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Abstract

The prominent modeling technique for speech recognition today is the hidden Markov m

with Gaussian emission densities. They have suffered, though, from an inability to

discriminative information and are prone to overfitting and overparameterization. Recent wo

machine learning has moved toward models such as the support vector machine that autom

control generalization and parameterization as part of the overall optimization process

support vector machine, however, requires ad hoc (and unreliable) methods to couple

probabilistic speech recognition systems. In this work, we introduce the use of a probab

Bayesian learning machine termed the relevance vector machine as the core pattern reco

unit in a speech recognizer. The relevance vector machine system is compared to previou

using support vector machines and is found to outperform the support vector machine sys

terms of both accuracy and sparsity on a continuous alphadigit task.
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I. INTRODUCTION

Computer speech recognition is typically framed as a pattern recognition problem whic

be stated as follows: given a set of acoustic observations, , and a s

models describing acoustic and linguistic patterns, we must determine which patterns

observed and, in doing so, determine which word sequence,

spoken. At the core of this problem is choosing amongst many different possible word sequ

This requires that we have some principled manner for directly comparing cand

transcriptions so that the “best” one may be chosen. Probabilistic modeling is a natural an

common comparison paradigm.

I.1 Probabilistic Acoustic Modeling

We can formulate the speech recognition problem as a probabilistic one where we want t

the word sequence, , that is most probable given the acoustic observations, :

. (1)

This a posterioriformulation gives us no way to apply information about thea priori probability

of a word string. Thus, we use Bayes’ rule to rewrite (1) as

(2)

where is the probability that the acoustic observations would be seen when a part

word sequence was spoken, is thea priori probability of the word string being spoken

and is thea priori probability of the acoustic observation sequence occurring. can

safely eliminated from (2) because the observation sequence, , is constant durin

maximization. This yields

O o1 o2 … oT, , ,{ }=

W W1 W2 … WM, , ,{ }=

Ŵ O

Ŵ
argmax

W
P W O( )=

Ŵ
argmax

W

P O W( )P W( )
P O( )

------------------------------------=

P O W( )

P W( ) W

P O( ) P O( )

O
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The terms in (3) are usually modeled separately. is determined by a statisticallanguage

modelwhich might take the form of a stochastic grammar or an N-gram language model [

is given by anacoustic model. It is the acoustic model that we will concentrate on in th

paper. In most state-of-the-art recognition systems, the hidden Markov model (HMM) is us

the acoustic model [3]. The popularity of HMMs as a model of speech phenomena is owed

HMMs ability to simultaneously model the temporal progression of speech (speech is us

seen as a “left-to-right” process) and the acoustic variability of the speech observations

temporal variation is modeled via an underlying Markov process while the acoustic variabil

modeled by an emission distribution at each state in the Markov chain. The most commonly

emission distribution is the Gaussian mixture model (GMM).

While the combination of HMMs and Gaussian mixture models (HMM/GMM) has be

extremely successful, there are some key assumptions made that are not appropriate for

modeling and that the techniques in this paper seek to overcome.

1. The HMM/GMM system makes assumptions about the parametric form of

underlying distribution which may lead to a poor match to the true underly

distribution.

2. The maximum likelihood (ML) approaches which are typically used to optim

HMM/GMM systems do not explicitly aim to improve the discriminative abilities

the model. In other words, the ML approach maximizes the probability of the cor

model while implicitly ignoring the probability of the incorrect model. Ideally, th

training approach should force the model toward in-class training examples w

Ŵ
argmax

W
P O W( )P W( )=

P W( )

P O W( )
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simultaneously driving the model away from out-of-class training examples. Meth

such as maximum mutual information [4,5] and minimum classification error [6] h

been developed to incorporate discriminative training directly into the standard HM

GMM framework. However, their success has been limited due primarily to th

considerable computational costs [5].

I.2 Discriminative Modeling

The weaknesses of the HMM/GMM system have led researchers to seek models

mitigate some or all of them [6-9]. Hybrid connectionist systems which merge the powe

artificial neural networks (ANNs) and HMMs have received a particularly large amoun

attention from the research community in the past decade as an alternative to HMM/G

systems [6-12]. The HMM/ANN hybrids have shown promise in terms of performance but

not yet found widespread use due to some serious problems. First, ANNs are prone to ove

the training data if allowed to blindly converge. To avoid overfitting, a cross-validation set is o

used to define a stopping point for the training set. This is wasteful of data and resource

serious consideration in speech where the amount of labeled training data is very limited. A

also typically converge much slower than HMMs. Most importantly, the HMM/ANN hyb

systems have not shown the substantial improvements in recognition accuracy over HMM/G

systems that would be necessary to force a paradigm shift in the research community

approaches developed in this work draw significantly from the HMM/ANN work. However,

seek methods which are automatically immune to overfitting without the artificial imposition

cross-validation set as well as methods which can automatically learn the appropriate

structure as part of the overall optimization process.

One such model that has come to the forefront of pattern recognition research is the s
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l risk

risk is

d the

joint

ally

pper

nd a

sure

to the

small

ing

tion

on the

imizes

ating
vector machine (SVM) [13,14,15]. The support vector paradigm is based upon structura

minimization where the learning process is posed as one of optimizing somerisk function, .

The optimal learning machine is the one whose free parameters, , are set such that the

minimized. This minimization is written as

(4)

where is a loss function which penalizes the mismatch between both the form an

parameterization of the learning machine and the true distribution; and is the true

distribution of the observations and targets. Finding a minimum of the risk function is typic

impossible due to the unknown distribution . Instead, Vapnik [13] has formed an u

bound on the actual risk

(5)

which is related to the empirical risk (i.e. the training set error which can be measured) a

quantity, , known as the Vapnik-Chervonenkis (VC) dimension. The VC dimension is a mea

of the capacity of a learning machine to learn any training set and is typically closely related

complexity of the learning machine’s structure. With this result, we can guarantee both a

empirical risk (training error) and good generalization — an ideal situation for a learn

machine.

In their most basic form SVMs use the SRM principle to impose an order on the optimiza

process by ranking candidate separating hyperplanes (C0, C1 and C2 in Figure 1) based

margin they induce. For separable data, the optimal linear hyperplane is the one that max

the margin. The true power of the SVM, however, is how it deals with nonlinear class separ

surfaces. Providing for a nonlinear decision region is accomplished usingkernels[16]. Using this

R α( )

α

α̂ argmin
α R α( ) argmin

α Q o y α, ,( ) P o y,( )d∫==

Q o y α, ,( )

P o y,( )

P o y,( )

R α( ) Remp α( ) f h( )+≤

h
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transformation of the data to a higher dimensional space by the function , kernels can

the dot product  in that higher dimensional space by

. (6)

With this kernel function, the dot product in the high-dimensional space is computed wit

having to know the explicit form of .

It can be shown [13] that the SRM optimization process yields the decision function:

. (7)

where the sign of can be used to classify examples as either in-class or out-of-class

equation defines the SVM classifier. Only those training vectors, , that lie on the margin

overlap regions have non-zero hyperparameters, . In practice, the proportion of the traini

φ o( )

φ oi( ) φ o j( )⋅

K oi o j,( ) φ oi( ) φ o j( )⋅=

φ o( )

f o( ) αi yi
K o oi,( ) b+

i 1=

N

∑=

f

oi

αi
Figure 1. Hyperplanes C0-C2 achieve perfect classification (i.e. zero empirical risk).
However, C0 is optimal in terms of generalization. The data points on the boundary in
this case are called support vectors.
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that becomes support vectors is small, making the classifier sparse. Consequently, the t

process along with the training set directly optimize the complexity of the learning mach

Compare this to ANN systems where the structure of the model is typically defineda priori.

SVMs have had great success on static classification tasks (for example [17-20]). Howe

is only recently, in the work of Ganapathiraju [9] and colleagues [21,22,23], that these techn

have been applied to continuous speech recognition. Ganapathiraju’s work follows a h

approach combining techniques from the connectionist systems and segmental mo

systems [24,25]. It is the first to comprehensively address the problems associated with ap

SVMs to continuous speech recognition. The experimental setup in our current work follow

is compared to that of Ganapathiraju as will be discussed in later sections.

While the SVMs provide an excellent classification paradigm, they suffer from two ser

drawbacks that hamper their effectiveness in speech recognition. First, while sparse, the

the SVM models (number of non-zero weights) tends to scale linearly with the quantit

training data. For a large speaker-independent corpus this effect becomes prohibitive. Seco

SVMs are binary classifiers which are only capable of producing a yes/no decision. In sp

recognition this is an important disadvantage since there is significant overlap in the feature

which can not be modeled by a yes/no decision boundary. Further, the combination of dis

knowledge sources (such as linguistic models, pronunciation models, acoustic models

requires a method for combining the scores produced by each model so that alternate hyp

can be compared. Thus, we require a probabilistic classification which reflects the amou

uncertainty in our predictions.

In the remainder of this work, we detail a Bayesian model due to Tipping [26,27] and ter

the relevance vector machine (RVM) which is similar in form to the SVM but which addres
Page 7 of 29
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these two problems. At the core of the RVM is a fully probabilistic model with an autom

relevance determination prior [28,29] over each model parameter. Thus, sparseness in th

model is explicitly sought in a probabilistic framework. The next section describes the Bay

modeling approach that leads to the formulation of the RVM. Then we describe how the RV

coupled into the HMM system for continuous speech recognition. Finally, we present experim

that compare the RVM system to an equivalent SVM system and describe their relative me

II. SPARSE BAYESIAN METHODS

In the speech problem defined earlier, the task of learning amounted to finding the valu

the parameters in our model that best matched the training data. The hope was that,

sufficient training data, the model would generalize to unseen test sets. Implicit in this pro

was choosing a model that was best suited to the speech task. We discussed three possible

thus far: the Gaussian mixture model-based HMMs; hybrid ANN/HMM systems; and SV

Embodied in this discussion are the two primary inference tasks of data modeling [28].

assuming that a particular model is true, we seek to infer the values for the parameters

model that best fit the data at hand. This is exactly the training process used in the

hybrids — presume the ANN topology and proceed to use back propagation to find the op

weights. The second level of inference is one that we have not addressed to this point and w

often ignored. That is the problem of inferring which model is most appropriate given the da

hand, i.e. model comparison.

A first-cut approach to model comparison might dictate that we simply choose the mode

fits the data best — the maximum likelihood solution. However, a more complex model

always fit the data better. Jaynes [30] describes an extreme interpretation of this problem

we would always choose the so-calledSure Thinghypothesis, under which exactly the training s
Page 8 of 29
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and only the training set is possible. Though it is the maximum likelihood solution, the S

Thing hypothesis is intuitively displeasing and is counter to our desire for a solution w

generalizes. We avoid choosing the Sure Thing hypothesis by expressing ana priori preference

for simpler solutions using a rather famous principle of modeling known as Occam’s Razor

MacKay [28,29] and others [31] have formalized this preference mechanism through th

of Bayesian methods. These provide a natural and quantitative embodiment of Occam’s raz

as will be demonstrated shortly. Following MacKay [29], the first level of inference requires

we find the best-fit parameters. We can write this probabilistically as , where is

set of adjustable parameters, is the data from which we will make all inferences, and

overall model of the world including the form of the model, etc. Using Bayes’ rule, we can rew

this as

(8)

Gradient methods are typically applied to find a optimal setting of . The denominator, te

theevidencefor the hypothesis , is usually ignored during the first level of inference becau

is not needed in finding the most probable parameter settings, . This, by itself would cons

nothing more than maximum likelihood training which has long been a staple of speech mod

The second level of inference requires the comparison of competing hypotheses, an

by finding which of and is a maximum. Setting this problem as a ratio

probabilities and using Bayes’ rule gives

. (9)

If we assume that the competing hypotheses area priori equiprobable (i.e. ),

P w D Hi,( ) w

D Hi

P w D Hi,( )
P D w Hi,( )P w Hi( )

P D Hi( )
--------------------------------------------------=

w

Hi

ŵ

H1 H2

P H1 D( ) P H2 D( )

P H1 D( )
P H2 D( )
----------------------

P D H1( )P H1( )
P D H2( )P H2( )
---------------------------------------=

P H1( ) P H2( )=
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then the best hypothesis is chosen by evaluating the evidence, . The eviden

computed by marginalization across the model parameters:

. (10)

It is usually impractical to compute the integration, so MacKay [28,29] prescribes an analy

approximation to the evidence computation. Under the assumption that the posterior prob

in (8), , is well-approximated by a Gaussian, the integra

in (10) can be assumed to have a strong peak at the most probable value of the parameters,

evidence can then be approximated by multiplication of the height of the integrand and the

of the posterior, . This is depicted in Figure 2.

The evidence is approximated by

. (11)

where the term is the likelihood of the data given the best-fit parameter set

P D Hi( )

P D Hi( ) P D w Hi,( )P w Hi( ) wd∫=

P w D Hi,( ) P D w Hi,( )P w Hi( )≈

ŵ

w∆

P D Hi( ) P D ŵ Hi,( )P ŵ Hi( ) w∆≈

P D ŵ Hi,( )
P D Hi( )∼

∆w

P w D Hi,( )

w

ŵ

Figure 2. Evidence approximation for a single hypotheses. If the Gaussian
assumption for the posterior, peaked about , is not a good one then other
methods must be employed. The width, , is the posterior uncertainty in our
estimate of and can be determined by computing the error bars from the
posterior.

ŵ
∆w

ŵ
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is a penalty on the range of which measure of how well our poste

distribution on fits with our prior specification. As shown in Figure 3, a more complex mo

would be expected to have a smaller prior probability for , , than a less complex m

and thus would be penalized more. This is precisely how the evidence embodies Occam’s

all other things being equal, a less complex model is preferred. The evidence provides a n

trade-off between the best-fit likelihood and the Occam factor. This concept is closely rela

other methods such as the Minimum Description Length [32] and the Bayesian Inform

Criteria [33] where the model is directly penalized by the number of parameters used. A si

idea was also seen in the SVM models which penalized models with too large a capacit

dimension) [16]. However, while the SVM models are forced to estimate the penalty via c

validation schemes, Bayesian techniques automatically determine and apply the penalty in

probabilistic framework.

P ŵ Hi( ) w∆ 0 1,[ ]

w

ŵ P ŵ Hi( )
∆w

P w Hi( )

P w D Hi,( )

w
σw
Figure 3. The prior distribution on the parameters in conjunction with the posterior
distribution width determine the Occam factor. determines the penalty
incurred for choosing the model, . A model with more parameters will tend to
have a larger . Thus, the penalty for such a model will be larger. The evidence
defines the trade-off between posterior likelihood and model complexity
(generalization) in the Bayesian framework.

∆w σw⁄
Hi

σw
Page 11 of 29



ation

llent

t as

at a

s in

the

rage

, for

ts to

total
II.1 MacKay’s Evidence Framework and Automatic Relevance Determination

MacKay [28] was the first to apply the evidence framework to regression and classific

problems using ANNs. A brief summarization of his analysis is given now while an exce

primer on the detailed theory can be found here: [29]. Defining the training data se

, our goal in neural network learning is to find the set of weights, , such th

global error term, , is minimized. Typically takes the form of a squared error a

the sum squared error in back propagation

, (12)

where is the i’th component of the j’th target output and is the i’th output of

ANN when presented with training sample when the weights are set to . To discou

overfitting, a weight decay or regularizer term may be added which penalizes large

example

. (13)

The objective function for learning thus becomes

. (14)

We can give a probabilistic interpretation for (14) if we consider the neural network outpu

be perturbed by a Gaussian noise process so that

(15)

where  is a zero-mean Gaussian noise process with variance equal to . Then,

(16)

specifies a Gaussian distribution over with mean and variance . The

D o t,{ }= w

ED w( ) ED w( )

ED w( ) ti
j( ) yi o j( ) w;( )–( )2

i
∑

j 1=

D

∑=

ti
j( ) yi o j( ) w;( )

o j( ) w

wi

EW
1
2
--- wi

2

i
∑=

M w( ) βED αEW+=

ti
j( ) yi o j( ) w;( ) ε+=

ε 1 β⁄

p ti
j( ) w β H, ,( ) N ti

j( ) yi o j( ) w;( ) 1 β⁄,( )=

ti
j( ) yi o j( ) w;( ) 1 β⁄
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probability of the data given the model (using the log of the sum-squared error condition) can

be written as

, (17)

where is the Gaussian normalization term. Likewise, the log of the weight decay t

, can be interpreted as a prior probability over the parameters so that

. (18)

With as given in (13), is a zero-mean Gaussian whose width is defined by

Finally, we have that

, (19)

where, substituting (17) and (18) gives us

. (20)

It should be noted that binary and multi-class classification networks can be handled in a s

manner [29]. We simply replace the sum-square error function by a log-likelihood func

. The parameter, , is not necessary in this case.

Application of (20) has the expected consequence that, by minimizing the objective func

(14), we are maximizing the probability of the weights given the constraints. Finding the m

probable weights, however, is not the end of the problem. Two parameters, and , have

introduced which need to be estimated. Note that as is increased, the probability distribut

the decay terms becomes peaked about zero and smoother distributions are favored. How

value of that is too large (i.e. too narrow a Gaussian) may limit the ability of the system

P D w β H, ,( ) 1
ZD β( )
---------------e

βED–
=

ZD β( )

EW

P w α H,( ) 1
ZW α( )
----------------e αEW–=

EW P w α H,( ) 1 α⁄

P w D α β H, , ,( )
P D w β H, ,( )P w α H,( )

P D α β H, ,( )
------------------------------------------------------------=

P w D α β H, , ,( )

1
ZD β( )
---------------e

βED– 1
ZW α( )
----------------e αEW–

P D α β H, ,( )
-------------------------------------------------------------

1
ZM
-------e

M w( )–
= =

G w( ) β

α β

α

α
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model a complex data set. As is decreased, more complex interpolants are allowed. He

have the first application of the Occam factor as described above — we must find the

provides sufficient flexibility to model the training data set without allowing so complex a mo

that overfitting is encouraged. A similar argument can be made for .

Under typical statistical methods, we might turn to cross-validation to find suitable value

these two parameters, but Bayesian methods provide a natural and principled approa

estimating them using the available data. We can write down the probability of the two param

given our state of knowledge as

. (21)

Note that is the evidence for and is the denominator in (19). Assuming

have no prior knowledge that would cause us to favor a particular value of or , we can fin

optimal values for and by evaluating the evidence (if we did have prior knowledge

would simply repeat the inference over and using the prior, , similar to what

done in the optimization of . At some level of the inference, we will arrive at a point where

prior knowledge is too weak to apply and then we evaluate the evidence).

Unfortunately, a maximum for can not be found analytically in this case, so

proceed with an approximation due to MacKay [28] and Gull [31]. Under the assumption tha

posterior distribution, (20), can be adequately approximated as a Gaussian, and c

updated as

 and (22)

, (23)

α

α

β

P α β D H,,( )
P D α β H, ,( )P α β H,( )

P D H( )
-----------------------------------------------------------=

P D α β H, ,( ) α β

α β

α β

α β P α β H,( )

w

P D α β H, ,( )

α β

β̂ N γ–
2ED
-------------=

α̂ γ
wi
ˆ( )2

i
∑
-------------------=
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where are the number of training points, are the most probable weights foun

maximizing (20), is a measure of the number of parameters which are well-determined b

training data and is given by

. (24)

is the covariance of the assumed posterior Gaussian and defines error bars on the para

. is found by computing the negative inverse Hessian of the objective function given in

Iterative application of (20) and (21) provides optimal values for the system parameters,

and , under the set of Gaussian assumptions.

For the explanation above, it was assumed that only one parameter, , was used to con

complexity of all parameters in the system. In practice, we may want to group parameters

system and control the complexity of each group separately. This requires little change

above formulation. We now assume a Gaussian prior for each class, , of parameters so th

, (25)

where

(26)

and proceed with the optimization as above. In the extreme case, a control parameter, ,

assigned to each weight, . This extreme application of the Bayesian prior as a co

parameter is known as the method ofautomatic relevance determination(ARD) [29]. It is so

named because the prior over the input unit weights in a neural network can ’shut-off’ those

dimensions which are irrelevant to the problem at hand. ARD is at the heart of the relev

vector machines that will be described next.

N ŵ

γ

γ k αTrace Σ( )–=

Σ

w Σ

ŵ α̂

β̂

α

c

P wi{ } αc H,( ) 1
ZW c( )∏

---------------------e
αcEW c( )

c
∑– 

 

=

EW c( ) wi
2 2⁄

i c∈
∑=

αi

wi
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II.2 Relevance Vector Machines

All of the above analysis has been done in terms of neural network training. An applicati

the evidence framework to kernel machines is the relevance vector machine (RVM) [26,27

with SVMs, the RVMs are formed by defining a vector-to-scalar mapping as a weighted l

combination of basis functions,

. (27)

The weights, , are the parameters to be tuned to produce an accurate model (unde

appropriate measure) of the phenomena we desire to learn. At this stage, it is important to n

form of the kernel function, . Since SVMs are optimizing a distance measure in the trans

space, they require that the basis functions take the form of a so-called Mercer kernel [14]

kernel which acts as a dot-product in some space). No such restriction is placed on the

functions that can be employed by the RVM. However, the power demonstrated by SVMs

compelling reason to pursue this special form of the basis function as a starting point.

We define (27) where there is one weight, , associated with each training vector

defines a kernel function (not necessarily a Mercer kernel). Due to the large numb

parameters in this model — one per observation — we must guard against overfitting o

model to the training data. SVMs use the control parameter, [15], to implicitly balance

trade-off between training error and generalization. RVMs take a Bayesian approach

explicitly define an ARD prior distribution over the weights

(28)

where we have defined . This prior acts to force weak component

y o w;( ) wo wiK o oi;( )
i 1=

M

∑+=

wi

K

wi

K o oi;( )

C

p w α( ) N wi 0
1
αi
-----, 

 

i 0=

N

∏ 1

2π( )N 1+ A 1–
---------------------------------------e

1
2
---wT Aw–

= =

A diag αo α1 … αN, , ,( )=
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data at hand.

Each weight in the RVM model has an individual hyperparameter, , that is iterati

reestimated as part of the optimization process. As the grows larger, the prior on bec

infinitely peaked around zero, forcing to go to zero and, thus, contributing nothing to

summation in (27). This process automatically embodies the principle of Occam’s Razor be

it explicitly seeks the simplest model that satisfies the data constraints. In practice, the majo

the weights are pruned, resulting in an exceedingly sparse model with generalization abilit

par with SVMs [26, 34]. To complete the Bayesian specification of the model, we have to sp

a prior probability over the . In practice we use a non-informative (flat) prior to indicate a

of preference [26].

With SVMs the form of (27) arises from the need to optimize the classification margin

high-dimensional space. With RVMs, however, the goal is to directly model the post

probability distribution. The posterior is, thus, formed by generalizing the linear model

probability distribution with a sigmoid link function,

, (29)

and adopting the two-class Bernoulli distribution for  to give

(30)

where . Under the assumption that each data sample is drawn independentl

likelihood of the training data set can be written as

(31)

αi

αi wi

wi

αi

σ y( ) 1
1 e y–+
----------------=

P t o( )

P ti w o, i( ) σ y oi w;( ){ }[ ]ti 1 σ y oi w;( ){ }–[ ]1 ti–=

ti 0 1,{ }∈

P t w O,( ) σn
tn 1 σn–( )1 tn–

n 1=

N

∏=
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where .

The objective of training is to find a parameter set which yields a model that is well-mat

to the training data. In mathematical terms we want to find

. (32)

Using Bayes’ rule and (31), we can form (32) as finding  and  that maximize

. (33)

A closed form solution to this maximization is not possible so we use the iterative approxim

used by MacKay [28] which was described earlier.

1. For a fixed , find the locally most probable weights . In other words, we want to

the that maximizes . This is equivalent to maximizing

Taking the logarithm of this quantity and ignoring the scale factor on which

constant due to the fixed  we can write

. (34)

The gradient and Hessian of  are found by differentiating with respect to

(35)

, (36)

where with , and is the N x N+1 matrix

σn σ y on w;( ){ }=

ŵ α̂,( )
argmax

w α,
p w α t O,,( )=

w α

p w α t O,,( )
p t w α O, ,( ) p w α, O( )

p t O( )
---------------------------------------------------------=

α ŵ

w p w t α O, ,( ) P t w O,( ) p w α( )

p w α( )

α

L = P t w O,( ) p w α( ){ }log

= log σn
tn 1 σn–( )1 tn–

n 1=

N

∏ N wi 0
1
αi
-----, 
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defined by  with

. (37)

The Hessian defined in (36) is negative-definite everywhere, and therefore defin

unimodal, log-concave surface. We can, thus, use second-order Newton methods to

for the  that maximizes  with an assuredness that the process will converge.

2. The Hessian is negated and inverted to give an approximation to the covariance

Gaussian posterior over the weights, centered about

(38)

3. Using and as the covariance and mean, respectively, of the Gaussian approxim

we can follow MacKay’s approach [28] to update the  by

. (39)

This iterative procedure is repeated until suitable convergence criteria are met. Central

iterative method is the second-order Newton maximization of requiring

O(N3) inversion operation. As the quantity of training data increases, this becomes prohib

SVMs have a similar problem with scaling up that has been addressed through ite

refinement of the training set [35]. Current research is focusing on similar methods

RVMs [36,37].

II.3 RVM Training Refinements

The above procedure is an iterative reduction process. That is, initially each vector o

system is allocated one parameter. As the procedure continues, vectors are pruned from the

Φ φ x1( ) φ x2( ) … φ xN( ), , ,[ ]T=

φ xn( ) 1 K xn x1,( ) K xn x2,( ) … K xn xN,( ), , , ,[ ]T=

w L

ŵ

Σ ΦTBΦ A+( ) 1–=

Σ ŵ

αi{ }

αi

γ i

ŵi
2

------= γ i, 1 αiΣii–=

P t w O,( ) p w α( )
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when they are found to be irrelevant with respect the remaining parameters. Central t

iterative reestimation process is the computation of the inverse Hessian matrix. This ope

requires the inversion of an MxM hessian matrix where M is initially set to the size of training

For larger training sets (on the order of a few thousand), this computation is prohibitive bo

time and in memory. In fact, initially in this work we were unable to operate on data sets la

than a few thousand training examples [34].

Tipping and Faul [38] have recently defined a constructive approach where the model b

with only a single parameter specified. All others are implicitly pruned. Parameters are then

to the system in a constructive fashion while still satisfying the original optimization funct

The result of this new twist to the algorithm is that we are able to add a good bit more tra

data to our system — on the order of 10 thousand examples in training. However, care m

taken to insure convergence rates are reasonable. We have found that the model will

oscillate between a few local optima leading to slow convergence or even an inability to conv

Despite our ability to increase the overall training size by approximately one orde

magnitude, this iterative procedure does not completely solve the problem. For even

problems as are typical in speech recognition, the full design matrix (or kernel matrix), ,

not fit in memory. We can still use the constructive approach but it requires the repe

recalculation of the full design matrix and is, again, prohibitive — now in time rather t

memory. We are currently researching an approach to address this remaining issue [37].

III. EXPERIMENTS

RVMs have had significant success in several classification tasks [26]. These tasks

however, involved relatively small quantities of static data. Speech recognition, on the other

involves processing a very large amount of temporally evolving signals. In order to gain in

Φ
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into the effectiveness of RVMs for speech recognition, we explored two tasks. We

experimented on the Deterding static vowel classification task which is a common bench

used for new classifiers. Second, we applied the techniques described above to a complet

vocabulary recognition task. Comparison with SVM models are given below. For each tas

RVMs outperformed the SVM models both in terms of model sparsity and error rate. How

this comes at a significant up-front computational cost during training.

III.1 Deterding Vowel Data

In our first pilot experiment with speech data, we applied SVMs [9] and RVMs to a publ

available vowel classification task, Deterding Vowels [39]. This was a good data set to eva

the efficacy of static classifiers on speech classification data since it has been used as a s

benchmark for several non-linear classifiers for several years. In this evaluation, the speec

was collected at a 10 kHz sampling rate and low pass filtered at 4.7 kHz. The signal was

transformed to 10 log-area parameters, giving a 10 dimensional input space. A window du

of 50 msec. was used for generating the features. The training set consisted of 528 frame

eight speakers and the test set consisted of 462 frames from a different set of seven speake

speech data consisted of 11 vowels uttered by each speaker in a h*d context. This data

widely used for benchmarking non-linear classifiers. Though it appears to be a simple tas

small training set and significant confusion in the vowel data make it a very challenging tas

Table 1 shows the results for a range of nonlinear classification schemes on the Det

vowel data. From the table, the SVM and RVM are both superior to nearly all of the o

techniques. The RVM achieves performance rivaling the best performance reported on this

30% error rate while exceeding the error performance of SVMs and the best neural ne

classifier. Importantly, the RVM classifiers achieve superior performance to the SVM class
Page 21 of 29
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Approach Error Rate # Parameters

K-Nearest Neighbor 44%

Gaussian Node Network 44%

SVM: Polynomial Kernels 49%

SVM: RBF Kernels 35% 83 SVs

Separable Mixture Models 30%

RVM: RBF Kernels 30% 13 RVs
while utilizing nearly an order of magnitude fewer parameters. While we do not expec

superior error performance to be typical (on pure classification tasks) we do expect the su

sparseness to be typical. This sparseness property is particularly important when attemp

build systems which are practical to train and test.

III.2 Coupling RVMs to HMM

The hybrid recognition architecture used in this work and shown in Figure 4 is a parallel o

SVM hybrid presented in [9]. Each phone-level classifier (either an SVM or RVM dichotom

classifier) is trained as a one-vs-all classifier. The classifiers are used to predict the probab

an acoustic segment. For the SVM hybrid, a sigmoid posterior fit is used to map the SVM dis

to a probability [9]. The RVM output is naturally probabilistic so no link function is needed.

The HMM system is used to generate alignments at the phone level. Each phone insta

treated as one segment. Since each segment could span a variable duration, we divide the

into three regions in a set ratio and construct a composite vector from the mean vectors

three regions. In our experiments empirical evidence showed that a 3-4-3 proportion gen
Table 1: Performance comparison of SVMs and RVMs to other nonlinear classifiers on
static vowel classification data [34].
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gave optimal performance. Figure 5 shows an example for constructing a composite vecto

phone segment. The classifiers in our hybrid systems operate on composite vectors.

For decoding, the segmentation information is obtained from a baseline HMM system

cross-word triphone system with 8 Gaussian mixtures per state. Composite vectors are ge

for each of the segments and posterior probabilities are hypothesized that are used to find t

word sequence using the Viterbi decoder. The HMM system also outputs a set of N

hypotheses. The posterior probabilities for each hypothesis are determined and the mos

entry of the N-best list is produced.

III.3 OGI Alphadigit Data

The performance of RVMs on the static classification of vowel data gave us good reas

expect the performance on continuous speech would be appreciably better than that of the

system in terms of sparsity and on par with the SVM system in terms of accuracy. Our initial
Figure 4. Flow graph for hybrid HMM/SVM and HMM/RVM
systems [9].
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of this hypothesis have been on a telephone alphadigit task. Recent work on both alphab

alphadigit systems has taken a focus on resolving the high rates of recognizer confusi

certain word sets. In particular, the E-set (B, C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K

EIGHT). The problems occur mainly because the acoustic differences between the letters

sets are minimal. For instance, the letters B and D differ primarily in the first 10-20 ms durin

consonant portion of the letter [40].

The OGI Alphadigit Corpus [41] is a telephone database collected from approximately

subjects. Each subject was a volunteer responding to a posting on the USEnet. The subjec

given a list of either 19 or 29 alphanumeric strings to speak. The strings in the lists were ea

words long, and each list was “set up to balance phonetic context between all letter and

pairs.” [41]. There were 1102 separate prompting strings which gave a balanced covera

vocabulary and contexts. The training, cross-validation and test sets consiste

51544, 13926 and 3329 utterances respectively, each balanced for gender. The data sets h

chosen to make them speaker independent.

The hybrid SVM and RVM systems have been benchmarked on the OGI alphadigit co
Figure 5. Composition of the segment level feature vector assuming a 3-4-3
proportion for the three sections.
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with a vocabulary of 36 words [41]. A total of 29 phone models, one classifier per model,

used to cover the pronunciations. Each classifier was trained using the segmental features

from 39-dimensional frame-level feature vectors comprised of 12 cepstral coefficients, en

delta and acceleration coefficients. The full training set has as many as 30k training examp

classifier. However, the training routines employed for the RVM models are unable to utilize

a large set as mentioned earlier. The training set was, thus, reduced to 10000 training ex

per classifier (5000 in-class and 5000 out-of-class). The test set was an open-loop s

independent set with 3329 sentences. The composite vectors are also normalized to the ran

1 to assist in convergence of the SVM classifiers.

Both the SVM and RVM hybrid systems use identical RBF kernels with the width param

set to 0.5. The trade-off parameter for the SVM system was set to 50. The parameters f

system were set using the optimal parameters found in Ganapathiraju’s thesis [9]. The si

posterior estimate for the SVM was constructed using a held-out set of nearly 14000 uttera

The results of the RVM and SVM systems are shown in Table 2. The important colum

notice in terms of performance are the error rate, average number of parameters and testin

In all three, the RVM system outperforms the SVM system. It achieves a slightly better erro

of 14.8% compared to 15.5%. This error rate is obtained in over an order of magnitude
Approach
Word

Error Rate
Avg #

Parameters
Training

Time
Testing Time

SVM: RBF Kernels 15.5% 994 3 hours 1.5 hours

RVM: RBF Kernels 14.8% 72 5 days 5 minutes
Table 2: Performance comparison of SVMs and RVMs on Alphadigit recognition data. The
RVMs yield a large reduction in the parameter count while attaining superior performance.
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parameters. This naturally translates to well over an order of magnitude better run

performance. However, the RVM does require significantly longer to train. Since that added

is all prior to runtime, we may be tempted to discount it as being unimportant. However, for la

tasks the RVM will not run at all as explained earlier. Thus, it is still an important research

and one we are currently addressing.

IV. CONCLUSIONS

This work is the first application of sparse Bayesian methods to continuous sp

recognition. By using an automatic relevance determination mechanism, we are able to a

state-of-the-art performance in extremely sparse models. Further, this is accomplished

maintaining a purely probabilistic framework. We also achieve performance better than

popular SVM kernel classifier while also using an order of magnitude fewer parameters for b

static classification task and a continuous speech task. However, this test-time efficiency co

a large up front cost during training. Thus, most of our work at this point is focused on m

efficient training schemes so that we can move to larger vocabulary tasks that would overw

our current training techniques. To this end, we have developed an iterative subset refin

approach which attempts to optimize the global criteria by locally optimizing the model on s

subsets of the total training set. The subset models are incrementally used to generate a m

the full training set.
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