Using Software Architecture for discrete event Network simulation design and validation
M. Crocker, J. Carver, G. Lazarou

Mississippi State University

Address

Starkville, MS 39759

crocker@cavs.msstate.edu, carver@cse.msstate.edu, glaz@cavs.msstate.edu
Abstract
Simulation experiments are a fundamental part of research and development, especially for modeling computer communication and network systems. These experiments allow researchers to create and control complex systems in order to quickly test a hypothesis in a controlled environment. Without simulations, most experiments would not be feasible due to the amount of time required to implement a system and the inability to effectively and easily control all of the aspects of a real-world implementation. A drawback to using simulation experiments is the necessary validation, verification, and testing that ensures the system accurately models the real-world system it represents. Without any type of validation, there is no assurance that the results are indeed representative of the intended real-world system and therefore, the results cannot be trusted. This paper examines the use of software architecture to design and validate discrete event simulation experiments. A new view, called the model validation view, is introduced in order to assist in validation.
Keywords

Simulation, Software Architecture, Validation, Discrete-Event, Network
1. IntroductionCurrent computer communication systems have expanded far beyond the simple networks created just over twenty years ago. No longer are networks restricted to a small subset of possible physical links with only a few distinguishable properties. Instead, the networks of today are complex, varied, and exhibit a wide range of physical characteristics.
This increased complexity in computer communication systems present researchers with an intricate problem: how can hypotheses be easily and accurately tested when they involve complex and varied networks? In many cases, it is neither practical nor possible to implement a real-world test system or to solve the hypothesis analytically. Researchers need to be able to control and analyze a wide range of variables and behaviors that cannot be done easily with real systems, especially if the system requires hundreds or even thousands of variables. Some of the most common network simulation tools researchers use consist of simulation platforms such as ns2 [1], MLD [2], GloMoSim [3], OPNet [4], or custom implementations. These simulation platforms give researchers the ability to create and explicitly control every aspect of an experiment quickly and easily.
Unfortunately, simulations introduce another problem: validation. If the simulation experiment is not representative of the real-world system then can the results be trusted? Without validation, simulation results cannot be trusted but must be taken on faith alone. How then can network simulations be validated? In the same sense that most software applications cannot be easily validated, network simulations are just as difficult to prove that they are indeed correct and complete. Fortunately, software engineering practices have advanced to the point that design and validation is well within reach. In particular, software architecture procedures provide simple and effective design constructs that make software application design and implementation an obtainable goal. Since simulation experiments are essentially software applications designed to mimic real-world systems, the same software architecture principles can be applied to simulation experimentation design. The only difference is that software applications are valid if they correctly meet a given set of requirements, while simulation experiments are valid only if they correctly and completely model the necessary aspects of the real-world systems that are needed to test the proposed hypothesis.
In order to simplify and assist in designing and validating discrete-event network simulations, we propose that software architecture principles be used for designing and validating discrete-event network simulations. A new software architecture view called the model validation view is introduced as part of the allocation style in the software architecture process. This view shows the relationship between models in the experiment and the hardware or software the models represent. By examining the accompanying documentation, researchers can easily assess the validity of a simulation experiment.
2. Simulation Validation, Verification, and TestingThe credibility of a simulation suffers if continuous verification and validation is not part of the simulation design and implementation procedure [5 - 7]. The actual amount of verification, validation, and testing (VV&T) necessary for a simulation is dependent on the end goals of the simulation. The more critical and complex the system, the more VV&T is needed. Of course, more VV&T procedures mean increased costs as more time is devoted to assuring the correctness and completeness of the simulation models.
The question then is how can simulations be correctly validated and verified? This is a topic which has warranted much concern and study, but there is no definitive answer as to the exact procedure to follow for producing an accurate simulation model. In “Principles and Techniques of Simulation Validation, Verification, and Testing,” the author presents 15 principles and techniques for validating, verifying, and testing simulations [5]. These principles are by no means 100% complete nor do they surmise any particular process for completing VV&T. They are merely guidelines that the author has constructed from many years of experience designing and validating simulations. A life cycle for VV&T that can be followed throughout the entire process of simulation design and development is introduced in “Verification, Validation, and Accreditation in the Life Cycle of Models and Simulations,” and can be seen in Fig. 1 [6]. At each step in this life cycle, some form of VV&T is executed along with the design and implementation. Again, this life cycle is only intended to help the reader plan for VV&T. This work also provides a systematic approach for documenting the procedure and for giving the reader a better understanding of how to include VV&T as part of the life cycle. Another method is presented in “Modeling and Simulation Best Practices for Wireless Ad Hoc Networks” which uses direct-execution of traces generated from real experiments to drive models in the simulation [7]. The results then can be compared against the real experiments to verify the simulation models.
[image: image3.png]Requirements Conceptual Model Design Implementation Integration & Tests Use

Requirements Conceptual Model Design & y y

Verification & Verification & Requirements iogsvvgﬂzzigﬂr Codile}—:i:‘dware Accrediation
Validation Validationn Verification 9

The bottom line is that no single correct method exists for successfully verifying, validating, and testing a simulation experiment. The credibility of a researcher’s work is directly related to the amount of VV&T so it is essential that a VV&T process be executed during simulation and that that process be documented. Software architecture provides constructs not only for designing the simulation, but also for providing a level of validation that falls in line with the VV&T life cycle.
3. Software Architecture
3.1 Overview

Software architecture (SA) is one step in the software engineering process. Many definitions have been given for SA but the definition that best describes SA as it is used today is “the structures of a system, which consist of elements, their externally visible properties, and the relationships among them” [8]. SA and the documentation that accompanies it communicate the design of the system to the stakeholders of the system. SA also includes the rationale of design decisions so that these decisions are justified and so that mistakes are not repeated.
The most important part of software architecture that communicates design is the views. The views of a SA document present a representation of the system elements and the relationships between them. A view is simply one way to look at the system based on design decisions for the system. Generally, views are divided into three main viewtypes: module, component and connector, and allocation. In the module viewtype, the system is represented by modules where each module implements a set of responsibilities. A view using the modules style shows how the modules use each other or how they relate to each other. The component and connector viewpoint provides a representation of the system at execution. Components communicate through connectors in order to perform execution of the system. Finally, the allocation viewtype describes the mapping between software elements and the environment [8].
Using software architecture principles, an experimenter can more effectively design and implement a simulation system and provide a level of validation at the same time. The documentation produced along with the design serves as not only documentation for developers, but it can also serve as justification to the validity of the design. Researchers can review the document and immediately decide if the design is acceptable. The only improvement needed in the SA constructs is the addition of a style for the allocation viewtype to help in validation.
3.2 Designing Discrete Event Simulations

The design of a discrete-event simulation is comparable to the design of a software application. Both incorporate a process of requirements specification, concept analysis, design, implementation and testing. In fact, a simulation experiment can be viewed as a software application designed to replicate the behavior of other existing systems. The main difference between a simulation experiment and a software application is that a simulation will most likely never exist outside the simulation platform that it was developed on. The simulation platform may require a specific set of hardware or operating system to execute the experiment, so the simulation experiment will most likely never be concerned with the target hardware or operating system. The simulation experiment models and code will always require the simulation platform, so target hardware and operating system will be a requirement of the simulation platform and not the experiment itself.

The life cycle previously presented in Fig. 1 shows a process for validating, verifying and testing throughout the lifetime of a simulation experiment. The process begins with requirements and follows through with conceptual model, design, implementation and testing. This process is indeed similar to processes for developing software applications. The design for a discrete-event simulation can follow very closely to this life cycle. The success and credibility of the experiment can be increased if used along with the 15 principles for simulation VV&T [5]. Of course, this process will not fit every problem exactly and the details of each step are beyond the scope of this document. However, we can describe the use of SA in this process.
SA takes place in the conceptual model and design phases. In these phases, the simulation designers make design decisions and communicate those decisions using SA documentation. The three viewtypes described previously (module, component and connector, allocation) provide constructs necessary for specifying elements in the system and the relationships between them. The details of each viewtype and the styles within each viewtype are also outside the scope of this document. However, we will examine the module viewtype since it directly relates to validation.
3.3 Module Viewtype

In the module viewtype, each element of the system is represented as a module. A module is any functional element of the system that caries out a specific set of responsibilities. The various styles in the module viewtype include decomposition, uses, generalization, and layered. For discrete-event network simulations, the decomposition style is ideally suited for design and validation. Figure 2 provides an example of how the decomposition style works. In this example, we start with a top level model (or module) of a router. The router can then be decomposed into two separate modules: input/output and control. These modules can then be decomposed even farther. The control consists of the operating system and the algorithms necessary for routing and table lookups. Input/output consists of the network interfaces and switching fabric. All of these modules can then be decomposed further down to the level of detail required for fulfilling the requirements for the simulation.
Since most simulation platforms allow a similar style of module decomposition, the process of going from the decomposition view to implementation will be trivial. Validation will also be trivial as modules in the decomposition view can be directly mapped to the elements in the real-world system they represent. The validation view presented in the next section describes a style designed for validating modules in this way.

[image: image1.png]Router

InputOutput Control

Switching Fabric

et tce ‘ Lo Aot

L Operating ‘ Routing

=) 1

Decomposes.

Figure 2 - Example Module Decomposition View

4. Model Validation Style
In this section, we examine VV&T and present the details of the model validation view style. The details of the view style explain what the view is and how it should be used in a software architecture document.
4.1 Validation, Verification, and Testing
Before we examine the model validation style, we need to first understand validation, verification, and testing. These terms describe three different aspects of increasing the credibility of a simulation. To simply say a system is validated is not enough; the system must also be verified and tested. In order to distinguish the generic validation, verification and testing terms, we use the word model along with these terms to indicate the VV&T specific to simulation elements.
Model validation simply refers to building the right model [5]. That is, the model must be appropriate for the domain of the defined study and it must accurately represent the input-output transformation of the real-world system the model represents. If the simulation incorporates models that are not accurate representations or abstractions of the system being modeled then the model cannot be considered valid. Once the correct, or valid, models are selected, the next step is verification. Model verification refers to building the model accurately [5]. The method in which the model is implemented in order to perform an abstraction of the real system determines if the model is verified. The model must accurately respond to and transform the input-output stimulus as the real system would.
Finally, the purpose of model testing is to expose the inaccuracies of the model or to reveal errors in the model [5]. Testing cannot confirm the absence of errors; it can only confirm the presence of errors. Testing should be performed with test data or by following test cases. The results of the tests are compared with the expected output in order to expose any errors in the model. Table 1 presents a summary of the validation, verification, and testing terms.
Table 1 - Validation, Verification, and Testing Terms

	Term
	Description

	Validation
	Process of selecting the appropriate models for the simulation experiment

	Verification
	Process of ensuring the constructed models correctly represent the real world entities

	Testing
	Process of exposing inaccuracies or revealing errors in the constructed models

4.2 Overview

The model validation style is used to map simulation models defined by elements of a module style to the environmental elements the modules represent. This style is similar to the deployment style, except that environmental elements can include software elements that exist as parts of real systems. The constraints are defined by the requirements of the simulation and how those requirements are met by the constructed simulation models.
4.3 Elements, Relations, and Properties

Table 2 lists a summary of the elements, relations, and properties of the model validation style. The environmental elements in the model validation style are entities that correspond to the software or physical units that are being modeled in the simulation. The software elements are the elements used to model the environmental elements. The relation is models where a module from one of the module views (most likely the decomposition view) models the environmental element.
Table 2 - Summary of the Model Validation Style

	Elements
	· Environmental element, software or physical element that is being modeled
· Software element, usually a module from the module viewtype

	Relations
	· Models, showing which software elements represent the modeled elements

	Properties of elements
	· Required properties of a software element: estimated percent representation of software element to environmental element
· Provided properties of an environmental element: the significant aspects that influence percent representation by software element

	Properties of relations
	None

	Topology
	Only software elements can model the environmental element

Included in properties for elements is percent representation of software elements. This property gives the estimated percentage of the environmental element that the software element represents. For example, if a router module software element only models roughly 20% of the physical router then this is the percentage representation. A 20% representation may mean that not all of the interfaces are completely modeled, the router operating system is only partially modeled, and the core routing algorithms are not complete. The final 20% value is based on the percent representation of the decomposed elements. This property allows a quick assessment of the completeness of the simulation model. The other element property refers to the environmental elements and the significant aspects of these elements that influence representation. Again with the example of a router, if our simulation is concerned with routing protocols, then this property will be significant and should be included as a property of the environmental elements.
4.4 What the Model Validation Style is for and What it is not for
The model validation style is exclusively designed for use with simulation experiments. In particular, this style is best used for experiments where environmental elements are physical systems or software systems. This style may not be suitable for simulations where the environmental elements are abstractions such as simulating weather conditions or in simulations where behavior is represented as mathematical functions.
4.5 Notation for the Model Validation Style

The model validation style may be presented in an informal notation where modules are mapped to environmental elements. One method is to take the notation for a decomposition style and add arrows pointing to the environmental elements. Also, a table may be used to map modules to elements and to list the element properties.
4.6 Relation to Other Styles

The model validation style is directly related to the module styles that model the environmental elements. This primarily includes the deployment style where software elements are mapped to physical elements in the environment.
4.7 Examples of the Model Validation Style

Consider a network simulation experiment where a Cisco 1700 series router is used for routing network traffic. The simulation experiment requires that the model for the router include models for the OSPF protocol, key parts of the Cisco operating system, and a 100 Mbit Ethernet network interface card. Figure 3 gives the primary presentation for the model validation style. In this figure, the router is decomposed into the constituent parts which are directly mapped to modules from Figure 2. These modules model the Cisco Router. Table 2 presents a list of the modules, their critical parts, and the percent representation.
[image: image2.png]Router

Gisco 1700

InputOutput Control Gonrol Inputioutput
Network Interface. Switching Fabric Opersing Routing Gisco 105 osPF 100 Mot Ethemet Switching Fabric
o System Agorithms. 9
Key.
Module
Models
Decomposes.

Figure 3 - Example Notation for Model Validation Style
	Module
	Modeled Element
	% Rep
	Key Aspects

	Router
	Cisco 1700
	20%
	The model for the Cisco 1700 router includes the OSPF routing algorithm, minimal operating system functionality, and a single 100 Mbit Ethernet network interface. The key aspects were chosen based on the requirements for the experiment. The constituent parts of the router model compromise approximately 20% of the real world system.

	Input/Output
	NICs
	10%
	Only the 100 Mbit Ethernet network interface card was modeled out of the 5 supported cards for this router.

	Control
	Cisco IOS and OSPF
	15%
	Includes minimal memory management and routing table functionality in the Cisco IOS and only the OSPF routing protocol out of the 4 routing protocols supported.

	Network Interface
	100 Mbit Ethernet
	75%
	The 100 Mbit Ethernet interface model implements functionality consisting of link layer framing, ARP, broadcast, and medium access control. The physical signaling characteristics are not critical and were not included in the model.

	Switching Fabric
	Switching Fabric
	0%
	The switching fabric is not critical to the experiment and is not modeled.

	Operating System
	Cisco IOS
	5%
	Only minimal memory management functionality and routing table functionality is included in the Operating system module.

	Routing Algorithms
	OSPF
	50%
	The routing algorithms module includes a complete model for the version 2 of the OSPF routing protocol. Version 1 is not included in this model.

5. Conclusion
In this paper, we have examined the necessity of validation, verification, and testing needed for simulation experimentation. While the details of a successful VV&T scheme are outside the scope of this document, we have presented a method for design and validation using software architecture principles. Software architecture provides constructs that can be used for designing and validating simulations. A new software architecture view style called the model validation view style was presented to accompany in the design and validation of simulation experiments. The methods discussed here are suitable for discrete-event simulations, especially network simulations, but the methods can be adapted to include simulations in other domains.
6. AcknowlegementsI would like to acknowledge my advisor Dr. Lazarou for reviewing this paper and for offering suggestions for the direction. I would also like to acknowledge Kimberly Woodruff for reviewing and offering corrections concerning grammar.

References
[1] The Network Simulation – n-2, available at http://www.isi.edu/nsnam/ns/
[2] ML Designer. MLDesign Technologies. http://www.mldesigner.com.

[3] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla, “GloMoSim: A Scalable Network Simulation Environment,” Technical Report, UCLA Computer Science Department – 990027, 1999

[4] http://www.opnet.com
[5] A. Brodeen, M.S. Taylor, “A Multivariate Rank Sum Test for Network Simulation Validation,” In Proceedings of the Tactical Communications Conference, May 1994 pp. 475 - 482
[6] J. Chew, C. Sullivan, “Verification, Validation, and Accreditation in the Life Cycle of Models and Simulations,” In Proceedings of Simulation Conference, Dec. 2000 pp. 813 - 818 vol.1

[7] O. Balci, “Principles and Techniques of Simulation Validation, Verification, and Testing,” In Proceedings of Simulation Conference, Dec. 1995 pp.147 – 154

[8] L.F. Perrone, Y. Yuan, “Modeling and Simulation Best Practices for Wireless Ad Hoc Networks”, In Proceedings of Simulation Conference, Dec. 2003 pp. 685 - 693 vol.1
[9] P. Clements, et al., “Documenting Software Architectures,” 1st ed, vol. 1, Massachusetts: Addison-Wesley, 2003
Figure � SEQ Figure * ARABIC �1� - VV&T Life Cyle in Simulation Design

