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Abstract

Hidden Markov models (HMMs) with Gaussian emission densities are the prominent mod

technique in speech recognition. HMMs suffer from an inability to learn discriminative information

are prone to overfitting and overparameterization. Recent work in machine learning has focus

models, such as the support vector machine (SVM), that automatically control generalization

parameterization as part of the overall optimization process. SVMs, however, require ad hoc

unreliable) methods to couple it to probabilistic speech recognition systems. In this work, we introdu

use of a probabilistic Bayesian learning machine termed the relevance vector machine (RVM) as th

statistical modeling unit in a speech recognizer. The RVM is shown to provide superior perform

compared to HMMs and SVMs in terms of both accuracy and sparsity on a continuous alphadigit ta
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I. INTRODUCTION

Computer speech recognition is typically posed as a statistical pattern recognition problem bas

Bayesian methods [1]. Given a set of acoustic observations, , and a set of m

describing acoustic and linguistic patterns, we must find the most probable word sequence [1]:

(1)

where is the probability that the acoustic observations would be seen when a particular

sequence was spoken and is thea priori probability of the word string being spoken. i

determined by a statisticallanguage modelwhich might take the form of a stochastic grammar or a

N-gram language model [1,2].

The focus of this paper is the computation of , known as the acoustic model. In most s

of-the-art recognition systems, a hidden Markov model (HMM) is used as the acoustic model [3]

popularity of the HMM representation [3] is based on an HMMs ability to simultaneously model

temporal progression of speech (speech is usually seen as a “left-to-right” process) and the a

variability of the speech observations. The temporal variation is modeled via an underlying Ma

process while the acoustic variability is modeled by an emission distribution at each state in the M

chain. The most commonly used emission distribution is the Gaussian mixture model (GMM).

While combinations of HMMs and Gaussian mixture models have been extremely successful, the

two fundamental limitations of these approaches:

• the parametric form of the underlying distribution is assumed to be Gaussian,

• the maximum likelihood (ML) approach, which is typically used to estimate model parameters,

not explicitly improve the discriminative ability of the model.

The ML approach maximizes the probability of the correct model while implicitly ignoring the probab

of the incorrect model. Ideally, a training approach should force the model toward in-class tra

examples while simultaneously driving the model away from out-of-class training examples. Methods

O o1 o2 … oT, , ,{ }=

Ŵ
argmax

W
P O W( )P W( )=

P O W( )

P W( ) W P W( )

P O W( )
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as maximum mutual information [4,5] and minimum classification error [6] have been develope

incorporate discriminative training directly into the standard HMM/GMM framework. However, th

success has been limited due primarily to their considerable computational costs [5].

The weaknesses of the HMM/GMM system have led researchers to explore other models [6-9]

as hybrid connectionist systems [6-12], which merge the power of artificial neural networks (ANNs

HMMs. HMM/ANN hybrids have shown promise in terms of performance but have not yet fo

widespread use due to some serious problems. First, ANNs are prone to overfitting the training

allowed to blindly converge. To avoid overfitting, a cross-validation set is often used to define a sto

point for training. This is wasteful of data and resources — a serious consideration in speech whe

amount of labeled training data is limited. ANNs also typically converge much slower than HMMs. M

importantly, the HMM/ANN hybrid systems have not shown the substantial improvements in recogn

accuracy over HMM/GMM systems that would be necessary to force a paradigm shift.

The approaches developed in this work draw significantly from the HMM/ANN hybrid syste

However, we seek methods which are automatically immune to overfitting without the artificial impos

of a cross-validation set as well as methods which can automatically learn the appropriate model st

as part of the overall optimization process. One such model that has come to the forefront of p

recognition research is the support vector machine (SVM) [13,14,15]. The support vector paradi

based upon structural risk minimization (SRM) in which the learning process is posed as one of optim

somerisk function, . The optimal learning machine is the one whose free parameters, , are se

that the risk is minimized. This minimization is written as

(2)

where is a loss function that penalizes the mismatch between both the form an

parameterization of the learning machine and the true distribution; and is the true

distribution of the observations and targets.

R α( ) α

α̂ argmin
α R α( ) argmin

α Q o y α, ,( ) P o y,( )d∫==

Q o y α, ,( )

P o y,( )
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Finding a minimum of the risk function is typically impossible due to the unknown distribut

. Instead, Vapnik [13] has formed an upper bound on the actual risk

(3)

which is related to the empirical risk (i.e. the training set error which can be measured) and a quant

known as the Vapnik-Chervonenkis (VC) dimension. The VC dimension is a measure of the capaci

learning machine to learn any training set and is typically closely related to the complexity of the lea

machine’s structure. With this result, we can guarantee both a small empirical risk (training error

good generalization — an ideal situation for a learning machine.

In their most basic form SVMs use the SRM principle to impose an order on the optimization pro

by ranking candidate separating hyperplanes (C0, C1 and C2 in Figure 1) based on the margin they

For separable data, the optimal linear hyperplane is the one that maximizes the margin. The true po

the SVM, however, lies in how it deals with nonlinear class separating surfaces. Providing for a non

decision region is accomplished usingkernels[16]. Transformation of the data to a higher dimension

space by the function  allows one to define the dot product  in that space by

. (4)

With the kernel, the dot product is computed withouta priori knowledge of the explicit form of .

It can be shown [13] that the SRM optimization process yields the decision function:

. (5)

where the sign of can be used to classify examples as either in-class or out-of-class. This eq

defines the SVM classifier. Only those training vectors, , that lie on the margin or in overlap re

have non-zero hyperparameters, . In practice, the proportion of the training set that becomes s

vectors is small, making the classifier sparse. Consequently, the training process along with the train

P o y,( )

R α( ) Remp α( ) f h( )+≤

h

φ o( ) φ oi( ) φ o j( )⋅

K oi o j,( ) φ oi( ) φ o j( )⋅=

φ o( )

f o( ) αi yi
K o oi,( ) b+

i 1=

N

∑=

f

oi

αi
Page 4 of 29



in the

tinuous

the

ddress

etup in

ions.

acks

odels

eaker-

peech

which

ledge

hod for

hus, we

d the

two

ation

t in a

to the

ous

t SVM
directly optimize the complexity of the learning machine. In contrast, ANN systems often makea priori

assumptions about the form of the model.

SVMs have had great success on static classification tasks [17-20]. However, it is only recently,

work of Ganapathiraju [9] and colleagues [21-23], that these techniques have been applied to con

speech recognition. Ganapathiraju’s work follows a hybrid approach combining techniques from

connectionist systems and segmental modeling systems [24,25]. It is the first to comprehensively a

the problems associated with applying SVMs to continuous speech recognition. The experimental s

our current work follows and is compared to that of Ganapathiraju as will be discussed in later sect

While the SVMs provide an excellent classification paradigm, they suffer from two serious drawb

that hamper their effectiveness in speech recognition. First, while sparse, the size of the SVM m

(number of non-zero weights) tends to scale linearly with the quantity of training data. For a large sp

independent corpus this effect is prohibitive. Second, the SVMs are binary classifiers. In s

recognition this is an important disadvantage since there is significant overlap in the feature space

can not be modeled by a yes/no decision boundary. Further, the combination of disparate know

sources (such as linguistic models, pronunciation models, acoustic models, etc.) requires a met

combining the scores produced by each model so that alternate hypotheses can be compared. T

require a probabilistic classification which reflects the amount of uncertainty in our predictions.

In the remainder of this work, we describe a Bayesian model due to Tipping [26,27] and terme

relevance vector machine (RVM) which is similar in form to the SVM but which addresses these

problems. The essence of an RVM is a fully probabilistic model with an automatic relevance determin

prior [28,29] over each model parameter. Thus, sparseness in the RVM model is explicitly sough

probabilistic framework. The next section describes the Bayesian modeling approach that leads

formulation of the RVM. Then we describe how the RVM is coupled into the HMM system for continu

speech recognition. Finally, we present experiments that compare the RVM system to an equivalen

system and describe their relative merits.
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II. SPARSE BAYESIAN METHODS

Supervised learning in speech recognition implemented via a maximum likelihood approach

dominant approach for finding values of the parameters in our model that best match the training da

expectation in data modeling is that given sufficient training data, the model would generalize to u

test sets. Two levels of inference [28] must be implemented to accomplish this. First, assuming

particular model is true, we seek to infer the values for the parameters of the model that best fit the

hand. This is exactly the training process used in the ANN hybrids. Second, we must decide which

is most appropriate given the data at hand, i.e. model comparison.

A simple approach to model comparison might dictate that we simply choose the model that fi

data best — the maximum likelihood solution. However, a more complex model can always fit the

better. Jaynes [30] describes an extreme interpretation of this problem where we would always cho

so-calledSure Thinghypothesis, under which exactly the training set and only the training set is poss

Though it is the maximum likelihood solution, the Sure Thing hypothesis is intuitively displeasing a

counter to our desire for a solution which generalizes. We avoid choosing the Sure Thing hypothe

expressing ana priori preference for simpler solutions using the principle of Occam’s Razor.

MacKay [28,29] and others [31] have formalized this preference mechanism through the u

Bayesian methods. These provide a natural and quantitative embodiment of Occam’s razor [29] as

demonstrated shortly. Following MacKay [29], the first level of inference requires that we find the be

parameters. We can write this probabilistically as , where is the set of adjust

parameters, is the data from which we will make all inferences, and is the overall model o

world including the form of the model, etc. Using Bayes’ rule, we can rewrite this as

(6)

Gradient methods are typically applied to find a optimal setting of . The denominator, terme

evidencefor the hypothesis , is usually ignored during the first level of inference because it is

P w D Hi,( ) w

D Hi

P w D Hi,( )
P D w Hi,( )P w Hi( )

P D Hi( )
--------------------------------------------------=

w

Hi
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needed in finding the most probable parameter settings, . This, by itself would constitute nothing

than maximum likelihood training which has long been a staple of speech modeling.

The second level of inference requires the comparison of competing hypotheses, and

finding which of and is a maximum. Setting this problem as a ratio of probabili

and using Bayes’ rule gives

. (7)

If we assume that the competing hypotheses area priori equiprobable (i.e. ), then the

best hypothesis is chosen by evaluating the evidence, . The evidence is compute

marginalization across the model parameters:

. (8)

It is usually impractical to compute the integration, so MacKay [28,29] prescribes an analy

approximation to the evidence computation. Under the assumption that the posterior probability

, is well-approximated by a Gaussian, the integrand in (8) can

assumed to have a strong peak at the most probable value of the parameters, . The evidence can

approximated by multiplication of the height of the integrand and the width of the posterior, . Th

depicted in Figure 2.

The evidence is approximated by

. (9)

where the term is the likelihood of the data given the best-fit parameter set and

is a penalty on the range of which measures how well our posterior distribution on fits with

prior specification. As shown in Figure 3, a more complex model would be expected to have a smalle

probability for , , than a less complex model and thus would be penalized more. Th

precisely how the evidence embodies Occam’s razor: all other things being equal, a less complex m

ŵ

H1 H2

P H1 D( ) P H2 D( )

P H1 D( )
P H2 D( )
----------------------

P D H1( )P H1( )
P D H2( )P H2( )
---------------------------------------=

P H1( ) P H2( )=

P D Hi( )

P D Hi( ) P D w Hi,( )P w Hi( ) wd∫=

P w D Hi,( ) P D w Hi,( )P w Hi( )≈

ŵ

w∆

P D Hi( ) P D ŵ Hi,( )P ŵ Hi( ) w∆≈

P D ŵ Hi,( ) P ŵ Hi( ) w∆

0 1,[ ] w

ŵ P ŵ Hi( )
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preferred. The evidence provides a natural trade-off between the best-fit likelihood and the Occam

This concept is closely related to other methods such as the Minimum Description Length [32] an

Bayesian Information Criteria [33] where the model is directly penalized by the number of param

used. A similar idea was also incorporated into SVM models, which penalize the models with too la

capacity (VC dimension) [16]. However, while the SVM models are forced to estimate the penalt

cross-validation schemes, Bayesian techniques automatically determine and apply the penalty in

probabilistic framework.

A. Automatic Relevance Determination

MacKay [28,29] was the first to apply the evidence framework to regression and classific

problems using ANNs. A brief summarization [29] of his analysis is given below. Defining the train

data set as , the goal in neural network learning is to find the set of weights, , such t

global error term, , is minimized. Typically takes the form of a squared error as in the

squared error in back propagation. To discourage overfitting, a weight decay or regularization term

may be added which penalizes large .

The objective function for learning thus becomes

. (10)

MacKay [28] gives a probabilistic interpretation for (10) by considering the neural network outpu

be perturbed by a zero-mean Gaussian noise process with variance . The total probability of th

given the model (using the log of the sum-squared error condition) can then be written as

, (11)

where is the Gaussian normalization term. Likewise, the log of the weight decay term, , c

interpreted as a prior probability over the parameters so that

. (12)

D o t,{ }= w

ED w( ) ED w( )

EW

wi

M w( ) βED αEW+=

1 β⁄

P D w β H, ,( ) 1
ZD β( )
---------------e

βED–
=

ZD β( ) EW

P w α H,( ) 1
ZW α( )
----------------e αEW–=
Page 8 of 29
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 is a zero-mean Gaussian whose width is defined by . Finally, we have that

, (13)

where, substituting (11) and (12) gives us

. (14)

It should be noted that binary and multi-class classification networks can be handled in a s

manner [29]. One simply replaces the sum-square error function by a log-likelihood function,

parameter, , is not necessary in this case as is already a probabilistic function. We are usi

modeling approach in its classification form and will, thus, ignore through the remainder of the ana

Application of (14) has the expected consequence that, by minimizing the objective function in

we are maximizing the probability of the weights given the regularization constraints. Finding the

probable weights, however, is not the end of the problem. A parameter, , has been introduced and

to be estimated. Note that as is increased, the distribution of the decay terms becomes peaked ab

and smoother distributions are favored. However, a value of that is too large (i.e. too narrow a Gau

may limit the ability of the system to model a complex data set. As is decreased, more com

interpolants are allowed. Here we have the first application of the Occam factor as described above

must find the that provides sufficient flexibility to model the training data set without allowing

complex a model that overfitting is encouraged.

Under typical statistical methods, we might turn to cross-validation to find a suitable value for

Bayesian methods provide a natural and principled approach for estimating it using the available da

can write down the probability of  given our state of knowledge as

. (15)

Note that is the evidence for is the denominator in (13) (again, ignoring the te

P w α H,( ) 1 α⁄

P w D α β H, , ,( )
P D w β H, ,( )P w α H,( )

P D α β H, ,( )
------------------------------------------------------------=

P w D α β H, , ,( )

1
ZD β( )
---------------e

βED– 1
ZW α( )
----------------e αEW–

P D α β H, ,( )
-------------------------------------------------------------

1
ZM
-------e

M w( )–
= =

G w( )

β G w( )

β

α

α

α

α

α

α

α

P α D H,( )
P D α H,( )P α H( )

P D H( )
-----------------------------------------------=

P D α H,( ) α B
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Assuming we have no prior knowledge that would cause us to favor a particular value of , we ca

the optimal value for by evaluating the evidence (if we did have prior knowledge, we would sim

repeat the inference over using the prior, , similar to the optimization of . At some leve

the inference, we will arrive at a point where our prior knowledge is too weak to apply and the

evaluate the evidence).

Unfortunately, a maximum for can not be found analytically in this case, so we proc

with an approximation due to MacKay [28] and Gull [31]. Under the assumption that the post

distribution, (14), can be adequately approximated as a Gaussian,  can be updated as

, (16)

where are the number of training points, are the most probable weights found by maximizing (1

is a measure of the number of parameters which are well-determined by the training data and is giv

. (17)

where are the total number of parameters and is the covariance of the assumed posterior Gaus

defines error bars on the parameters, . is found by computing the negative inverse Hessian

objective function given in (14). Iterative application of (14) and (15) provides optimal values for

system parameters,  and  under the set of Gaussian assumptions.

For the explanation above, it was assumed that only one parameter, , was used to cont

complexity of all parameters in the system. In practice, we may want to group parameters of the s

and control the complexity of each group separately. In the extreme case, a control parameter, ,

assigned to each weight, . This extreme application of the Bayesian prior as a control param

known as the method ofautomatic relevance determination(ARD) [29]. It is so named because the prio

over the input unit weights in a neural network can ‘shut-off’ those input dimensions which are irrele

to the problem at hand. ARD is at the heart of the relevance vector machines that will be described

α

α

α P α H( ) w

P D α H,( )

α

α̂ γ
wi
ˆ( )2

i
∑
-------------------=

N ŵ γ

γ k αTrace Σ( )–=

k Σ

w Σ

ŵ α̂

α

αi

wi
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B. Relevance Vector Machines

An application of the evidence framework to kernel machines is the relevance ve

machine (RVM) [26,27]. As with SVMs, RVMs use a weighted linear combination of basis functions

. (18)

We define (18) where there is one weight, , associated with each training vector and defi

kernel function (not necessarily a Mercer kernel). Due to the large number of parameters in this mo

one per observation — we must guard against overfitting of the model to the training data. SVMs

control parameter, [15], to implicitly balance the trade-off between training error and generaliza

RVMs take a Bayesian approach and explicitly define an ARD prior distribution over the weights

(19)

where we have defined .

Each weight in the RVM model has an individual hyperparameter, , that is iteratively reestimat

part of the optimization process. As the grows larger, the prior on becomes infinitely peaked a

zero, forcing to go to zero and, thus, contributing nothing to the summation in (18). This pro

automatically embodies the principle of Occam’s Razor because it explicitly seeks the simplest mod

satisfies the data constraints. In practice, the majority of the weights are pruned, resulting

exceedingly sparse model with generalization abilities on par with SVMs [26, 34]. To complete

Bayesian specification of the model, we have to specify a prior probability over the . In practice w

a non-informative (flat) prior to indicate a lack of preference [26].

With SVMs the form of (18) arises from the need to optimize the classification margin in a h

dimensional space. With RVMs, however, the goal is to directly model the posterior proba

distribution. The posterior is, thus, formed by generalizing the linear model to a probability distribu

with a sigmoid link function,

y o w;( ) wo wiK o oi;( )
i 1=

M

∑+=

wi K o oi;( )

C

p w α( ) N wi 0
1
αi
-----, 

 

i 0=

N

∏ 1

2π( )N 1+ A 1–
---------------------------------------e

1
2
---wT Aw–

= =

A diag αo α1 … αN, , ,( )=

αi

αi wi

wi

αi
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and adopting the two-class Bernoulli distribution for  to give

(21)

where . Under the assumption that each data sample is drawn independently, the likelih

the training data set can be written as

(22)

where .

As described earlier, a closed form maximization of is not possible so we use

iterative approximation defined by MacKay [28] which was described earlier:

1. For a fixed , find the locally most probable weights . This is equivalent to maximiz

. The Hessian of this function is negative-definite everywhere. W

thus, use second-order Newton methods to solve for the  that maximizes .

2.The Hessian is negated and inverted to give an approximation to the covariance, , of a Ga

posterior over the weights, centered about

3.Using and as the covariance and mean, respectively, of the Gaussian approximation, w

follow MacKay’s approach [28] to update the  by

. (23)

This iterative procedure is repeated until suitable convergence criteria are met. Central to this ite

method is the second-order Newton maximization of requiring an O(N3) inversion

operation. As the quantity of training data increases, this becomes prohibitive. SVMs have a s

problem with scaling that has been addressed through iterative refinement of the training set [35]. C

research is focusing on similar methods for RVMs [36,37].

σ y( ) 1
1 e y–+
----------------=

P t o( )

P ti w o, i( ) σ y oi w;( ){ }[ ]ti 1 σ y oi w;( ){ }–[ ]1 ti–=

ti 0 1,{ }∈

P t w O,( ) σn
tn 1 σn–( )1 tn–

n 1=

N

∏=

σn σ y on w;( ){ }=

p w α t O,,( )

α ŵ

L P t w O,( ) p w α( ){ }log=

ŵ L

Σ

ŵ

Σ ŵ

αi{ }

αi

γ i

ŵi
2

------= γ i, 1 αiΣii–=

P t w O,( ) p w α( )
Page 12 of 29



tem is

hey are

ation

MxM

r of a

we

h only

em in a

d bit

, care

scillate

, this

ical in

use

again,

ss this

wever,

olves

the

n the
C. Training Refinements

The above procedure is an iterative reduction process. That is, initially each vector of the sys

allocated one parameter. As the procedure continues, vectors are pruned from the model when t

found to be irrelevant with respect to the remaining parameters. Integral to this iterative reestim

process is the computation of the inverse Hessian matrix. This operation requires the inversion of an

Hessian matrix where M is initially set to the size of training set. For larger training sets (on the orde

few thousand), this computation is prohibitive both in time and memory. In fact, initially in this work

were unable to operate on data sets larger than a few thousand training examples [34].

Tipping and Faul [38] have recently defined a constructive approach where the model begins wit

a single parameter specified. All others are implicitly pruned. Parameters are then added to the syst

constructive fashion while still satisfying the original optimization function. We are able to add a goo

more training data to our system — on the order of 10 thousand examples — in training. However

must be taken to insure convergence rates are reasonable. We have found that the model will often o

between a few local optima leading to slow convergence or even an inability to converge.

Despite our ability to increase the overall training size by approximately one order of magnitude

iterative procedure does not completely solve the problem. For even larger problems as are typ

speech recognition, the full design matrix (or kernel matrix), , will not fit in memory. We can still

the constructive approach but it requires the repeated recalculation of the full design matrix and is,

prohibitive — now in time rather than memory. We are currently researching an approach to addre

remaining issue [37].

III. EXPERIMENTS

RVMs have had significant success in several classification tasks [26]. These tasks have, ho

involved relatively small quantities of static data. Speech recognition, on the other hand, inv

processing a very large amount of temporally evolving signals. In order to gain insight into

effectiveness of RVMs for speech recognition, we explored two tasks. We first experimented o

Φ

Page 13 of 29
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Deterding static vowel classification task which is a common benchmark used for new classifiers. S

we applied the techniques described above to a complete small vocabulary recognition task. Com

with SVM models are given below. For each task, the RVMs outperformed the SVM models both in t

of model sparsity and error rate.

A. Deterding Vowel Data

In our first pilot experiment, we applied SVMs [9] and RVMs to a publicly available vow

classification task, Deterding Vowels [39]. This was a good data set to evaluate the efficacy of

classifiers on speech classification data since it has been used as a standard benchmark for sev

linear classifiers for several years. In this evaluation, the speech data was collected at a 10 kHz sa

rate and low pass filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters, g

10 dimensional input space. A window duration of 50 msec was used for generating the feature

training set consisted of 528 frames from eight speakers and the test set consisted of 462 frames

different set of seven speakers. The speech data consisted of 11 vowels uttered by each speaker

context. Though it appears to be a simple task, the small training set and significant confusion in the

data make it a very challenging task.

Table 1 shows the results for a range of nonlinear classification schemes on the Deterding vowe

From the table, the SVM and RVM are both superior to nearly all other techniques. The RVM ach

performance rivaling the best performance reported on this data (30% error rate) while exceeding th

performance of SVMs and the best neural network classifier. Importantly, the RVM classifiers ac

superior performance to the SVM classifiers while utilizing nearly an order of magnitude fe

parameters. While we do not expect the superior error performance to be typical (on pure classifi

tasks) we do expect the superior sparseness to be typical. This sparseness property is particularly im

when attempting to build systems which are practical to train and test.

B. Coupling RVMs and HMMs

The hybrid recognition architecture used in this work, shown in Figure 4, is a parallel of the S
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hybrid presented in [9]. Each phone-level classifier (either an SVM or RVM dichotomous classifie

trained as a one-vs-all classifier. The classifiers are used to predict the probability of an acoustic se

For the SVM hybrid, a sigmoid posterior fit is used to map the SVM distance to a probability [9].

RVM output is naturally probabilistic so no link function is needed.

The HMM system is used to generate alignments at the phone level. Each phone instance is tre

one segment. Since each segment could span a variable duration, we divide the segment into three

in a set ratio and construct a composite vector from the mean vectors of the three regions.

experiments empirical evidence showed that a 3-4-3 proportion generally gave optimal perform

Figure 5 shows an example for constructing a composite vector for a phone segment. The classifier

hybrid systems operate on composite vectors.

For decoding, the segmentation information is obtained from a baseline HMM system — a cross

triphone system with 8 Gaussian mixtures per state. Composite vectors are generated for each

segments and posterior probabilities are hypothesized that are used to find the best word sequen

the Viterbi decoder. The HMM system also outputs a set of N-best hypotheses. The posterior proba

for each hypothesis are determined and the most likely entry of the N-best list is produced.

C. OGI Alphadigits

The performance of RVMs on the static classification of vowel data gave us good reason to exp

performance on continuous speech would be appreciably better than that of the SVM system in te

sparsity and on par with the SVM system in terms of accuracy. Our initial tests of this hypothesis

been on a telephone alphadigit task. Recent work on both alphabet and alphadigit systems has

focus on resolving the high rates of recognizer confusion for certain word sets. In particular, the E-s

C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K, H, EIGHT). The problems occur mainly because

acoustic differences between the letters of the sets are minimal. For instance, the letters B and D

primarily in the first 10-20 ms during the consonant portion of the letter [40].

The OGI Alphadigit Corpus [41] is a telephone database collected from approximately 3000 sub
Page 15 of 29
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Each subject was a volunteer responding to a posting on the USEnet. The subjects were given a

either 19 or 29 alphanumeric strings to speak. The strings in the lists were each six words long, an

list was “set up to balance phonetic context between all letter and digit pairs.” [41]. There were

separate prompting strings which gave a balanced coverage of vocabulary and contexts. The t

cross-validation and test sets consisted of 51544, 13926 and 3329 utterances respectively, each b

for gender. The data sets have been chosen to make them speaker independent.

The hybrid SVM and RVM systems have been benchmarked on the OGI alphadigit corpus w

vocabulary of 36 words [41]. A total of 29 phone models, one classifier per model, were used to cov

pronunciations. Each classifier was trained using the segmental features derived from 39-dime

frame-level feature vectors comprised of 12 cepstral coefficients, energy, delta and accele

coefficients. The full training set has as many as 30k training examples per classifier. However, the tr

routines employed for the RVM models are unable to utilize such a large set as mentioned earlie

training set was, thus, reduced to 10,000 training examples per classifier (5,000 in-class and 5,000

class). The test set was an open-loop speaker independent set with 3329 sentences. The composit

are also normalized to the range -1 to 1 to assist in convergence of the SVM classifiers.

Both the SVM and RVM hybrid systems use identical RBF kernels with the width parameter set to

The trade-off parameter for the SVM system was set to 50. The parameters for this system were se

the optimal parameters found in Ganapathiraju’s thesis [9]. The sigmoid posterior estimate for the

was constructed using a held-out set of nearly 14000 utterances.

The results of the RVM and SVM systems are shown in Table 2. The important columns to not

terms of performance are the error rate, average number of parameters and testing time. In all th

RVM system outperforms the SVM system. It achieves a slightly better error rate of 14.8% compa

15.5%. This error rate is obtained in over an order of magnitude fewer parameters. This naturally tra

to well over an order of magnitude better runtime performance. However, the RVM does re

significantly longer to train. Fortunately, that added training time is done off-line.
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IV. CONCLUSIONS

This work is the first application of sparse Bayesian methods to continuous speech recognitio

using an automatic relevance determination mechanism, we are able to achieve state-of-

performance in extremely sparse models. Further, this is accomplished while maintaining a p

probabilistic framework. We also achieve performance better than the popular SVM kernel classifier

using an order of magnitude fewer parameters for both a static classification task and a continuous

task. However, this runtime efficiency comes at a large up front cost during training. Thus, most o

work at this point is focused on more efficient training schemes so that we can move to larger voca

tasks. To this end, we have developed an iterative subset refinement approach [42] which attem

optimize the global criteria by locally optimizing the model on small subsets of the total training set

subset models are incrementally used to generate a model of the full training set.
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List of Tables:

Table 1: Performance comparison of SVMs and RVMs to other nonlinear classifiers on static
vowel classification data [34].

Table 2: Performance comparison of SVMs and RVMs on Alphadigit recognition data. The
RVMs yield a large reduction in the parameter count while attaining superior performance.



Approach Error Rate # Parameters

K-Nearest Neighbor 44%

Gaussian Node Network 44%

SVM: Polynomial Kernels 49%

SVM: RBF Kernels 35% 83 SVs

Separable Mixture Models 30%

RVM: RBF Kernels 30% 13 RVs
Table 1: Performance comparison of SVMs and RVMs to other nonlinear classifiers on
static vowel classification data [34].
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Approach
Word

Error Rate
Avg #

Parameters
Training

Time
Testing Time

SVM: RBF Kernels 15.5% 994 3 hours 1.5 hours

RVM: RBF Kernels 14.8% 72 5 days 5 minutes
Table 2: Performance comparison of SVMs and RVMs on Alphadigit recognition data. The
RVMs yield a large reduction in the parameter count while attaining superior performance.
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List of Figures:

Figure 1 . Hyperplanes C0-C2 achieve perfect classification (i.e. zero empirical risk). However,
C0 is optimal in terms of generalization. The data points on the boundary in this case are called
support vectors.

Figure 2 . Evidence approximation for a single hypotheses. If the Gaussian assumption for the
posterior, peaked about , is not a good one then other methods must be employed. The width, , is
the posterior uncertainty in our estimate of and can be determined by computing the error bars
from the posterior.

Figure 3 . The prior distribution on the parameters in conjunction with the posterior distribution
width determine the Occam factor. determines the penalty incurred for choosing the model, . A
model with more parameters will tend to have a larger . Thus, the penalty for such a model will be
larger. The evidence defines the trade-off between posterior likelihood and model complexity
(generalization) in the Bayesian framework.

Figure 4 . Flow graph for hybrid HMM/SVM and HMM/RVM systems [9].

Figure 5 . Composition of the segment level feature vector assuming a 3-4-3 proportion for the
three sections.
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Figure 1. Hyperplanes C0-C2 achieve perfect classification (i.e. zero empirical risk).
However, C0 is optimal in terms of generalization. The data points on the boundary in
this case are called support vectors.
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Figure 3. The prior distribution on the parameters in conjunction with the posterior
distribution width determine the Occam factor. determines the penalty
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defines the trade-off between posterior likelihood and model complexity
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Figure 4. Flow graph for hybrid HMM/SVM and HMM/RVM
systems [9].
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proportion for the three sections.
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