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ABSTRACT

Hidden Markov models (HMMs) with Gaussian mixture observation densities are the dominant approach in

speech recognition. These systems typically use a representational model based on maximum likelihood

decoding and expectation maximization-based training. Though powerful, this paradigm is prone to overfitting

and does not directly incorporate discriminative information. We propose a new paradigm centered on principles

of structural risk minimization and using a discriminative framework for speech recognition based on support

vector machines (SVMs). SVMs are a family of discriminative classifiers that provide significant advantages

over other discriminatively trained classifiers. Chief among these advantages is the ability to simultaneously

optimize the representational and discriminative ability of the acoustic classifier — a necessity for acoustic units

such as phonemes which have a high degree of overlap in the feature space.

As a proof of concept, we present an SVM-based large vocabulary speech recognition system. This system

achieves a state-of-the-art word error rate of 10.6% on a continuous alphadigit task. Through the introduction of

this system, we provide insight into the many issues one faces when moving from an HMM framework to an

SVM framework. These include the application of temporal constraints to the static support vector classifier,

generation of a posterior probability from the binary support vector classifier and balancing the need for a robust

training set with pragmatic efficiency issues. We conclude with a discussion of open research issues that are

crucial to the successful application of SVMs in speech recognition.
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1. INTRODUCTION

The goal in a statistically-based speech recognition system is to find the most likely word sequence giv

acoustic data. If is the acoustic evidence that is provided to the system and

sequence of words, then the recognition system must choose a word string  such that

. (1)

The term is known as thea posterioriprobability and it is typically impossible to maximize this term

due to the infinite number of possible word strings. Thus, we apply Bayes rule to give the form

. (2)

The probability, , is typically provided by anacoustic modelwhile gives thea priori

probability of the word sequence  being spoken as predicted by alanguage model.

In most speech recognition systems, the acoustic modeling components of the recognizer are based on

Markov models (HMMs) (Deller, Proakis & Hansen, 1993; Picone, 1990; Rabiner & Juang, 1993; Je

1997). The ability of the HMM to statistically model the acoustic and temporal variability in speech has bee

main reason for their success. HMMs provide an elegant statistical framework for modeling speech patte

modeling the temporal evolution of speech via an underlying Markov process (Picone, 1990). The prob

distribution associated with each state in an HMM models the variability which occurs in speech across sp

or even different speech contexts. This distribution is typically a Gaussian mixture model since it provi

sufficiently general parametric model as well as a well-developed mathematical framework for estimatio

analysis. On the other hand, non-parametric models are attractive because they can automatically accom

unforeseen modalities in the data without having to assume the properties of an underlying distrib

However, non-parametric models have not found favor in speech recognition systems due to their compu

complexity and their inefficient use of resources.

A key to the widespread use of HMMs to model speech can be attributed to the availability of efficient para

A W w1 w2 … wN, , ,=

Ŵ

Ŵ argmax
W

p W A⁄( )=

p W A⁄( )

Ŵ argmax
W

p A W⁄( )p W( )=

P A W⁄( ) p W( )

W
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estimation procedures (Rabiner & Juang, 1993). If we assume that parameters of an HMM are fixe

unknown, we can pose the problem of parameter estimation as one that maximizes the probability that the

generates the observed data (a posterioriprobability). The approach for a typical HMM parameter estimatio

process then becomes maximization of the likelihood of the data given the model, traditionally know

maximum likelihood (ML) estimation (Jelinek, 1997). One of the most compelling reasons for the success

and HMMs has been the existence of iterative methods to estimate the parameters that guarantee conv

The expectation maximization (EM) algorithm provides an iterative framework for ML estimation with g

convergence properties, though it does not guarantee finding the global maximum (Dempster, Laird &

1977; McLachlan, 1997; Redner & Walker, 1984).

There are, however, problems with an ML formulation for speech recognition. Key among these is

maximizing likelihood does not necessarily translate to better classifiers. The goal in building a classifie

learn to distinguish between two, or more, distinct classes of data. Maximum likelihood improves a class

ability to representa specific class. In this light, ML-based estimation is tangential to the goal of classifie

general and speech recognizers in particular. The ML estimation process tries to optimize the modeling ab

the acoustic models without access to a measure of their classification ability. In reality, better classification

ultimate goal of the speech recognizer. ML estimation is unable to guarantee this because it

discriminatively trained — the model parameters are estimated based on in-class data alone without cons

the out-of-class data.

A simple example, shown in Figure 1 illustrates this problem. The two classes shown are derived

completely separable uniform distributions. ML is used to fit Gaussians to these classes and a simple

classifier is built. However, we see that the decision threshold occurs inside the range of class 2. This me

the probability of error is significant. However if we were to simply recognize that the range of data poin

class 1 is less than 3.3 and that no data point in class 2 occurs within this range, we can achieve

classification. In this example any amount of effort expended in learning a better Gaussian model will no

achieve perfect classification. More dramatic examples can be constructed to show that learning decision

discriminatively will help improve classification. The conclusion from the above example is not necessaril

using a Gaussian is an incorrect choice. However, it is clear from such examples that discrimination is

ingredient for creating robust and more accurate acoustic models.
Computer Speech and Language Draft Version Draft Version October 31, 2001



SVMS FOR SPEECH RECOGNITION PAGE 3 OF 42

at the

was

ctively

class

timation

using

m

the

cation,

fact

roved

ms of

mense

ssfully

als,

tively.

MM.

the

HMM

these

ANN

onist

as the

tendorf,

2).

oustic
The primary difference between ML-based HMM parameter estimation and discriminative techniques is th

objective criterion in the latter includes the probability of the data given that the wrong model

used (McDermott, 1997). Under discriminative-based estimation, the optimization process can effe

trade-off rejection of out-of-class examples while simultaneously learning to optimally represent in-

examples. There has already been significant progress in the area of discriminative techniques for the es

of HMM parameters. In HMM-based systems, the discrimination ability of the Gaussians is improved by

optimizing criteria like Maximum Mutual Information (MMI) (Woodland & Povey, 2000) and Minimu

Classification Error (MCE) (McDermott, 1997) which include both in-class and out-of-class data in

estimation process. MCE is especially elegant in that it uses the fact that in order to achieve good classifi

the estimation of the posterior probabilities is not as important as it appears. ML and MMI suffer from the

that both the estimation procedures expend effort in modeling posteriors while not guaranteeing imp

classification performance. Though both MCE and MMI estimation have had significant success in ter

improvements in recognition performance their use has thus far been limited because they require im

resources during training (Woodland & Povey, 2000).

Artificial neural networks (ANNs) represent a class of discriminative techniques that have been succe

applied to speech recognition (Bridle & Dodd, 1991; Bridle, 1989; Richard & Lippmann, 1991; Ren

1990; Ström, 1997; Robinson, 1989). ANNs can learn very complex non-linear decision surfaces effec

However, the estimation process for an ANN is significantly more computationally expensive than an H

Also, ANNs are typically constrained to classification problems involving static data. This has led to

development of several connectionist approaches in which neural networks are embedded in a

framework (Bourlard & Morgan, 1994; Cook & Robinson, 1997; Tebelskis, 1995). The performance of

hybrid systems has been competitive with many HMM-based systems with the added benefit that the

hybrids typically require a significantly fewer parameters (Bourlard & Morgan, 1994). The hybrid connecti

systems also provide a means for circumventing some of the assumptions made in HMM systems such

assumption of independence of observations across frames (Holmes, 1997; Russell & Holmes, 1997; Os

Digalakis & Kimball, 1996; Ostendorf & Roukos, 1989; Austin, Zavaliagkos, Makhoul & Schwartz, 199

Hybrid systems mitigate this problem by allowing the classifiers to operate on several frames of ac

data (Russell & Holmes, 1997).
Computer Speech and Language Draft Version Draft Version October 31, 2001
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Despite the advantages of the ANN approach, their use has been limited for several reasons:

1. Generalization: ANNs have been known to overfit data unless cross-validation is applied. This can

be restrictive when the amount of training data is limited.

2. Model Topology: In most connectionist hybrid systems the topology of the neural network classifiers

needs to be fixed prior to the estimation process. Finding a near-optimal topology is rarely possib

without expert knowledge of the data. Techniques exist to learn connections automatically but a

prohibitive for large-scale tasks (Kirkpatrick, Gellatt & Vecchi, 1983, Bodenhausen, Manke, &

Waibel, 1993).

3. Optimality : ANN learning is based on the principle of empirical risk minimization via the

back-propagation algorithm (Rosenblatt, 1957; Rumelhart, Hinton & Williams, 1986; Ackley,

Hinton & Sejnowski, 1985). Though this guarantees good performance on the training data, obtainin

a bound on the performance on the test data is not easy.

4. Convergence: Convergence properties of the optimization process has been the biggest drawback

neural networks. Convergence is typically an order of magnitude slower than ML estimation of HMM

parameters. Neither ML estimation using the EM methods nor ANN learning guarantee reaching

global maximum unless measures are taken to perturb the system from time to time (Lawrenc

Giles & Tsoi, 1996; Lawrence, Giles & Tsoi, 1997).

At a high level, speech recognition can be viewed as a classification problem. In that respect one would

better performance with classifiers that estimate decision surfaces directly rather than those that est

probability distribution across the training data. A Support Vector Machine (SVM) is one such machine lea

technique that directly estimates the decision surface using a discriminative approach (Vapnik, 1998).

other discriminative techniques, SVMs have demonstrated good generalization and proven to be suc

classifiers on several classical pattern recognition problems (Burges, 1999). We argue that, through the p

of structural risk minimization (SRM), the SVM framework provides significant advantages over the

techniques currently prevalent in HMM-based speech recognition systems. Unlike ML techniques, the

paradigm provides for control of the trade-off between generalization and closed-loop optimality.
Computer Speech and Language Draft Version Draft Version October 31, 2001



SVMS FOR SPEECH RECOGNITION PAGE 5 OF 42

esign.

esent a

the

HMM

odels.

vity, a

This is

nt to a

risk

ed on

Ms is

input

.

ribution

ution

e, it is

ution.

arn an

by the

that of

defined
In the next section we introduce the principles of structural risk minimization and large margin classifier d

Further, we discuss the use of kernels in SVMs for the development of non-linear decision surfaces. We pr

hybrid SVM/HMM system in Section 3 that combines the temporal modeling power of the HMM with

superior classification performance of the SVM. Section 4 provides experimental evidence that an SVM/

combination is able to learn modalities in the decision surface that are not learned by Gaussian mixture m

We conclude with suggestions for future research on extensions to the hybrid SVM/HMM system. For bre

significant level of theoretical detail has been omitted but can be found in (Ganapathiraju, 2001).

2. SUPPORT VECTOR PARADIGM

The design of a classifier is essentially a process of learning a mapping of the input data to class labels.

achieved using an optimization process (such as risk minimization) constrained by knowledge releva

specific classification problem. Two commonly used minimization techniques are empirical

minimization (ERM) and structural risk minimization (SRM). Support vector machines are estimated bas

SRM. The next few sections describe SRM by comparing and contrasting it with ERM. The theory of SV

also discussed in detail.

2.1. Risk Minimization

Let us assume that the training data consists of pairs, where the ‘s are the

observations and ‘s are the target classes. The goal of a learning machine is to learn the mapping

We assume that the training data has been drawn randomly and independently based on the joint dist

. To learn the unknown mapping, we can either estimate a function that is close to the joint distrib

under an appropriate metric or we can learn an optimal predictor of the system’s output. In the former cas

not sufficient for us to estimate a good predictor of the output. The goal is to estimate , the joint distrib

However, for the purposes of data classification, we pursue the latter approach where the goal is to le

optimal predictor.

The learning process is therefore a process of choosing a function from a set of functions defined

construction of the learning machine. For example, in a neural network classifier, the problem reduces to

finding the weights of the connections in a predefined network. Since the network structure has been

x1 y1,( ) x2 y2,( ) …, , x

y y f x( )=

P x y,( )

P
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a priori, the set of networks from which the optimal network needs to be chosen is a finite set. The op

network is chosen based on some optimality criterion that measures the quality of the learning machine.

define a term,risk, which measures the quality of the chosen function. The operating space is a subset

n-dimensional vector space , which is the union of the input vector space and the output space. Let

assume the existence of a set of functions  and a functional , that measures the risk as

(3)

where  is an appropriately defined loss function and  is the previously defined joint probability distrib

The problem ofrisk minimizationcan then be defined as one that minimizes the functional given by (3) fo

specific training data set. In reality the minimization process involves finding the optimal parameterizatio

the function which can be parametrically represented as . The minimization invo

finding the best parameterization such that is the optimal function from the set of func

. The above parameterization does not necessarily imply that the problem is restricted to para

forms since can be a scalar, a vector or any other abstract functional element. With the above modifica

the definition of the minimization problem, the risk can be rewritten as,

, (4)

where,

. (5)

The function is now called theloss function.Choosing an appropriate value for to minimize the function

defined in (4) is calledrisk minimization.

Minimizing the risk functional is not a trivial problem because the form or the parameterization of the

distribution is not knowna priori. The problem can be simplified significantly if we minimize a variatio

of (4). For example, we can minimize the measured mean risk, orempirical risk, defined as,

Z

R
n

g z( ){ } z Z∈, R

R g z( )( ) L z g z( ),( ) P z( )d∫=

L P

g z( ) g z α,( ) α Λ∈,

α∗ g z α∗,( )

g z α,( ){ }

α

R α( ) Q z α,( ) P z( )d∫= α Λ∈,

Q z α,( ) L z g z α,( ),( )=

Q α

P z( )
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We assume that we have access to training observations . is therefore the mean

computed from a fixed number of training samples under the assumption that the training samples are un

distributed. Minimization of (6) is calledempirical risk minimization (ERM)and is one of the most commonly

used optimization procedures in machine learning. ERM is computationally simpler than attempting to min

the actual risk as defined in (4) since it circumvents the need for the estimation of the joint probability de

function . A variety of loss functions can be used for the optimization process. One such example is,

, (7)

where is the output of the classifier and is the input vector. This form of a loss function is commo

learning binary classifiers. For example, to estimate the parameters of a multi-layered perceptron us

back-propagation algorithm, a loss function representing the squared error is used.

The issue of the quality of the learning machine is not addressed in its entirety when we consider ERM.

could be several configurations of the learning machine which give us the same empirical risk as indica

Figure 3. How does one choose the best configuration? To better answer this question we need to ana

relationship between the actual risk defined by (4) and the empirical risk defined by (6). Suppose th

minimum empirical risk is obtained using the function , where the subscript is equal to the si

the training sample. Let the minimum actual risk be obtained using the function . There are two i

that need to be addressed. First, we need to know the risk achieved using . Second, we need t

how close this risk is to the risk obtained using .

Vapnik (Vapnik, 1995) proved that bounds exist for the actual risk such that,

(8)

where is the Vapnik-Chervonenkis (VC) dimension (Vapnik, 1995; Vapnik, 1998) and is a measure o

capacity of a learning machine to learn any training set. Thus, the VC dimension is directly related

Remp α( ) 1
l
--- Q zi α,( )∑= α Λ∈,

l z1 z2 …zl, , Remp

P

Q x y,( ) y f x α,( )–=

y x

Q z αl,( ) l

Q z α0,( )

Q z αl,( )

Q z α0,( )

R α( ) Remp α( ) f h( )+≤

h
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generalization ability of a learning machine (Burges, 1999) and is typically proportional to the number o

parameters (weights, mixture components, etc.) in the system. For example, if is small, the ma

generalizes well because the actual risk is guaranteed to be close to the empirical risk which has been

minimized via the principle of ERM.

To better qualify the above statement, suppose that the empirical risk obtained using the training data set

This fixes and the actual risk is now bounded by . Suppose we now receive a new set of da

does not include any of the examples used previously. For a machine that generalizes well, we should

to predict with a high degree of confidence that the empirical risk obtained using this new data,

also be close to zero. However, from equation (8), we note that the actual risk over the data can be as

. Therefore when is large, can be as high as and cannot be use

effectively predict the performance of the machine on an unseen data set. In other words, the machine

generalize well when  is large as shown in Figure 3.

For loss functions in the form of indicator functions, which is the true in the case of classifiers, the second t

the r.h.s. of equation (8) is,

(9)

where is the parameter set that defines the learning machine and is the measure of the dif

between the expected and empirical risk (Vapnik, 1998). The error term, , can be written in terms of th

dimension and the size of the training set as,

, (10)

where  is the VC dimension (Vapnik, 1995).

Equation (10) provides us with a good method for comparing system configurations optimized using em

f h( )

Remp f h( )

l

Remp
∗

f h( ) f h( ) Remp
∗ f h( ) Remp

f h( )

ε l( )
2

--------- 1 1
4Remp αl( )

ε l( )
--------------------------++ 

 

αl ε l( )

ε l( )

ε l( ) 4
h 2l h⁄ 1+( )log( ) η 4⁄log–

l
-------------------------------------------------------------------=

h
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risk minimization. When is large, and are both small. This implies that the expected risk t

towards the empirical risk. With this, we can guarantee both a small empirical risk (training error) and

generalization — an ideal situation for a learning machine. On the other hand, when is small, both

are large. Under this condition, a small empirical risk does not guarantee a small expected risk. Th

system is not guaranteed to generalize well. In this case, both terms on the r.h.s. of (8) need to be min

simultaneously. From (10), we see that the error term, , monotonically increases with the VC dimension

implies that the confidence in the empirical risk decreases monotonically with the VC dimension as do

generalization ability. These observations are depicted in Figure 3.

The principle of structural risk minimization (SRM) (Vapnik, 1995; Vapnik, 1998) is an attempt to identify

optimal point on the curve describing the bound on the expected risk. “The SRM principle defines a tra

between the quality of the approximation of the given data and the complexity of the approxim

function.” (Vapnik, 1995). From the above discussion, making the VC dimension a controlling variable fo

generalization ability of the learning machine is a natural choice. In practice the principle of SRM ca

implemented in two distinct ways:

1. for a fixed confidence interval optimize the empirical risk

2. for a fixed empirical risk optimize (or minimize) the confidence interval

The appropriate scheme to use is problem/classifier dependent.

Neural network learning uses the former procedure by first fixing the network structure and then minimizin

empirical risk using gradient descent. SVMs implement SRM using the latter approach where the empiric

is fixed at a minimum (typically zero for separable data sets) and the SVM learning process optimizes

minimum confidence interval. In other words, SRM is an extension of ERM with the additional constraint t

structurebe added to the space containing the optimal function. For example, structure can be imposed

problem of function estimation using neural networks by associating the number of hidden units or

connections to each subset. In the case of optimal hyperplane classifiers, which will be discussed in th

section, structure is imposed by the width of the margin of the separating hyperplane.

l h⁄ ε f h( )

l h⁄ ε

f h( )

ε
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2.2. Support Vector Classifiers

The following formulation is based on the fact that among all hyperplanes separating the data, there e

unique hyperplane that maximizes the margin of separation between the classes (Vapnik, 1995). Figure 3

typical 2-class classification example where the examples are perfectly separable using a linear decision

and define two hyperplanes. The distance separating these hyperplanes is called themargin. The closest

in-class and out-of-class examples lie on these two hyperplanes. As noted earlier, the SRM principle im

structure to the optimization process by ordering the hyperplanes based on this margin. The optimal hyp

is the one that maximizes the margin while minimizing the empirical risk. Figure 3 illustrates the differ

between using ERM and SRM to estimate a simple hyperplane classifier. Using SRM results in the o

hyperplane classifier.

Let be a vector that is normal to the decision region. Let the training examples be represented as the

 where . The points that lie on the hyperplane separating the data satisfy

(11)

where is the distance of the hyperplane from the origin. Let the “margin” of the SVM be defined a

distance from the separating hyperplane to the closest positive and negative examples. The SVM t

paradigm finds the separating hyperplane which gives the maximum margin. Once the hyperplane is obtai

the training examples satisfy the following inequalities.

(12)

. (13)

The above equations can be compactly represented as a single inequality,

. (14)

Looking at the above equations with respect to Figure 4, we see that all points satisfying the equality con

in (12) lie on . Similarly, all points satisfying the equality condition (13) lie on . The distance betw

and , also called the margin, is therefore two units. Since the normal to the hyperplane is not cons

H1 H2

w l

xi yi,{ } i, 1 … l, ,= y 1±=

w x⋅ b+ 0=

b

xi w⋅ b+ +1≥ for yi +1=

xi w⋅ b+ 1–≤ for yi 1–=

yi xi w⋅ b+( ) 1– 0≥ i∀

H1 H2

H1 H2
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to be of unit-norm, we need to normalize this margin by the norm of the normal vector to the hyperplan

Therefore the margin as defined by the hyperplane is . For a completely separable data set, no po

between and . To maximize the margin we need to therefore maximize . Elegant techn

exist to optimize convex functions with constraints (Gill, Murray & Wright, 1981) so we choose to minim

, a convex function, instead. The training points for which the equality in (14) holds are calledsupport

vectors.

The theory of Lagrange multipliers (Gill, Murray & Wright, 1981) can be used to solve optimization probl

involving convex functionals with constraints. The functional for the optimization problem in this discuss

called the Lagrangian, can be written as,

(15)

The above is called theprimal formulation of the optimization problem. Since we are minimizing , i

gradient with respect to  and  should be equal to zero. This gives the system of equations,

, and (16)

. (17)

Equations (11) and (16) imply that the decision function can be defined as,

(18)

where the sign of can be used to classify examples as either in-class or out-of-class. The above equation

the SVM classifier. This definition of the classifier is worth a closer look. The classifier is defined in terms o

training examples. However all training examples do not contribute to the definition of the classifier. Only

with non-zero multipliers, the support vectors, define the classifier. In practice, the proportion of support v

w

2 w⁄

H1 H2 1 w⁄

w 2

LP
1
2
--- w

2
αi yi xi w⋅ b+( )

i 1=

N

∑ αi
i 1=

N

∑+–=

LP

w b

w α j y j xj
j

∑=

αi yi
i

∑ 0=

f x( ) αi yi xi x⋅ b+
i 1=

N

∑=

f
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is small, making the classifier sparse. In other words, the data set itself defines how complex the classifie

to be. This is in stark contrast to systems such as neural networks and HMMs where the complexity of the

is typically predefined or chosen through a cross-validation process. Since there are dot products invo

the definition of the classifier, where is the number of support vectors, the classification task scales li

with the number of support vectors.

2.3. Solving Nonlinear, Non-separable Decision Problems

Thus far we have seen the case where the training data is completely separable using a linear margin. H

we know that this is not the case with most real-world data. Classification problems typically involve data w

is non-linearly separable or completely non-separable. Given such a training set, we still need to estim

classifier that maximizes the margin and minimizes the errors on the training set. Two modifications to the

SVM classifier make this possible.

Optimization of non-separable data is typically accomplished by the use of soft decision classifiers whe

classification of an example is tagged with a probability. However, in the case of optimal margin classifie

use the concept ofslack variablesto find the optimal solution. The optimal-margin classifier can be extende

this non-separable case by using a set of slack variables that account for training errors. In this situati

inequality constraints to be satisfied by the hyperplane become,

, (19)

, and (20)

, (21)

where ‘s are the slack variables. With these slack variables comes the need to estimate a trade-off pa

, which is the penalty incurred by the optimizer for accepting a training error. The higher the value of

harder the optimization process will try to minimize training errors. However this could mean increased tim

convergence and in some cases, a larger support vector set. is typically chosen using a cross-va

procedure.

M

M

xi w⋅ b+ +1 ξi–≥ for yi +1=

xi w⋅ b+ 1– ξi+≤ for yi 1–=

ξi 0≥ i∀

ξ

C C

C
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The power of SVMs lies in transforming data to a high dimensional space and constructing a linear b

classifier via the optimization described earlier in this high dimensional space. Figure 3 illustrates this idea

a simple example. The two classes can be separated by a decision region in the form of circle which ca

modeled by classifiers based on PCA or LDA (Vapnik, 1995). The data in this 2-dimensional spa

transformed to a 3-dimensional space via the transformation,

. (22)

From the figure it is clear that the two classes can be separated in the transformed space by defining a hy

passing through the points corresponding to the circular decision region.

In all previous formulations of the optimization process, observe that the only place the data points occur

is as a dot product. We can define a transformation, , such that where is

dimensionality of the new feature space. In this new space we can still construct optimal margin classifie

the only difference being that the simple dot product defined by substituting (16) into (15) will now have

replaced by . It would be advantageous if we could define akernel function ,

, (23)

that could compute this dot product directly without knowing the explicit form of . In this new formulati

the decision function will take the form,

. (24)

A function needs to satisfy certain conditions for it to be a valid kernel. The most important property the fun

must exhibit is that it needs to be a dot product in some feature space. In order to affirm that a functio

indeed represent a dot product in a higher dimensional space, Mercer’s theorem can be used (Vapnik

Some commonly used kernels include

(polynomial) (25)

(RBF). (26)

x y,( ) x
2

y
2

2xy, ,( )⇒

Φ Φ : ℜn ℜN→ N

Φ xi( ) Φ x j( )⋅ K

K xi x j,( ) Φ xi( ) Φ x j( )⋅=

Φ

f x( ) αi yiK x xi,( ) b+
i 1=

N

∑=

K x y,( ) x y⋅ 1+( )d
=

K x y,( ) ϒ x y–
2

–{ }exp=
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3. APPLYING SVMS TO SPEECH RECOGNITION

Hybrid approaches for speech recognition have been in use for several years now with connectionist

recognition systems performing comparable to traditional speech recognition systems. Hybrid appr

provide a flexible paradigm to evaluate new acoustic modeling techniques. In connectionist systems

networks replace Gaussians as the probabilistic model at the core of an acoustic model. We are not

eliminate the HMM framework entirely because most new classification models, including SVMs and M

cannot model the temporal structure of speech effectively. Most contemporary connectionist systems

neural networks only to estimate posterior probabilities and use the HMM structure to model tem

evolution (Ström, 1997; Cook & Robinson, 1997; Tebelskis, 1995). We develop a similar hybrid SVM/H

framework with the HMM structure being used to handle the temporal evolution of speech and SVMs being

to discriminatively classify frames of speech. The end result is a first successful application of SVM

continuous speech recognition (Ganapathiraju, 2001; Ganapathiraju & Picone, 2000; Ganapathiraju, Ham

Picone, 1998; Ganapathiraju, Hamaker & Picone, 2000a; Ganapathiraju, Hamaker & Picone, 2000b).

SVMs have been applied successfully on several kinds of classification problems and have consi

performed better than other non-linear classifiers like neural networks and mixtures of Gaussians (Ro

1989; Joachims, 1999). The data set that propelled SVMs to prominence in the early 90’s was the US

Service digit data on which the SVMs achieved the best numbers reported (LeCun et al., 1990). The devel

of efficient optimization schemes led to the use of SVMs for classification of larger tasks

text-categorization (Joachims, 1997; Joachims, 1999). There were some initial efforts to apply SVMs to s

recognition in the early 90’s (Schmidt & Gish, 1996). This effort had limited success because of the la

efficient implementations of the SVM estimation process at that time. SVMs have also been applied to

phone classification tasks and the results have been very encouraging (Ganapathiraju et al., 2000a).

All the above classification tasks have one common feature — they represent static classification tasks. SV

not designed to directly handle data with temporal structure. We need to address this problem in order to

the advantages of SVMs for speech recognition. A second issue is that an SVM provides a binary decisi

would prefer a posterior probability which would capture our uncertainty in the classification. This proble

particularly important in speech recognition where there is a large degree of overlap in the feature space
Computer Speech and Language Draft Version Draft Version October 31, 2001
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3.1. Posterior Estimation

Equation (2) describes the goal of the decoder in a speech recognition system which is to find the mos

word sequence. Depending on the acoustic models that constitute the word, this can be interpreted as fin

most likely model sequence.

(27)

where is the acoustic model and is the acoustic data. With HMMs, the class conditional proba

is obtained from the Gaussian evaluations. In connectionist systems, the neural networks estim

posteriors, , and these posteriors are converted to likelihoods using the Bayes rule as,

. (28)

In (28), since the classifier estimates the posteriors directly, if we assume the effect of to be insign

for recognition, simply dividing the posterior with thea priori probability of the model gives the required

conditional probability (scaled likelihood)  that can be used for recognition (Tebelskis, 1995).

SVMs, by definition, provide a distance or discriminant which can be used to compare classifiers and arri

classification as described by (24). This is unlike neural networks whose output activations are in fact es

of the posterior class probabilities (Bridle, 1989). One of the main concerns in using SVMs for sp

recognition is that there is no clear relationship between the distance of the test pattern from the margin

posterior class probability. If we can develop such a relationship then applying SVMs to speech recog

within the HMM framework is possible.

A crude estimate of the posterior probability can be obtained by modeling the posterior class prob

distribution with a Gaussian. Another possibility is to use a simple histogram approach. The above me

however, are not Bayesian in nature in that they do not account for the variability in the estimates of the

parameters. Recent work on using moderated SVM outputs as estimates of the posterior probability h

success at the expense of increased computations (Kwok, 1999). We briefly discuss some of the methods

M̂ argmax

M

p A M⁄( )p M( )=

M A

p A M⁄( )

p M A⁄( )

P A M⁄( ) P M A⁄( )P A( )
P M( )

-----------------------------------=

P A( )

M

P A M⁄( )
Computer Speech and Language Draft Version Draft Version October 31, 2001



SVMS FOR SPEECH RECOGNITION PAGE 16 OF 42

s being

d is to

high

ability

n this

999).

r. One

e class

ionals,

loss of
be used to convert SVM distances to posterior probabilities.

The first option at hand is to use the SVM output directly:

. (29)

When , the test sample is classified as being in-class and when the sample is classified a

out-of-class. In general, the value of does not give any meaningful information. A second ad hoc metho

clip the SVM output at . This is a better approximation of the posterior. However, this output will show

confidence even in areas with low data density and far from the decision boundary. Unmoderated prob

estimates based on maximum likelihood fitting is another option and is the one pursued in this work. I

method, we estimate a sigmoid defined as,

(30)

Kwok’s definitive work on moderated SVM outputs addresses the above issues in greater detail (Kwok, 1

Figure 6 shows the distribution of the distances for positive and negative examples using a typical classifie

possibility is to model these distance distributions using Gaussians and then compute the probability of th

given the SVM distance. Mathematically, that can be written as,

, (31)

where is the SVM distance and is the class label which takes the value . Each of the class condit

can be modeled as a Gaussian. Some simplifying assumptions can be made at this point without

generality.

Suppose we model each of the class-conditional probabilities with a Gaussian. Then,

f x( ) αi yiK x xi,( ) b+
i 1=

N

∑=

f 0> f 0<

f

1±

p y 1 f=( ) 1
1 Af B+( )exp+
----------------------------------------=

P y 1 f=( )
P f y 1=( )P1

P f y 1=( )P1 P f y 1–=( )P 1–+
--------------------------------------------------------------------------------=

f y 1±

P f y( )
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. (33)

If we assume the Gaussians to be of equal variance, which would typically be the case when there are

positive and negative examples for a class, we can write the posterior probability in (31) as,

. (34)

Expanding the quadratic terms in the denominator and simplifying gives

, (35)

which has the form of a sigmoid function

. (36)

In (36), and are parameters that need to be estimated (using any suitable nonlinear function esti

Note that we have assumed that the prior class probabilities are equal. An issue that arises from this form

of estimating posteriors is that the distance estimates are heavily biased on the training data. In order t

biased estimates, a cross-validation set must be used to estimate the parameters of the sigmoid (Platt, 19

size of this data set can be determined based on the amount of training data that is available for the cl

Figure 7 shows the posteriors and the estimated sigmoid for a typical classifier.

3.2. Classifier Design

Thus far we have not addressed a fundamental issue in classifier design — should the classifiers be one-v

one-vs-all? As the name suggests, one-vs-one classifiers learn to discriminate one class from another c

one-vs-all classifiers learn to discriminate one class from all other classes. One-vs-one classifiers are t

P f y 1=( ) 1

2πσ1
2

-------------------
f µ1–( )–

2

2σ1
2

-------------------------exp=

P f y 1–=( ) 1

2πσ 1–
2

----------------------
f µ 1––( )–

2

2σ 1–
2

----------------------------exp=

p y 1= f( ) 1

1
P 1–

P1
-------- 1

2σ2
--------- f µ1–( )2

f µ 1––( )2
–( )– 

 exp+

---------------------------------------------------------------------------------------------------------=

p y 1 f=( ) 1

1 K
1

2σ2
--------- µ1

2 µ 1–
2

–( ) 2 µ 1– µ1–( ) f+( )– 
 exp+

----------------------------------------------------------------------------------------------------------------------=

p y 1 f=( ) 1
1 Af B+( )exp+
----------------------------------------=

A B
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smaller and can be estimated using fewer resources than one-vs-all classifiers. When the number of clas

we need to estimate one-vs-one classifiers as compared to one-vs-all classifiers. On

standard classification tasks it has been proven that one-vs-one classifiers are marginally more accur

one-vs-all classifiers (Allwein, Schapire & Singer, 2000; Weston & Watkins, 1999). Nevertheless,

computational efficiency, we chose to use one-vs-all classifiers in all experiments reported here.

3.3. Segmental Modeling

A logical step in building a hybrid system would be to replace the Bayes classifier in a traditional HMM sy

with an SVM classifier at the frame-level. However, the amount of training data and the confusion inher

frame-level acoustic feature vectors is an issue worth addressing. Consider training a classifier to discrimin

phone ‘s’ from all other phones in a training set consisting of 40 hours of speech. At a frame rate of 100 f

per second, frames of data is available for each classifier to train on. Though very effi

optimizers are used to train the SVM, the amount of data could easily make the training process co

inordinate amount of computational resources (on the order of months even on extremely fast proce

Another aspect of using frame-level data to train SVMs is the implicit assumption that the frame-

alignments that the HMM system generates are reliable. Experiments clearly indicate this to be a

assumption for conversational speech corpora such as SWITCHBOARD (Godfrey, Holliman & McDa

1992). An iterative training procedure where the alignments are gradually improved is an option but

addressed in this work (Franzini, Lee & Waibel, 1990; Haffner, Franzini & Waibel, 1991; Bourlard & Morg

1998).

Apart from the above implementation issues that motivate looking at the data at a coarser level, there

evidence that it is extremely difficult to model human speech at the frame level where suprasegmental ev

such as duration cannot be used (Russell & Moore, 1985; Holmes, 1997; Russell & Holmes, 1

Segment-based approaches to modeling speech have been pursued in the past (Ostendorf & Rouko

Austin et al., 1992). The motivation for most segment-based approaches is that the acoustic model n

capture both temporal and spectral structure of speech which is clearly missing in frame-level classifi

schemes. Segmental approaches also overcome the assumption of conditional independence between

N

N N 1–( ) 2⁄ N

14.4x10
6
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data in traditional HMM systems. Segmental data takes better advantage of the correlation in adjacent fra

data that is inherent in speech.

Despite their potential advantages, segment-based approaches have had limited success in the past. The

to automatically generate reliable segment information is a primary problem. This is often circumvented th

the use of a hybrid architecture for acoustic modeling. The HMM paradigm provides an elegant framew

generate the most likely segmentations via a dynamic programming approach. The new classifier ca

postprocess these segmentations to hypothesize the best word sequence.

Once the segmentation problem is overcome, the next problem we face is the variable length or d

problem. Since segment duration is an important speech-related feature which is correlated with the word

speaking rate, etc., our classifier cannot simply discard this information. A simple but effective app

motivated by the 3-state HMMs used in most state-of-the-art speech recognition systems is to assume

segments (phones in most cases) are composed of a fixed number of sections (Chang & Glass, 1997; Strö

1999; Halberstadt, 1998). The first and third sections model the transition into and out of the segment, wh

second section models the stable portion of the segment. We use segments composed of three sectio

recognition experiments reported in this work.

Figure 8 demonstrates the construction of a composite vector for a phone segment. SVM classifiers in our

system operate on such composite vectors. The composite segment feature vectors are generated bas

alignments from a baseline 3-state mixture Gaussian HMM system. The length of the composite ve

dependent on the number of sections in each segment and the dimensionality of the frame-level feature

For example, with a 39-dimensional feature vector at the frame level and 3 sections per segment, the co

vector has a dimensionality of 117. The SVM classifiers are trained on these composite vectors and reco

using the hybrid system is also performed using these segment-level composite vectors.

3.4. N-best List Rescoring Paradigm

As a first step towards building a complex hybrid SVM/HMM system, we have explored a simple resc

paradigm instead of an integrated approach often used in hybrid connectionist systems (Bourlard & M

1998). Assuming that we have already trained the SVM classifiers for each phone in the model invento
Computer Speech and Language Draft Version Draft Version October 31, 2001
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generate N-best lists using a conventional HMM system. A model-level alignment for each hypothesis

N-best list is then generated using the HMM system. Segment-level feature vectors are generated from

alignments. These segments are then classified using the SVMs. Posterior probabilities are computed u

sigmoid approximation discussed in the previous section. These probabilities are used to compute the u

likelihood of each hypothesis in the N-best list. The N-best list is reordered based on the likelihood and t

hypothesis is used to calibrate the performance of the system. This scheme is shown in Figure 9.

4. EXPERIMENTAL RESULTS

SVMs have had significant success in several classification tasks (Robinson, 1989; Joachims, 1999). M

these tasks have involved static data. However, speech recognition involves processing a temporally e

signal. In order to gain insight into the effectiveness of SVMs for speech recognition, we explored two task

first experimented on the Deterding static vowel classification task which is a common benchmark used f

classifiers. Second, we applied the techniques described above to a complete small vocabulary recognit

With both tasks, we were able to achieve state-of-the-art results.

4.1. Deterding Vowels

In our first pilot experiment with speech data, we applied SVMs to a publicly available vowel classification

Deterding Vowels (Deterding, Niranjan & Robinson, 2000). This was a good data set to evaluate the effic

static SVM classifiers on speech data since it has been used as a standard benchmark for several n

classifiers for several years. In this evaluation, the speech data was collected at a 10 kHz sampling rate

pass filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters, giving a 10 dime

input space. A window duration of 50 msec. was used for generating the features. The training set cons

528 frames from eight speakers and the test set consisted of 462 frames from a different set of seven s

The speech data consisted of 11 vowels uttered by each speaker in a h*d context. Table I shows the vowe

the corresponding words.

This data set is one of the most widely used for benchmarking non-linear classifiers. Though it appears

simple task, the small training set and significant confusion in the vowel data make it a very challenging ta

Table II, we present results for a range of experiments using RBF and polynomial kernels with various par
Computer Speech and Language Draft Version Draft Version October 31, 2001
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settings. Performance using both the kernels is better than most nonlinear classification schemes (Ström

The best performance we report is 35%. This is worse than the best performance reported on this data s

using a speaker adaptation scheme called Separable Mixture Models (Tenenbaum & Freeman, 1997). H

it is significantly better than the best neural network classifiers (Gaussian Node Network) that prod

misclassification rate of 44% (Robinson, 1989).

4.2. OGI Alphadigits

The performance of SVMs on the static classification of vowel data gave us good reason to expe

performance on continuous speech would be appreciably better than typical methods. Our initial tests

hypothesis have been on a telephone alphadigit task. Recent work on both alphabet and alphadigit syst

taken a focus on resolving the high rates of recognizer confusion for certain word sets. In particular, the E-

C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K, H, EIGHT). The problems occur mainly because the aco

differences between the letters of the sets are minimal. For instance, the letters B and D differ primarily

first 10-20 ms during the consonant portion of the letter (Loizou & Spanias, 1996).

The OGI Alphadigit Corpus (Cole, 1998) is a telephone database collected from approximately 3000 su

Each subject was a volunteer responding to a posting on the USEnet. The subjects were given a list of e

or 29 alphanumeric strings to speak. The strings in the lists were each six words long, and each list was “s

balance phonetic context between all letter and digit pairs.” (Cole, 1998). There were 1102 separate pro

strings which gave a balanced coverage of vocabulary and contexts. The training, cross-validation and t

consisted of 51544, 13926 and 3329 utterances respectively, each balanced for gender. The data sets h

chosen to make them speaker independent.

The baseline HMM system was created using our public-domain ASR system (Deshmukh, Ganapath

Picone, 1999). This baseline system consists of cross-word context-dependent triphone models tra

39-dimensional feature vectors. Each feature vector is comprised of 12 cepstral coefficients, energy, de

acceleration coefficients. The triphones in the system are modeled by a three-state, left-to-right HMM

mixture Gaussian emission distribution in each state. The emission distributions were trained up to 8 m

and a decision tree phonetic clustering procedure was used to reduce the overall parameter count in the s

Viterbi-style search was performed over a loop grammar (any sequence of lexemes is possible) to find th
Computer Speech and Language Draft Version Draft Version October 31, 2001
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baseline hypothesis for each test utterance. This system achieved a word error rate (WER) of 11.9%

The baseline HMM system was then used to generate the segmental training data for the SVM mod

Viterbi-aligning the training reference transcription to the acoustic data. The time marks derived from this V

alignment were used to extract the segments. Before extraction, each feature dimension was normalize

range [-1,1] to account for unequal variance amongst the feature dimensions. For each phoneme in the

transcription, a segment was extracted. This segment was divided into three parts as detailed previo

Figure 8. An additional parameter giving the log of the segment duration was added to yield a composite

of size 3 * 39features + 1 log duration = 118 features.

For each phoneme in the lexical set, shown in Table III, an SVM model was trained to discriminate betwee

phoneme and all other phonemes (one-vs-all models) giving a total of 29 models. From the segment

extracted above, we chose a training set for each model. This training set consisted of equal amo

within-class and out-of-class data. All within-class data available for that phoneme was used. The out-o

data was randomly chosen such that one half of the out-of-class data came from phonemes that were pho

similar to the phoneme of interest and one half came from all other phonemes. The phonetic similarity se

are shown in Table IV. Balancing the data according to similarity allowed for more data to be used in trainin

SVM to learn the most confusable discriminant regions. Once the training sets were chosen

SVMLight (Joachims, 1999) utilities were used to train each of the 29 phoneme SVM models.

The trained SVM models are only capable of making hard binary decisions whereas we require proba

likelihoods during recognition. Thus, we must estimate a posterior distribution from the SVM mode

described in section 3.1. Estimating the sigmoid parameters from the training data would lead to

overfitting so we use the cross-validation data instead. As before, segmental features are extracted f

cross-validation data and the SVM models are used to generate distance scores for the cross-valida

Histograms are generated for the classifier distances and are used to estimate the parameters of a sigm

nonlinear optimization techniques.

In our rescoring paradigm, N-best lists are generated by the HMM system and fed along with the segmen

for each list entry to the SVM system for reordering. A problem that arises is determining how to ge

segmentations to feed to the SVM system. During training and cross-validation, we were able to force-a
Computer Speech and Language Draft Version Draft Version October 31, 2001
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the reference transcription, but during testing there is no reference transcription available. We have first u

1-best output hypothesis of the HMM baseline system as apseudo-referencefor segmentation. Second we

experimented with using an alignment corresponding to each of the N-best paths (i.e. we end up w

segmentations for each utterance). In practice, we have found that the 1-best hypothesis segmentation p

better than the N-best segmentation.

Table V shows the performance of the hybrid SVM system as a function of the kernel parameters. These

were generated with 10-best lists whose total list error (the error inherent in the lists themselves) was 4.0

with the vowel classification data, the RBF kernel performance was superior to the polynomial kernel. Als

the vowel classification task, the generalization performance in the form of error rates is fairly flat for a

range of kernel parameters. The 1-best hypothesis segmentation was used to produce a best result of 11.

using an RBF kernel. To provide an equivalent and fair comparison with the HMM system we have rescor

N-best lists with the baseline HMMs. The results for the baseline system error remain the same indicating

search errors were made by the HMM system due to search space pruning and we can have confidence

improvement is indeed due to the SVM classifier.

As a point of reference, we also produced results using a reference segmentation. These are a set ooracle

experiments where the segmentations are produced by force-aligning the reference transcription. The re

these experiments provide a nice analysis tool as they give us a presumptive lower bound on the ach

error (the actual lower bound is the N-best list error rate, but it is a good assumption that we won’t do bette

a system with perfect knowledge of the reference segmentation). It is important to notice that using the

segmentation for the SVM model is critical in achieving good performance. However, when we try to le

SVM decide the best segmentation and hypothesis combination by using the N-best segmentatio

performance gets worse. This apparent anomaly indicates the need to incorporate variations in segmenta

the classifier estimation process. Relaxing this strong interdependence between the segmentation and t

performance is a point for further research. While the segmentation is critical, Table VI shows tha

proportions used for the segments are not.

The goal of SRM techniques is to build a classifier which balances generalization with performance o

training set. Table VII shows how the RBF kernel parameter is used as a tuning parameter for achievin
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balance. As gamma increases, the variance of the RBF kernel decreases which produces a more narrow

region in the high-dimensional space. This requires a larger number of support vectors and leads to overfi

shown when gamma is set to 5.0. As gamma decreases, the number of SVs decreases which leads t

smoother decision surface in the high-dimensional space. This leads to oversmoothing as shown when ga

set to 0.1. In accordance with Figure 3, the optimal is a clear trade-off between the two extremes of ove

(poor generalization) and oversmoothing (poor performance).

Careful analysis of the error modalities in both the baseline system and the SVM hybrid system shows t

systems have somewhat different error modalities. It appears that there are classes for which SVMs do be

HMMs and there are classes which are better modeled by HMMs than SVMs. This is indicated in Table

This led us to attempt a system combination scheme where the word-likelihood score from the SVM syste

combined with the word-likelihood score from the HMM baseline according to

. (37)

As the normalization factor increases, the likelihood is dominated by the SVM hypothesis. Likewise, a

normalization factor decreases, the HMM score dominates. Table IX shows the results of this method us

N-best segmentations. We are able to effectively gain from the disparate strengths of the two models to

our best overall result of 10.6% WER. The last column of Table VIII shows, that this gain is achieved for

class of data explored in this recognition task. This fact is particularly encouraging and warrants further res

The improvements provided by the hybrid SVM system are statistically significant and very promising

oracle experiment shows that further improvements are possible using this paradigm if certain key issu

addressed. Primary among them is the need for better integration of segmentation information into the

using concepts such as segment-graphs (Chang & Glass, 1997; Chang, 1998). Also, as noted earlier, var

segmentations needs to be incorporated into the training process for the classifiers. One way to achieve t

iteratively train the classifiers by going through a estimate-classify process where classification errors can

back into the system.

5. CONCLUSIONS

Most speech recognition systems today are based on HMMs and a few are based on hybrid HMM-

likelihood SVM score HMM Score
norm factor
------------------------------+=
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Network architectures. HMMs have had significant success since they offer an elegant mechanism to mod

the acoustic variability and the temporal evolution of speech. The existence of efficient iterative para

estimation procedures such as the expectation-maximization algorithm has a significant role in the suc

HMMs in speech recognition. However, HMMs suffer from a number of drawbacks — the assumptio

independence of successive frames and the idea that improved representation leads to better classificat

key amongst them. Our approach addresses these issues by using a segmental approach and a disc

estimation process.

This paper addresses the use of Support Vector Machines as a viable classifier in a continuous speech rec

system. The technology has been successfully applied to a small vocabulary task — OGI Alphadigits. A

SVM/HMM system has been developed which uses SVMs to post-process data generated by a conve

HMM system. The hybrid system achieves a word error rate of 10.6% on a open-loop speaker-independ

set as compared to 11.9% achieved using a context-dependent multiple mixture HMM system. The

obtained in the experiments clearly indicate the classification power of SVMs and affirm the use of SVM

acoustic modeling. The fact that the improvements are made on all classes of sounds (some being minima

indicates that the SVM classifiers are capable of classifying even extremely confusable data better than H

Several issues that arise as a result of the hybrid framework have been addressed including estima

posterior probabilities and the use of segment-level data. The oracle experiment reported here clearly sh

potential of this hybrid system while highlighting the need for further research into the segmentation issue.

oracle segmentations based on the reference transcription, the hybrid system performs at a word error

7.0% as compared to the 10.6% we get when the system is run in a N-best rescoring mode. This sho

dependence of the SVM classifiers on good segmentations.

To alleviate this problem, further research into defining an iterative SVM classifier estimation proce

required. This would allow the classifiers to learn variations in segmentation, thereby making them

dependent on segmentation accuracy. A more elegant approach to handling the segmentation issue

segment-graphs generated by the HMM system to rescore N-best lists. This approach has been very u

segmental speech recognition systems developed over the past few years.
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Figure 1. An example of a two-class problem where a maximum likelihood-derived decision surface

is not the optimal (adapted from (McDermott, 1997)). In the exploded view, the shaded region

indicates the error induced by modeling the separable data by Gaussians estimated using maximum

likelihood. This case is common for data, such as speech, where there is overlap in the feature

space or where class boundaries are adjacent.
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Maximizing the margin indirectly results in better generalization.
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Figure 3. The goal in training a classification system is to minimize the expected risk. As the VC

dimension of the classifier increases, our confidence in the generalization ability of the machine

decreases. The learning machine becomes too complex and suffers from overfitting of the training

set. This demonstrates the principle of Occam’s razor where the simplest (lowest VC dimension)

classifier is chosen that will attain a low empirical risk. The ability to automatically learn the optimal

trade-off between these two factors is the most compelling feature of the SVM theory.
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Figure 4. Definition of a linear hyperplane classifier. SVMs are constructed by maximizing

the margin. The support vectors are shown as concentric circles.
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Figure 5. An illustration of the fact that the construction of a simple hyperplane in a higher

dimensional space is equivalent to a non-linear decision surface in a lower dimensional space. In

this example a decision surface in the form of a circle in a 2-dimensional space is modeled as a

hyperplane in a 3-dimensional space.
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vowel word vowel word

i heed O hod

I hid C: hoard

E head U hood

A had u: who’d

a: hard 3: heard

Y hud
Table I. The vowels and the corresponding words that were used in the Deterding Vowel database.
RBF
gamma

Classification
Error (%)

polynomial
order

Classification
Error(%)

0.2 45 2 49

0.3 39.6 3 52

0.4 35 4 52

0.5 35.5 5 52

0.6 35.5

0.7 35

0.8 36

0.9 36.5

1.0 37.8
Table II. Comparison of vowel classification error rates as a function of the RBF kernel width (gamma)

and the polynomial kernel order. Results are shown with the training error penalty, C, set to 10. For both

kernels, there is a wide range of the kernel parameter for which the generalization capability of the

SVM is equivalent. The RBF kernel performs much better than the polynomial kernel for this task.



phoneme word pronunciation phoneme word pronunciation

aa R aa r p P p iy

ah ONE w ah n r FOUR f ow r

ax W d ah b ax l y uw s SIX s ih k s

ay I ay t TWO t uw

b B b iy th THREE th r iy

ch H ey ch uw TWO t uw

d D d iy v FIVE f ay v

eh F eh f w ONE w ah n

ey A ey y U y uw

f FOUR f ow r z ZERO z iy r ow

ih SIX s ih k s sil [SILENCE] sil

iy E iy

jh G jh iy

k K k ey

l L eh l

m M eh m

n N eh n

ow O ow
Table III. Phoneme set for alphadigit recognition. A total of 29 phoneme models were used.
set phonemes

vowels aa, ah, ax, ay, eh, ey, ih, iy, ow, uw

fricatives ch, f, s, th, v, z

nasals m, n

approximants w, r, l, y

stops b, d, jh, k, p, t
Table IV. Phonetic similarity sets used to build SVM training sets. This clustering is very coarse.

One might be able to improve performance by making finer distinctions in the similarity classes.



RBF
gamma

WER (%)
Hypothesis

Segmentation

WER (%)
Reference

Segmentation

polynomial
order

WER (%)
Hypothesis

Segmentation

WER (%)
Reference

Segmentation

0.1 13.2 9.2 3 11.6 7.7

0.4 11.1 7.2 4 11.4 7.6

0.5 11.1 7.1 5 11.5 7.5

0.6 11.1 7.0 6 11.5 7.5

0.7 11.0 7.0 7 11.9 7.8

1.0 11.0 7.0

5.0 12.7 8.1
Table V. Comparison of word error rates as a function of the RBF kernel width (gamma) and the

polynomial kernel order. Results are shown for a 3-4-3 segment proportion with the error penalty, C,

set to 50. Both the 1-best hypothesis from the HMM system and the reference transcription have been

used to generate segmentation information. The reference segmentation performance can be seen as

an approximate lower-bound on the achievable error. The WER for the baseline HMM system is

11.9%.
Segmentation
Proportions

WER (%)
RBF kernel

WER (%)
polynomial

kernel

2-4-2 11.0 11.3

3-4-3 11.0 11.5

4-4-4 11.1 11.4
Table VI. Comparison of performance as a function of the segment proportions. 1-best hypothesis

segmentations are used to generate the SVM segmentations and 10-best lists are rescored.



RBF
gamma

WER (%)
Hypothesis

Segmentation

WER (%)
Reference

Segmentation

Average
Number of

Support Vectors

0.1 13.2 9.2 1313

0.4 11.1 7.2 3293

0.5 11.1 7.1 3972

0.6 11.1 7.0 4248

0.7 11.0 7.0 4784

1.0 11.0 7.0 6577

5.0 12.7 8.1 10236
Table VII. The number of support vectors is a good indicator of generalization ability. As the number of

vectors decreases, the classifier tends toward an overly smooth decision surface, which leads to poor

generalization. As the number of support vectors increases, the classifier tends toward overfitting; also

leading to poor generalization.



Data
Class

HMM
(%WER)

SVM
(%WER)

HMM+SVM
(%WER)

a-set 13.5 11.5 11.1

e-set 23.1 22.4 20.6

digits 5.1 6.4 4.7

alphabets 15.1 14.3 13.3

nasals 12.1 12.9 12.0

plosives 22.6 21.0 18.9

Overall 11.8 11.8 10.6
Table VIII. The HMM system and the SVM system have different strengths. A combination of the two

is capable of using the strengths of both systems to achieve a better overall performance. However, it

does require the estimation of another nuisance parameter to normalize the respective scores. The

SVM results reported in this table use the N-best segmentations. The combination of the two systems

uses (37) with the normalization factor set to 200.
Normalization
Factor

HMM+SVM
(%WER)

100000 11.8

10000 11.4

1000 10.9

500 10.8

200 10.6

100 10.7

50 10.8

0 11.8
Table IX. Error rate as a function of the normalization factor. The optimal value is 200, and provides an

error rate of 10.6%.
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