Markov models (HMMs) [ 1] are one of the most successful models for sequential data 

and have been applied to a wide range of applications including speech recognition. HMMs, 

often referred to as doubly stochastic models, are parameterized both in their structure (e.g. 

number of states) and emission distributions (e.g. Gaussian mixtures). Model selection methods 

such as the Bayesian Information Criterion (BIC) [ 2] are traditionally used to optimize the 

number of states and mixture components. However, these methods are computationally 

expensive and there is no consensus on an optimum criterion for selection [ 2]. 

Beal et al. [ 3] proposed a nonparametric Bayesian HMM with a countably infinite number of 

states. This model is known as an infinite HMM (iHMM) because it has an infinite number of 

hidden states. Teh et al. [ 4], [ 5] proposed a different formulation, HDPHMM, based on a 

hierarchical Dirichlet process (HDP) prior. HDPHMM is an ergodic model – a transition from an 

emitting state to all other states is allowed. However, in many pattern recognition applications 

involving temporal structure, such as speech processing, a left-to-right topology is required [ 7]. 

For example, in continuous speech recognition applications we model speech units (e.g. 

phonemes), which evolve in a sequential manner, using HMMs. Since we are dealing with an 

ordered sequence (e.g. a word is an ordered sequence of phonemes), a left-to-right model is 

preferred [ 6]. The segmentation of speech data into these units is not known in advance and 

therefore the training process must be able to connect these smaller models together into a larger 

HMM that models the entire utterance. This task can easily be achieved using left-to-right 

HMMs (LR-HMM). If the data has finite length, the beginning and end of a sequence is typically 

modeled as two additional discrete events – non-emitting initial and final states [ 7]. In the 

HDPHMM formulation, these problems are not addressed.  
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An HDPHMM, as well as a parametric HMM, models each emission distribution by data 

points mapped to that state. For example, it is common to use a Gaussian mixture model (GMM) 

to model the emission distributions. However, in an HDPHMM, the mixture components of these 

GMMs are not shared or reused. Sharing of such parameters is a critical part of most state of the 

art pattern recognition systems. We have introduced a model with two parallel hierarchies that 

enables sharing of data among different states. We refer to this model as a Doubly Hierarchical 

Dirichlet Process Hidden Markov Model (DHDPHMM) [ 8]. In this paper, we introduce a general 

method to add non-emitting states to both HDPHMMs and DHDPHMMs. We also develop a 

framework to learn non-ergodic structures from the data and present comprehensive 

experimental results for a standard phoneme recognition task in speech processing.  

The paper is organized as follows. In Section  2, we provide background on nonparametric 

Bayesian modeling and formally introduce the HDPHMM model. In Sections  3 and  4, we 

introduce the DHDPHMM model and its extensions for non-ergodic modeling and estimation of 

non-emitting states. In Section  5, we present results on three tasks: a pilot study on simulated 

data, phoneme classification and recognition on speech data. We compare DHDPHMM with 

both baseline and state of the art systems.  

2  BACKGROUND 

Nonparametric Bayesian models (NPBM) have become increasingly popular in recent years 

because of their ability to balance model accuracy with generalization. Machine learning 

algorithms often have trouble dealing with previously unseen data or data sets in which the 

training and evaluation conditions are mismatched. Since such conditions are extremely common 

in applications like speech recognition, an overarching goal of this work is to improve 

performance when channel conditions are mismatched. 
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 4

2.1  Nonparametric Bayesian Models 

A Dirichlet process (DP) [ 9] is a discrete distribution that consists of a countably infinite 

number of probability masses and defines a distribution over discrete distributions with infinite 

support. A DP is denoted by DP(α,G0), and is defined as [ 10]: 

0

1

, ~  ,
kk k

k

G Gθβ δ θ
∞

=

=∑   (1) 

( ) ( )
1

0

1

1 , | , ~ 1, .
k

k k l k

l

v v v G Betaβ α α
−

=

= −  ∏   (2) 

where G0 represents the mean of the distribution [ 9], 
kθδ  is the unit impulse function at θk, βk are 

weights sampled according to (2) [ 10], and α  is a concentration parameter that represents the 

degree of concentration around the mean (α  is inversely proportional to variance). The impulse 

functions, 
kθδ , are often referred to as atoms.  

In this representation β can be interpreted as a random probability measure over positive 

integers. The βk sampled by this process, denoted by β ~ GEM(α), are constructed using a stick-

breaking process [ 4]. Starting with a stick of length one, we break each stick at ʋ1 
and assign the 

length to β1. Then we recursively break the remaining part of the stick and assign the 

corresponding lengths to βk.  

One of the main applications of a DP is to define a nonparametric prior distribution on the 

components of a mixture model. The resulting model is referred to as a Dirichlet Process Mixture 

(DPM) model and is defined as [ 4]: 
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 5

In this model, the observations, xi, are sampled from an indexed family of distributions denoted 

by F. If F is assumed to be Gaussian then the result is an infinite Gaussian mixture model, which 

is the nonparametric counterpart of a GMM [ 11].  

An HDP extends a DPM to problems involving mixture modeling of grouped data [ 4] in which 

we desire to share components of these mixture models across groups. An HDP is defined as [ 4]: 

( )

0

0 0

| , ~ ( , )

| , ~ ( , )

| ~

| ~  .

j

ji j j

ji ji ji

G H DP H

G G DP G

G G

x F for j J

γ γ

α α

θ

θ θ ∈

  (4) 

where H provides a prior distribution for the factor θji, γ governs the variability of G0 around H 

and α controls the variability of Gj around G0. H, γ and α are hyperparameters of the HDP. We 

use a DP to define a mixture model for each group and use a global DP, DP(γ,H), as the common 

base distribution for all DPs. 

2.2  Hierarchical Dirichlet Process Hidden Markov Model 

Hidden Markov models are a class of doubly stochastic processes in which discrete state 

sequences are modeled as a Markov chain [ 1]. If we denote the state at time t with zt, the 

Markovian structure can be represented by 
  
z

t
| z

t−1
~ π

z
t−1

, where 
1tzπ

−
 is the multinomial 

distribution that represents the transition from state t-1 to state t. Observations are conditionally 

independent given the state of the HMM and are denoted by ( )| ~
t

t t z
x z F θ . In a typical 

parametric HMM, the number of states is fixed so that a matrix of dimension N states by N 

transitions per state is used to represent the transition probabilities.  

An HDPHMM is an extension of an HMM in which the number of states can be infinite. At 

each state zt we can transition to an infinite number of states so the transition distribution should 

be drawn from a DP. However, in an HDPHMM, to obtain a chain process, we want reachable 
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 6

states from one state to be shared among all states so these DPs should be linked together. In an 

HDPHMM each state corresponds to a group and therefore, unlike HDP in which an association 

of data to groups is assumed to be known a priori, we are interested in inferring this association. 

A major problem with original formulation of an HDPHMM [ 4] is state persistence. 

HDPHMM has a tendency to make many redundant states and switch rapidly amongst them. 

Fox et al. [ 5] extended the definition of HDPHMM to HMMs with state persistence by 

introducing a sticky parameter κ:  

{ }

{ }

{ } ( )

1

**

1 1

1

**

, 1

| ~ ( )

| , ~ ( , )

| ~ ( )

| , ~ ( )

| , ~

| , ~

| , ~  .

t

t

t t

j

j

j

kj

t t j zj

t j t zj

t kj t z s
k j

GEM

DP

GEM

H H

z z

s z

x z F

β γ γ

αβ κδ
π α β α κ

α κ

ψ σ σ

θ λ λ

π π

ψ ψ

θ θ

−

∞
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  (5) 

The state, mixture component and observations are represented by zt, st and xt respectively. The 

indices j and k are indices of the state and mixture components respectively. The base 

distribution, β, can be interpreted as the expected value of state transition distributions. The 

transition distribution for state j is a DP denoted by πj with a concentration parameter α. Another 

DP, ψj, with a concentration parameter ϭ, is used to model an infinite mixture model for each 

state zj. The distribution H is the prior for the parameters θkj.  

A block sampler for HDPHMM with a multimodal emission distribution has been introduced 

[ 5] that jointly samples the state sequence z1:T given the observations, model parameters and 

transition distribution πj.  A variant of the forward-backward procedure is utilized that allows us 

to exploit the Markovian structure of the HMM to improve the convergence speed of the 
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 7

inference algorithm. However this algorithm requires approximation of the theoretically infinite 

distributions with a “degree L weak limit” approximation that truncates a DP into a Dirichlet 

distribution with L dimensions [ 12]: 

( ) ,..., .LGEM Dir
L L

α α
α

 
 
 

 �   (6) 

It should be noted that this result is different from a classical parametric Bayesian HMM since 

the truncated HDP priors induce a shared sparse subset of the L possible states. Interested readers 

can refer to [ 5] for more details about this algorithm. 

3  DHDPHMM  

We can extend the model in (5) to address the problem of sharable mixture components. 

Equation (5) defines a model with a multimodal distribution at each state. In an HDPHMM 

formulation these distributions are modeled using a DPM model: 
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  (7) 

Equation (7) demonstrates when the state assignment, zt, for data point xt is known (or sampled 

previously), the mixture components can be sampled from a multinomial distribution with DP 

priors. Equation (5) also shows that each emission distribution is modeled independent of other 

distributions. It has been shown previously [ 13] that sharing data points, if done properly, can 

improve the accuracy of the model. 

As we have discussed in Section  2.1, HDP is the extension of a DPM to mixture modeling of 

grouped data. If the state assignment, zt, is assumed to be known (or estimated) then an 

HDPHMM divides the data points into multiple groups. Therefore we should be able to use the 
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 8

same principle and model the emission distributions with another HDP. The resulting model will 

have two parallel hierarchies and hence is referred to as a Doubly Hierarchical Dirichlet Process 

Hidden Markov Model (DHDPHMM). Applying (4) we can write: 

  

ξ |τ ~ GEM (τ )

ψ j |σ ,ξ ~ DP(σ ,ξ)

θkj
** | H ,λ ~ H (λ)

s
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  (8) 

here ζ  is the DP used as the base distribution for HDP and τ and ϭ are hyperparameters. By 

substituting (8) in (5) we can obtain a generative model for DHDPHMM: 
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  (9) 

DHDPHMM pools the data points while HDPHMM divides data points between different 

states. If we don’t have enough data points in a particular state or a mixture component then the 

distribution parameters will be estimated poorly (e.g. the mean and covariance). For example, in 

speech recognition systems we usually use features with a dimensionality of 39 which translates 

to 39+(39x40)/2+1=820 free parameters per Gaussian mixture component (assuming a full 

covariance). In an HDPHMM, with no sharing of parameters, we can easily end up with an 

intractable number of parameters. 
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3.1  Inference Algorithm for DHDPHMM 

 An inference algorithm is required to learn the model parameters from the data. One solution 

to this problem is the block sampler [ 5] discussed in the previous section. Here we present 

modifications of this block sampler for inference for our DHDPHMM.  

Using the “degree L weak limit” approximation to DP in (6) for HDP emissions of (8) we can 

write the following equations (replacing L' with L): 

| ~ ,...,Dir
L L

σ σ
ξ σ

 
 
 ′ ′

  (10) 

( )1 .| , ~ ,...,j LDirψ ξ τ τξ τξ ′   (11) 

Following a similar approach in [ 5] we write the posterior distributions for these equations as: 

1| , ~ ,..., LM Dir M M
L L

τ τ
ξ τ ′

 
 
 

′ ′ ′+ +
′ ′ ii   (12) 

( )1: 1: 1 1| , , , ~ ,...,j L jLT T jZ S Dir n nψ σ ξ σξ σξ ′ ′′ ′+ +   (13) 

where M'jk is the number of clusters in state j with mixture component k; kM ′
i  is total number of 

clusters that contain mixture component k. The number of observations in state j that are 

assigned to component k is denoted by jkn′ . The posterior distribution for τ, the hyperparameter in 

(12), can be written as: 

( )1 1

1 1

| ,..., , ,... , log
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J J j j

j j
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= =
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 (16) 

where r and s are auxiliary variables used to facilitate the inference for τ (following the same 
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 10 

approach as in [ 5]) and a and b are hyperparameters over a Gamma distribution.  

3.2  Scalability 

The main motivation behind DHDPHMM is the ability to share mixture components and 

therefore data points between different states. When using the modified block sampler algorithm 

we only deal with L' Gaussian distributions. The HDPHMM model has LxL' Gaussians to 

estimate. Since up to 95% of the inference time is spent in calculating the likelihood of data for 

Gaussian distributions, a reduction from LxL' to L' reduces the computational time considerably. 

Also we have utilized parallel programming facilities (e.g. openMP) for the implementation of 

both algorithms, which makes this process feasible for large data sets.  Fig. 1 provides a 

comparison of both algorithms for different values of L and L'. DHDPHMM’s computational 

complexity is flat as the maximum bound on the number of states increases while the inference 

cost for HDPHMM grows linearly. 

4  DHDPHMM WITH A NON-ERGODIC STRUCTURE 

A non-ergodic structure for the DHDPHMM can be achieved by modifying the transition 

distributions. These modifications can also be applied to HDPHMM using a similar approach.  

4.1  Left-to-Right DHDPHMM  

The transition probability from state j has infinite support and can be written as: 

| , ~ ( , ) .
j

j DP
αβ κδ

π α β α κ
α κ

+
+  

+
  (17) 

From  (17) we can see a transition distribution has no topological restrictions and therefore (5) 

and (9) define ergodic HMMs. In order to obtain a left-to-right (LR) topology we need to force 

the base distribution of the Dirichlet distribution in (17) to only contain atoms to the right of the 

current state. This means β should be modified so that the probability of transiting to states left of 

the current state (i.e. states previously visited) becomes zero. For state j we define Vj={Vji}: 
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0,

1,
ji

i j
V

i j

<
= 

≥
  (18) 

where i is the index for all following states. We can then modify β by multiplying it with Vj: 

.
j

i ji

i

V

V

β
β

β
′ =
∑
i

  (19) 

In the block sampler algorithm, we have: 

( )1 1,..., ,..., , 1,...,j j j jj L jLDir n n n j Lπ αβ αβ κ αβ′ ′ ′+ + + + =∼  (20) 

where njk are the number of transitions from state j to k. From (20) we can see that multiplying β 

with Vj biases πj toward a left-to-right structure but there is still a positive probability to transit to 

the states left of j. If we leave πj as in (20) the resulting model would be an LR model with 

possible loops. The model would be biased toward an LR structure but with the possibility of 

forming loops. Models with an LR structure and possible loops will be denoted as LR-L. 

In order to obtain an LR model with no loops, we have to multiply njk with Vj : 

( )1 1 1,..., ,..., ,    1,..., .j j j j jj jj L jL jLDir V n V n V n j Lπ αβ αβ κ αβ′ ′ ′+ + + + =∼  (21) 

Vj and β' are calculated from (18) and (19) respectively. This model always finds transitions to 

the right of state j and is referred to as an LR model. 

Sometimes it is useful to have LR models that allow restricted loops to the first state. For 

example, when dealing with long sequences, a sequence might have a local left to right structure 

but needs a reset at some point in time. To modify β to obtain an LR model with a loop to the 

first state (LR-LF) we can write: 

0, 0
.

1, , 0
ji

i j
V

i j i

< <
= 

≥ =
  (22)

 

β' can be calculated from (19) and πj should be sampled from  (21). 

The LR models described above allow for skip transitions that mean the model learns parallel 
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 12 

paths that correspond to different modalities in the training data. Sometimes more restrictions on 

the structure might be required. One such example is a strictly left to right structure (LR-S): 

0, 1
.

1, 1
ji

i j
V

i j

≠ +
= 

= +
  (23) 

4.2  Initial and Final Non-Emitting States 

In many applications, such as speech recognition, an LR-HMM begins from and ends with 

non-emitting states. These states are required to model the beginning and end of finite duration 

sequences. Adding a non-emitting initial state is straightforward: the probability of transition into 

the initial state is 1 and the probability distribution of a transition from this state is equal to πinit 

which is the initial probability distribution for an HMM without non-emitting states. However, 

adding a final non-emitting state is more complicated. In the following sections we will discuss 

two approaches that solve this problem. 

4.2.1  Maximum Likelihood Estimation 

Consider state zi depicted in  Fig. 2. The outgoing probabilities for any state can be classified 

into three categories: (1) a self-transition (P1), (2) a transition to all other states (P2), and (3) a 

transition to a final non-emitting state (P3). These probabilities must sum to 1: P1+P2+P3=1. 

Suppose that we obtain P2 from the inference algorithm. We will need to reestimate P1 and P3 

from the data. This problem is, in fact, equivalent to the problem of tossing a coin until we obtain 

the first tails. Each head is equal to a self-transition and the first tails triggers a transition to the 

final state. This can be modeled using a geometric distribution [ 14]: 

( ) 1
( ) 1 .

k
P x k ρ ρ

−
= = −    (24) 

Equation (24) shows the probability of K-1 heads before the first tail. In this equation 1-ρ is the 

probability of heads (success). We also have: 
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31

2 2

1 , .
1 1

PP

P P
ρ ρ= − =  

− −
  (25) 

Suppose we have a total of N examples but for a subset of these, Mi, the state zi is the last state of 

the model (SM). It can be shown [ 14] that the maximum likelihood estimation is obtained by: 

  

⌢
ρ

i
=

M
i

k
j

j∈S
M

∑
  (26) 

where ki are the number of self-transitions for state i. Notice that if zi is never the last state, then 

Mi = 0 and P3 = 0. 

4.2.2  Bayesian Estimation 

Another approach to estimate transitions to a final non-emitting state, ρi , is to use a Bayesian 

framework. Since a beta distribution is the conjugate distribution for a geometric distribution, we 

can use a beta distribution with hyperparameters (a,b) as the prior and obtain a posterior as [ 15], 

[ 16]: 

( )~ , 1

M

i i j

j S

Beta a M b kρ
∈

 
 + + −
 
 

∑   (27) 

where Mi and SM are the number of times which state zi was the last state and set of all such states 

respectively. Hyperparameters (a,b) can also be estimated using a Gibbs sampler if required [ 17]. 

If we use (27) to estimate ρi we need to modify (20) to impose the constraint that the sum of the 

transition probabilities add to one. This is a relatively simple modification based on the stick-

breaking interpretation of a DP in (2). This modification is equal to assigning ρi to the first break 

of the stick and then breaking the remaining 1-ρi portion as before. 

4.3  An Integrated Model 

The final definition for DHDPHMM model with a non-ergodic structure is given by: 
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In this definition Vi should be replaced with the proper definition from previous section based on 

the type of structure we want. For example if we want an LR model then Vi should be sampled 

from (18). Also note that by setting Vi to one we obtain the ergodic DHDPHMM in (9). A 

graphical representation is shown in  Fig. 3-b. The HDPHMM [ 5] is also displayed in  Fig. 3-a for 

comparison. 

We have not incorporated modeling of non-emitting states discussed above in (28). If we 

choose to use a maximum likelihood approach for estimating the non-emitting states then no 

change to this model is required (e.g. we can estimate these non-emitting states after estimating 

other parameters). However, if we choose to use the Bayesian approach then we have to replace 

the sampling of πj in (28) with: 

( ), ~

| , ~

,

kj k

k

w Modified stick breaking

w w χ

χ

π χ

α κ

δ

−

∑   (29) 

( )
1

1
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i i j i j l
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 (30) 

Page 14 of 37*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15 

   

where we have replaced DP with the modified stick-breaking process described above. 

5  EXPERIMENTS 

In this section we provide some experimental results which compare DHDPHMM with 

HDPHMM, HMM and several other state of the art models. The experiments begin with artificial 

data and then proceed to standard phoneme classification and recognition tasks. 

5.1  HMM-Generated Data 

To demonstrate the basic efficacy of the model, we generated data from a 4-state left to right 

HMM. The emission distribution for each state is a GMM with a maximum of three components, 

each consisting of a two-dimensional normal distribution. Three synthetic data sequences 

totaling 1900 observations were generated for training. Three configurations have been studied: 

(1) an ergodic HDPHMM, (2) an LR HDPHMM and (3) an LR DHDPHMM. A Normal-inverse-

Wishart distribution (NIW) prior is used for the mean and covariance. The truncation levels are 

set to 10 for both the number of states and the number of mixture components.  

 Fig. 4-a shows the average likelihood for different models for held-out data by averaging five 

independent chains.  Fig. 4-b compares the trained model to the reference structure. The LR 

DHDPHMM discovers the correct structure while the ergodic HDPHMM finds a more simplified 

HMM because LR DHDPHMM constrains the search space to left to right topologies while 

HDPHMM has a less constrained search space. Further, we can see that DHDPHMM has a 

higher overall likelihood. While LR HDPHMM can find the structure close to the correct one, its 

likelihood is slightly lower than the ergodic HDPHMM. However, LR DHDPHMM produces a 

15% (relative) improvement in likelihoods compared to the ergodic model. It is also interesting 

to note that the likelihoods of models discovered by all the nonparametric Bayesian algorithms 

are superior to the likelihood of the reference model itself. 
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5.2  Phoneme Classification on the TIMIT Corpus 

The TIMIT Corpus [ 18] is one of the most cited evaluation data sets used to compare new 

speech recognition algorithms. The data is segmented manually into phonemes and therefore is a 

natural choice to evaluate phoneme classification algorithms. TIMIT contains 630 speakers from 

eight main dialects of American English. There are a total of 6,300 utterances where 3,990 are 

used in the training set and 192 utterances are used for the “core” evaluation subset (another 400 

used as development set). We followed the standard practice of building models for 48 

phonemes and then map them into 39 phonemes [ 20].  

A standard 39-dimensional MFCC feature vector was used (12 Mel-frequency Cepstral 

Coefficients plus energy and their first and second derivatives) to convert speech data into 

feature streams. Cepstral mean subtraction [ 19] was also used.  

5.2.1  A Comparison to HDPHMM 

In  Table 1 we compare the performance of DHDPHMM to HDPHMM. We provide error rates 

for both the development and core subsets. In this table we have compared an LR model with 

two other models: a strictly LR topology and an ergodic model. As this table shows DHDPHMM 

is consistently better than their HDPHMM counterparts. Further, it can be seen that LR models 

perform better than ergodic models (as expected) while strictly LR models perform more poorly. 

This is due to the fact that a strictly LR model constrains the best path to one path while the other 

LR models learn many parallel paths. From the last column of this table we can see LR 

DHDPHMM finds 3888 Gaussians for all 48 phonemes while two different LR HDPHMM 

models find 4628 and 7281 Gaussians for all phonemes respectively. These numbers show 

DHDPHMM can learn a less complex model that can explain the data better than a more 

complex model learned by HDPHMM. This is an important property that validates the basic 

Page 16 of 37*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 17 

philosophy of the NPBM and also follows Occam's Razor [ 20]. 

  Fig. 5 shows the structures for phonemes /aa/ and /sh/ discovered by DHDPHMM. It is clear 

that the model structure evolves with amount of data points, validating another characteristic of 

the NPBM. It is also important to note that the structure learned for each phoneme is unique and 

reflects underlying differences between phonemes. Finally, note that the proposed model learns 

multiple parallel left-to-right paths. This is shown in  Fig. 5-b where S1-S2, S1-S3 and S1-S4 

depict three parallel models.  

 Fig. 6 show the confusion matrix for the most confusable pairs of this classification task. The 

general confusion matrix follows the same trend but because it is too large it has not been shown 

in this paper. From this confusion matrix we can see that most errors occur, as expected, between 

acoustically similar phonemes. In fact, if we use 5 broad phonetic classes instead of using 39 

phoneme classes, the classification error rate drops to 4.8%. 

5.2.2  A Comparison to Other Representative Systems 

  Table 2 shows a full comparison between DHDPHMM and both baseline and state of the art 

systems. The first three rows of this table show three-state LR HMMs trained using maximum 

likelihood (ML) estimation. HMM with 40 Gaussians per state performs better than other two 

and has an error rate of 26.1% on the core subset. Our LR DHDPHMM model has error rate of 

21.4% on the same subset of data (a 20% relative improvement). It should be noted that the 

number of Gaussians used by this HMM system is 5760 (set a priori) while our LR DHDPHMM 

uses only 3888 Gaussians.  Fig. 7 shows the error rate vs. the amount of training data for both 

HMM and DHDPHMM systems. As we can see DHDPHMM is always better than the HMM 

model. For example, when trained only using 40% of data DHDPHMM performs better than an 

HMM using the entire data set. Also it is evident that HMM performance does not improve 
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significantly when we train it with more than 60% of the data (error rates for 60% and 100% are 

very close) while DHDPHMM improves with more data.  

 Fig. 8 shows the number of Gaussians discovered by DHDPHMM versus the amount of data. 

The model evolves into a more complex model as it is exposed to more data. This growth in 

complexity is not linear (e.g. number of Gaussians grows 33% when the amount of data 

increases 5 times) which is consistent with the DP prior constraints. If we want to change this 

behavior we would have to use other type of priors. 

The fourth row of  Table 2 shows the error rate for an HMM trained using a discriminative 

objective function (e.g. MMI). We can see discriminative training reduces the error rate. 

However, the model still produces a larger error rate relative to our ML trained DHDPHMM. 

This suggests that we can further improve DHDPHMM if we use discriminative training 

techniques. Several other state of the art systems are shown that have error rates comparable to 

our model. Data-driven HMMs [ 24], unlike DHDPHMM, models the context implicitly, which 

seems to be one of the main reasons that it performs so well. We expect to obtain better results if 

we also use context dependent (CD) models instead of context independent (CI) models.  

5.3  Supervised Phoneme Recognition 

Speech recognition systems usually use a semi-supervised method to train acoustic models. By 

semi-supervised we mean the exact boundaries between phonemes are not given but instead the 

transcription only consists of a sequence of phones in an utterance. It is has been shown that this 

semi-supervised method actually works better than a completely supervised method [ 24]. 

However, in this section we use a completely supervised method to evaluate DHDPHMM 

models for a phoneme recognition task. As in the previous section, we have trained 

DHDPHMMs only using maximum likelihood and with no context information.  
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In the phoneme recognition problem, unlike phoneme classification, the boundaries between 

subsequent phonemes are not known (during the recognition phase) and should be estimated 

along with phoneme labels. During recognition we have to decide if a given frame belongs to the 

current group of phonemes under consideration or we have to initiate a new phoneme hypothesis. 

This decision is made by considering both the likelihood measurements and the language model 

probabilities. All systems compared in this section use bigram language models. However, the 

training procedure and optimization of each language model is different and has some effect on 

the reported error rates. 

In the following we define % Correct and % Error as follows [ 19]: 

%
N S D

Correct
N

− −
=   (31) 

%
S D I

Error
N

+ +
=   (32) 

where N is the total number of labels in the reference transcriptions, S is the number of 

substitution errors, D is the number of deletion errors and I is the number of insertion errors.  

 Table 3 presents results for several state of the art models. As we can see, systems can be 

divided into two groups based on their training method (discriminative or not) and context 

modeling. The first two rows of this table show two similar HMM based systems with and 

without contextual information. We can see the error rate drops from 35.4% to 26.2% when we 

use a system with contextual modeling. We can also see DHDPHMM works much better than a 

comparable CI HMM model (the error rate drops from 35.4% for HMM to 28.6% for 

DHDPHMM).  

The third and fourth rows show two context-dependent HMM models. DHDPHMM performs 

slightly better than the CD model in row three (CD HMM 2) but slightly worse than CD model 
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of row four (CD HMM 3). We expect to obtain much better results if we use context dependent 

models. Our model also performs better than a discriminatively trained context-independent 

HMM. By comparing DHDPHMM with other systems presented in  Table 3 we can see 

DHDPHMM is among the best models for context-independent systems but is not as good as 

state of the art context-dependent models.  

6  CONCLUSIONS 

In this paper we introduced a DHDPHMM that is an extension of HDPHMM which 

incorporates a parallel hierarchy to share data between states. We have also introduced methods 

to model non-ergodic structures. We demonstrated through experimentation that LR 

DHDPHMM outperforms both HDPHMM and its parametric HMM counterparts. We have also 

shown that despite the fact that we have only used ML training for DHDPHMM performance is 

comparable to discriminatively trained models. Further, DHDPHMM provides the best 

performance among context-independent models. 

Future research will focus on incorporating semi-supervised training and context modeling. 

We have also shown that complexity grows very slowly with the data size because of the DP 

properties (only 33% more Gaussians were used after increasing the size of the data five times). 

Therefore it makes sense to explore other types of prior distributions to investigate how it can 

affect the estimated complexity and overall performance. Another possible direction is to replace 

HDP emissions with more general hierarchical structures such as a Dependent Dirichlet Process 

[ 31] or an Analysis of Density (AnDe) model [ 32]. It has been shown that the AnDe model is the 

appropriate model for problems involving sharing among multiple sets of density estimators [ 4], 

[ 20]. 
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 Fig. 3.  Comparison of models: (a) ergodic HDPHMM [ 5] (b) DHDPHMM 

 

 

 Fig. 4.  Comparison of (a) log-likelihoods of the proposed models to an ergodic model, 
and (b) the corresponding model structures  

 

Page 26 of 37*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 27 

 

 

 
 
 Fig. 5.  An automatically derived model structure for a left-to-right DHDPHMM model (without the first and 

last non-emitting states) for (a) /aa/ with 175 examples (b) /aa/ with 2,256 examples (c) /sh/ with 100 examples 

and (d) /sh/ with 1,317 examples 
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 Fig. 6.  Confusion matrix for phoneme classification for the most confusable pairs 

 Fig. 7.  Error rate vs. amount of training data for LR DHDPHMM and LR HMM 
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 Fig. 8.  Number of discovered Gaussians vs. amount of training data 

 TABLE 1 
  COMPARISON OF LR DHDPHMM WITH HDPHMM 

 

Model 
Dev Set 
(% Error) 

Core Set 
(% Error) 

No. 
Gauss. 

LR HDPHMM 1 23.5% 24.4% 4628 

LR HDPHMM 2 23.8% 25.1% 7281 

Ergodic DHDPHMM 24.0% 25.4% 2704 

Strictly LR DHDPHMM 39.0% 38.4% 2550 

LR DHDPHMM 20.5% 21.4% 3888 
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 TABLE 2 
  COMPARISON OF PHONEME RECOGNITION PERFORMANCE 

 

Model 
Discrim. 
Training 

Dev Set 
(% Error) 

Core Set 
(% Error) 

HMM (10 Gauss.) No 28.4% 28.7% 

HMM (20 Gauss.) No 26.1% 27.3% 

HMM (40 Gauss.) No 25.0% 26.1% 

HMM/MMI (20 Gauss.) [ 20] Yes 23.2% 24.6% 

HCRF/SGD [ 20] Yes 20.3% 21.7% 

Large Margin GMMs [ 22] Yes – 21.1% 

GMMs/Full Cov. [ 22] No – 26.0% 

SVM [ 23] Yes – 22.4% 

Data-driven HMM [ 24] No – 21.4% 

LR DHDPHMM No 20.5% 21.4% 

 

 TABLE 3 
  COMPARISON OF PHONEME RECOGNITION PERFORMANCE 

 

Model 
Discrim. 
Training 

Context 
Modeling 

% Error % Correct Subset 

CI-HMM [ 25]  No No 35.9% – TID7 

CD-HMM 1[ 25] No Yes 26.2% – TID7 

CD-HMM 2[ 26] No Yes 30.9% – Core 

CD-HMM 3[ 13] No Yes 27.7% – Core 

HMM MMI 1 [ 27] Yes No 32.5% 73.5% Random 

HMM MMI 2 / Full Cov. [ 27] Yes No 30.3% 74.4% Random 

Heterogeneous Class. [ 28] Yes Yes 24.4% – Core 

Data-driven HMM [ 24] N/A Yes 26.4% – Core 

Large Margin GMM [ 22] Yes No 30.1% – Core 

CRF [ 29] Yes No 29.9% 73.2% All 

Tandem HMM [ 29] Yes Yes 30.6% 75.6% All 

CNN/CRF [ 30] Yes No 29.9% – Core 

LR DHDPHMM No No 29.7% 74.1% Core 

LR DHDPHMM No No 28.6% 75.1% Dev 

LR DHDPHMM No No 29.2% 74.7% All 
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A preliminary version of this work has been published here: 

Harati Nejad Torbati, A. H., Picone, J., & Sobel, M. (2014). A Left-to-Right HDP-HMM with HDPM 

Emissions. In Proceedings of the Conference on Information Sciences and Systems (pp. 1–6). Princeton, New 

Jersey, USA. 

This paper presented the initial idea, but did not include many important mathematical details or a 

comprehensive set of experiments.  

Major Theoretical Differences: 

1. The model introduced in the conference paper was restricted to only a special case of the more 

general model introduced in this paper. Specifically, in this paper we have introduced a general 

model named DHDPHMM and its inference algorithm while in the conference paper we only 

introduced a special case of the model with no details about the inference algorithm. 

2. In this paper, we provide important theoretical derivations and implementation details regarding 

DHDPHMM. We discuss its differences relative to other models (e.g. HDPHMM). These details 

are not in the conference paper. 

3. In this paper, we introduce a general framework for non-Ergodic structures while in the conference 

paper we only derived a left to right structure. 

4. In this paper, we have included an inference algorithm for a Bayesian approach of adding non-

emitting states while in conference paper these details were missing. 

Major Experimental Differences: 

1. In this paper we have a very extensive experimental section while in the conference paper the 

experimental section was very brief. The only commonality is section of simulated data. 

2. Phoneme classification experiments are much more comprehensive in this paper. In the conference 

paper they were limited to left to right HDPHMMs and HMMs. In this paper we have added results 

for DHDPHMM (both ergodic and several non-ergodic structures) and also for many other state of 

the art models. These new models provide state of the art results, while in the conference paper the 

results were not as good since they used an older, less sophisticated model. 

3. We have more experiments that demonstrate how learning complexity and scalability are handled 

by DHDPHMM versus HDPHMM and HMM. 

4. The phoneme recognition experiments in this paper are completely new. 
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Abstract— In this paper we introduce a new nonparametric 
Bayesian HMM based on the well-known HDP-HMM model. 
Unlike the original ergodic model, our model has a left-to-right 
structure. We introduce two approaches to adding non-emitting 
states that are used to model the beginning and end of finite 
duration sequences. Finally, we extend the HDP-HMM definition 
by introducing an HDP-HMM with HDP mixture emissions. We 
demonstrate that the new model outperforms the ergodic model 
for problems involving temporal structure by producing a 15% 
increase in likelihoods. Experiments on a phoneme classification 
task resulted in an 15.3% relative reduction in error. 

Keywords—HDP-HMM; none-parametric Bayesian; Left-to-
Right models; HMMs; Hierarchical Dirichlet Model  

I. INTRODUCTION  
Hidden Markov models (HMMs) [1] are among the most 

powerful statistical modeling tools and have found a wide 
range of applications in many pattern recognition tasks such as 
speech recognition, machine vision, genomics and finance [2]. 
HMMs are parameterized both in their topology (e.g. number 
of states) and emission distributions (e.g. Gaussian mixtures). 
Model comparison methods are traditionally used to optimize 
the number of states and mixture components. However, these 
methods are computationally expensive and moreover there is 
no consensus on an optimum criterion for the selection [3].      

An infinite HMM has been developed in the last few years 
[4][5][6] based on nonparametric Bayesian approaches. In this 
model, instead of defining a parametric prior over the transition 
distribution, a hierarchical Dirichlet process (HDP) prior is 
used. This model is known as an HDP-HMM model. HDP-
HMM introduced in [5] and [6] is an ergodic model (a 
transition from an emitting state to all other states is allowed). 
However, in many pattern recognition applications involving 
temporal structure, such as speech processing, a left-to-right 
topology is preferred or sometimes required [7][8]. For 
example, in continuous speech recognition applications we 
model speech units (e.g. phonemes), which evolve in a 
sequential manner, using HMMs. Since we are dealing with an 
ordered sequence (e.g. a word is an ordered sequence of 
phonemes), a left-to-right model is preferred [7]. Moreover, the 
segmentation of speech data into these units is not known in 
advance, and therefore the training process must be able to 
connect these smaller models together into a larger HMM that 

models the entire utterance. Obviously, this task can easily be 
achieved using left-to-right (LR) HMMs. 

If the data has a finite length, the beginning and end of a 
sequence is typically modeled as two additional discrete events 
– non-emitting initial and final states [1][7]. In the original 
HDP-HMM formulation [5][6], this problem is not addressed. 
Also, the original HDP-HMM, as well as parametric HMMs, 
models each emission distribution by data points mapped to 
that state. For example, if we use a Gaussian mixture model 
(GMM) to model the emission distribution, for every state we 
compute a separate GMM and components can’t be shared or 
re-used within a model. In this paper we propose a left-to-right 
HDP-HMM (LR HDP-HMM) with non-emitting initial and 
final states. In our model, emission distributions are modeled 
using GMMs with an infinite number of components. Sharing 
components is achieved by using an HDP prior instead of 
Dirichlet process (DP) priors as in [6]. 

The paper is organized as follows. In Section 2, we 
introduce Dirichlet processes and the HDP-HMM model. In 
Section 3, our proposed model is discussed. In Section 4, we 
present some experimental results on two datasets. We 
conclude the paper in Section 5 with a discussion of the 
limitations of the current model and future work. 

II. BACKGROUND 
A Dirichlet process [9] is a discrete distribution that 

consists of countable infinite probability masses. A DP is 
denoted by DP(α,H), where α is the concentration parameter 
and H is the base distribution. A DP can be represented by 
[10]: 

 
1

, ~  .
kk k

k
G Hθβ δ θ

∞

=
= ∑  (1) 

In this definition,  
kθδ  is the unit impulse function at θk, and is 

referred to as an atom [5]. The weights βk are sampled through 
a stick-breaking construction [5][10]: 

 ( ) ( )
1

0
1

1 , | , ~ 1, .
k

k k l k
l

v v v G Betaβ α α
−

=

= −  ∏  (2) 
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The sequence of βk sampled by this process satisfies the 

constraint 
1

1k
k

β
∞

=
=∑    with probability 1 and are denoted by 

β~GEM(α) [5]. One of the main applications of a DP is to 
define a nonparametric prior distribution on the components of 
a mixture model. For example, a DP can be used to define a 
Gaussian mixture model (GMM) with an infinite number of 
mixture components [11]. This is a useful model in many areas 
of science. For example, in speech recognition, an acoustic unit 
(a word or a phoneme) can be modeled using a GMM [1].         

A hierarchical Dirichlet process extends a DP to grouped data 
[5]. In this case there are several related groups and the goal is 
to model each group using a mixture model. These models can 
be linked using traditional parameter sharing approaches. For 
example, consider the problem of modeling acoustic units, 
such as phonemes, in continuous speech recognition using a 
mixture model in which parameters of different acoustic units 
can be shared. One approach is to use a DP to define a mixture 
model for each group and to use a global Dirichlet process, 
DP(γ,H),  as the common base distribution for all DPs [5]. An 
HDP is defined as:  

 0

0 0

| , ~ ( , )

| , ~ ( , ) ,j

G H DP H

G G DP G

γ γ
α α

 (3) 

where H provides the prior for the parameters and G0 
represents the average of the distribution of the parameters 
(e.g. means and covariances). 

An alternative analogy, which is useful for gaining insight 
into the inference algorithms, is based on the concept of a 
Chinese restaurant franchise (CRF) [5]. In a CRF, a franchise 
consists of several restaurants with a common franchise-wide 
menu. Customers represent observed data, tables represent 
clusters and restaurants represent groups. The first customer 
entering restaurant  j sits at one of the tables and orders an item 
from the menu. The next customer either sits at one of the 
occupied tables and eats the food served at that table or sits at a 
new table and orders new food from the menu. The probability 
of sitting at a table is proportional to the number of customers 
already seated at that table. However, if a customer starts a new 
table (with probability proportional to α), he or she orders food 
from the menu with a probability proportional to the number of 
tables serving that food in the franchise, or alternately orders a 
new food item with a probability proportional to γ. 

An HDP-HMM [4][5][6] is an HMM with an unbounded 
number of states. In a typical ergodic HMM, the number of 
states is fixed so a matrix of dimension N states by N 
transitions per state is used to represent the transition 
probabilities. In an HDP-HMM, the transition matrix is 
replaced by an infinite, but discrete transition distribution, 
modeled by an HDP for each state. This lets each state have a 
different distribution for its transitions while the set of 
reachable states would be shared among all states. Fox et al. [6] 
extended the definition of HDP-HMM to HMMs with state 
persistence by introducing a sticky parameter κ. The definition 
for HDP-HMM is given by: 
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 (4) 

The state, mixture component and observation are represented 
by zt, st and xt respectively. The indices j and k are indices of 
the state and mixture components respectively. The base 
distribution that links all DPs together is represented by β and 
can be interpreted as the expected value of state transition 
distributions. The transition distribution for state j is a DP 
denoted by πj with a concentration parameter α. Another DP, 
ψj, with a concentration parameter �, is used to model an 
infinite mixture model for each state (zj). The distribution H is 
the prior for the parameters θkj. If we want the posterior 
distribution over the parameters to remain in the same family 
as the prior, then H should be chosen to be a conjugate prior to 
the observation likelihood. Since the likelihood has a 
multivariate normal distribution, H should have normal 
inverse Wishart (NIW) distribution. 

III. A LEFT-TO-RIGHT HDP-HMM WITH HDPM EMISSIONS 
Hidden Markov models (HMMs) are a class of doubly 

stochastic processes in which discrete state sequences are 
modeled as a Markov chain [1]. The state of a Markov chain at 
time t is denoted by zt and an observation is denoted by 

,~ ( )
t tt z sx F θ where F is the emission distribution (e.g., a 

Gaussian mixture) and st is a mixture component index. In an 
HMM, there is a probability distribution to transit into state zt. 
In an infinite HMM, this transition distribution should have 
infinite support and is modeled using HDP. For state j this 
transition distribution is denoted by πj: 

 | , ~ ( , ) .j
j DP

αβ κδ
π α β α κ

α κ

+
+  

+
 (5) 

From (5) we can see that the transition distribution has no 
topological restriction and therefore (4) defines an ergodic 
HMM. In this section we introduce a left-to-right HDP-HMM 
with initial and final non-emitting states. Moreover, we replace 
DP with HDP to model multimodal emission distributions that 
allow states to share mixture components.   

A.   Left-to-Right Transition Distributions  
In order to obtain a left-to-right (LR) topology we need to 

force the base distribution of the Dirichlet distribution in (5) to 
only contain atoms to the right of the current state. This means 
β should be modified so that the probability of transiting to 
states left of the current state (i.e. states previously visited) 
becomes zero. For state j we define Vj={Vji} as: 
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0,
1,ji

i j
V

i j
<⎧

= ⎨ ≥⎩
 (6) 

where i is index for all states. Then we can modify β by 
multiplying it with Vj: 

 .j

i ji
i

V

V

β
β

β
′ =
∑
i

 (7) 

Therefore to obtain a left-to-right HDP-HMM, which we 
refer to as LR HDP-HMM, we simply replace β ′ with β in (5). 
The rest of the definition remains the same. Also notice that 
different topologies can be achieved by defining an appropriate 
Vj .  

B. Initial and Final Non-Emitting States 
In many applications, such as continuous speech 

recognition, a LR HMM begins from and ends with non-
emitting states. These states are required to model the 
beginning and end of finite duration sequences. Adding a non-
emitting initial state is trivial: the probability of transition into 
the initial state is 1 and the probability distribution of a 
transition from this state is equal to πinit which is the initial 
probability distribution for an HDP-HMM without non-
emitting states. However, adding a final non-emitting state is 
more complicated.  In the following we will discuss two 
approaches to solving this problem. 

1) Maximum Likelihood Estimation 
Consider state zi depicted in Figure 1. The outgoing 

probabilities for any state can be classified into three 
categories: (1) a self-transition (P1), (2) a transition to all other 
states (P2), and (3) a transition to a final non-emitting state 
(P3). These probabilities must sum to 1: P1+P2+P3=1. 
Suppose that we obtained P2 from the inference algorithm. We 
will need to reestimate P1 and P3 from the data. This problem 
is, in fact, equivalent to the problem of tossing a coin until we 
obtain the first tails. Each head is equal to a self-transition and 
the first tails triggers a transition to the final state. This can be 
modeled using a geometric distribution [12]: 

 ( ) 1( ) 1 .kP x k ρ ρ−= = −   (8) 

Equation (8) shows the probability of K-1 heads before the 
first tail. In this equation 1-ρ is the probability of heads 
(success). We also have: 

 31

2 2
1 , .

1 1
PP

P P
ρ ρ= − =  

− −
 (9) 

Suppose we have a total of N examples but for just M 
examples the state zi is the last state of the model (SM). It can be 
shown [12] that the maximum likelihood estimation is obtained 
by: 

 

 

M

i
i S

M
k

ρ

∈

=
∑

�  (10) 

where ki are the number of self-transitions for state i. Notice 
that if zi never happens to be the last state (M=0), P3=0. 

2) Bayesian Estimation 
Another approach to estimate ρ is to use a Bayesian 

framework. Since a beta distribution is the conjugate 
distribution for geometric distribution [13], we can use a beta 
distribution with hyperparameters (a,b) as the prior and obtain 
a posterior as [13][14]: 

 ( )~ , 1
M

i
i S

Beta a M b kρ
∈

⎛ ⎞
⎜ ⎟+ + −
⎜ ⎟
⎝ ⎠

∑  (11) 

where M and SM are same as in the previous section. 
Hyperparameters (a,b) can also be estimated using a Gibbs 
sampler if required [15]. 
 

C. HDP Mixture Emission Distributions  
In previous works [5][6], emission distributions for each 

state of an HDP-HMM were modeled using a Dirichlet process 
mixture (DPM) as shown in  (4). While this model is 
reasonably flexible, each data point is strictly associated with a 
single state and hence statistical estimation of each parameter 
would be less reliable. This is a more serious problem for 
HDP-HMMs with a left-to-right topology since these models 
will discover more states. As a result the available data for 
estimating the emission distribution for each state would be 
more limited. The solution proposed here is to replace the 
DPM with an HDP mixture (HDPM) defined for the entire 
HMM. The final model without non-emitting states, which we 
refer to as LR HDP-HMM/HDPM, is defined by  (12) and is 
displayed in Figure 2-(b). For comparison purposes, we display 
the original HDP-HMM in Figure 2-(a) [6].  

 

 

 

 

 
 

Figure 1- Outgoing probabilities for state zi  
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D. Modified Block Sampler  
A block sampler for HDP-HMM with a multimodal 

emission distribution has been introduced by Fox et al. [6]. In 
this section we review the modifications of this algorithm 
needed for our new model. The interested reader should refer 
to [6][16] for additional details.  The central idea is to jointly 
sample the state sequence z1:T given the observations, model 
parameters and transition distribution πj. A variant of forward-
backward procedure [1] is utilized that allows us to exploit the 
Markovian structure of the HMM. However it requires 
approximation of the theoretically infinite distributions with a 
“degree L weak limit” approximation that truncates a DP into a 
Dirichlet distribution with L dimensions [17]: 

 ( ) ,..., .LGEM Dir
L L
α αα ⎛ ⎞ ⎜ ⎟
⎝ ⎠

�  (13) 

The sampling of the transition distribution is similar to [6]. 
The only difference is to replace β with β′ given in (7).  Using 
a similar approximation we can write the following prior 
distributions for the global weights ξ  and state-specific 
weights jψ  used in the HDPM emission distributions. 

 | ~ ,...,Dir
L L
σ σξ σ ⎛ ⎞

⎜ ⎟′ ′⎝ ⎠
 (14) 

 ( )1| , ~ ,...,j LDirψ ξ τ τξ τξ ′  (15) 

where L′  is the order of approximation in this case.  For the 
posterior distribution we can write: 

 1| , ~ ,..., LM Dir M M
L L
σ σξ σ ′

⎛ ⎞+ +⎜ ⎟′ ′⎝ ⎠
i i  (16) 

 ( )1: 1: 1 1| , , , ~ ,...,j T T j L jLZ S Dir n nψ τ ξ τξ τξ ′ ′′ ′+ +  (17) 

where Mjk is the number of tables (clusters) in restaurant 
(state) j that serves dish (mixture component) k; kMi is total 
number of tables in the franchise that serves dish k. The 
number of observations in state j that are assigned to 
component k is denoted by jkn′ . Estimating transition 
probabilities for the final non-emitting state can be done as a 
last step and after estimating the other parameters.  

IV. EXPERIMENTS 
Synthetic data. In the first experiment, we generate data 

from a left-to-right HMM without non-emitting states that 
consists of four states. The emission distribution for each state 
is a GMM with up to three components, each consisting of a 
two-dimensional normal distribution. Three synthetic data 
sequences totaling 1900 observations were generated for 
training. Three configurations have been studied: (1) an 
ergodic HDP-HMM, (2) a LR HDP-HMM with DPM 
emissions and (3) a LR HDP-HMM with HDPM emissions. 
An NIW prior is used for the mean and covariance. The 
truncation levels are set to 10 for both the number of states and 
the number of mixture components. Parameters of the NIW are 
set as follows: pseudocounts, the number of pseudo 
observations for the sample mean, is set to 0.1; the sample 
mean and covariance are set to the empirical mean and 
covariance; and degree of     freedom, which is the precision on 
sample covariance, is set to 5. 

Figure 3-(a) shows the average likelihoods for different 
models for held-out data by averaging five independent chains. 
Figure 3-(b) shows the structure of the models. The LR HDP-
HMM/HDPM discovers the correct structure while the ergodic 
HDP-HMM finds a more simplified HMM. Moreover, we can 
see using HDP emissions improves the likelihood. While LR 
HDP-HMM/DPM can find the structure close to the correct 
one (not shown here), its likelihood is slightly less than that for 
the ergodic HDP-HMM. However, LR HDP-HMM/HDPM  

 
Figure 2- A comparison of models: (a) ergodic HDP-HMM [6] (b) proposed LR HDP-

HMM/HDPM. 
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produces a 15% improvement in likelihoods compared to the 
ergodic model. It is also interesting to note that the likelihoods 
of models discovered by all HDP-HMM algorithms are 
superior to the likelihood of the reference model itself.   

TIMIT Classification. The TIMIT Corpus [18] is one of the 
most cited evaluation data sets used to compare new speech 
recognition algorithms. The data is segmented manually into 
phonemes and therefore is a natural choice to evaluate 
phoneme classification algorithms. TIMIT contains of 630 
speakers from eight main dialects of American English [18]. 
The total numbers of utterances are 6300 where 3990 
utterances are the standard training set and 150 utterances are 
core test set.  We followed the standard practice of building 
models for 48 phonemes and then map them into 39 phonemes 
[19]. The first 12 Mel-Frequency Cepstral Coefficients 
(MFCCs) plus energy and their first and second derivatives 
features have been used to convert speech data into 39-
dimensional feature streams. In this experiment, LR HDP-
HMMs with Gaussian and DPM emissions have been used. We 
have used non-conjugate priors and placed a Gaussian prior on 
the mean and inverse-Wishart prior on the covariance matrix. 
Truncation levels are set to 10. 

Table 1 compares the classification error of the left-to-right 
models and the parametric models. Since the maximum 
number of mixture components is set to 10, we have compared 
our systems to parametric HMMs with 10 components per 

state. As this table shows, even left-to-right HDP-HMM with 
Gaussian emissions outperforms the parametric model.  

Figure 4 shows the discovered structure for phonemes /aa/ and 
/sh/ using the proposed model. As the amount of data increases 
the system can learn a more complex model for the same 
phone. It is also important to note that the structure learned for 
each phone is different and reflects underlying differences 
between phonemes. Also note that the learned structure models 
multiple modalities by learning several parallel left-to-right 
paths. This is shown in Figure 4-(c), where S1-S2, S1-S3 and 
S1-S4 depict three parallel models.  

V. CONCLUSION  
In this paper we introduced a left-to-right HDP-HMM with 

HDPM emissions. We have shown that the new model can 
successfully learn the underlying structure when the data is 
generated using a generative left-to-right model. Moreover, it 
has been shown that the likelihood of the learned model is 
higher than the ergodic model. In this paper we have also 
introduced two approaches to adding non-emitting initial and 
final states to the left-to-right HDP-HMM model. Finally we 
presented the modifications needed in the block sampler to 
implement the inference algorithm for the new model. Through 
experimentation on TIMIT, we have shown that the proposed 
model outperforms parametric HMMs and can learn 
multimodal structure from the data. 

One of the current problems of the HDP-HMM model 
(including left-to-right model) is that the inference algorithm is 
still computationally expensive. It is a serious problem when 
we are dealing with large datasets such as in speech or video 
processing applications. Therefore, our next task is to improve 
the inference algorithm specifically for left-to-right HDP-
HMMs with HDPM emissions using its specific properties and 
structure. For example, due to the left-to-right constraints, the 
number of possible transitions in state 1 is L, in state 2 is L-1 
and in state L is 1. We can exploit this fact to reduce the 
computational complexity.  

 
Figure 3- A comparison of (a) log-likelihoods of the proposed models to an ergodic model, and 
(b) the corresponding model structures. 

Table 1- A comparison of classification error rates 

Model Classification 
Error Rate 

Parametric HMM [19] 
(10 mixtures) 27.8% 

LR HDP-HMM 
with Gaussian emissions 26.7% 

LR HDP-HMM 
with DPM emissions 24.1% 
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Another possible direction is to replace HDP emissions with 
more general hierarchical structures such as a Dependent 
Dirichlet Process [20] or an Analysis of Density (AnDe) model 
[21]. It has been shown that the AnDe model is the appropriate 
model for problems involves sharing statistical strength among 
multiple set of density estimators [5][21]. 
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Figure 4- An automatically derived model structure for a left-to-right HDP-HMM model (without 
the first and last non-emitting states) for  (a) /aa/ with 175 examples (b) /sh/ with 100 examples (c) 
/aa/ with 2,256 examples and (d)  /sh/ with 1,317 examples. The data used in this illustration was 
extracted from the training portion of the TIMIT Corpus. 
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