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ABSTRACT

With the rapid development of computer technology, general purpose CPUs have made inroads into

signal processing applications; of which the Fast Fourier Transform (FFT) continues to be an integra

A large number of FFT algorithms have been developed over the years, notably the Radix-2, Ra

Split-Radix, Fast Hartley Transform (FHT), Quick Fourier Transform (QFT), and

Decimation-in-Time-Frequency (DITF) algorithms. How these algorithms fare in comparison with

other is of considerable interest to developers of signal processing technology. In previous benchm

efforts, only the computation speed or the number of mathematical operations were used for as

efficiency. Moreover, most of these benchmarks have been limited to special purpose CPUs like DS

In this paper, we present a rigorous analysis of the aforementioned algorithms on general p

processors, such asthe DEC Alpha, Intel Pentium Pro and Sun UltraSparc.The analysis of each algorithm

includes the number of mathematical operations, computation time, memory requirements, and co

effects. Our work is one of the first efforts to characterize FFT algorithms in terms of mem

requirements and detailed operation counts. The results indicate that the FHT is the overall best alg

on all platforms, offering the fastest execution time and requiring reasonably small amounts of mem
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1. INTRODUCTION

The first major breakthrough in implementation of Fast Fourier Transform (FFT) algorithms was

Cooley-Tukey [1] algorithm developed in the mid-1960s, which reduced the complexity of a Dis

Fourier Transform from O( ) to O( ). At that time, this was a substantial saving for even

simplest of applications. Since then, a large number of FFT algorithms have been developed

Cooley-Tukey algorithm became known as the Radix-2 algorithm and was shortly followed by

Radix-3, Radix-4, and Mixed Radix algorithms [8,11,12]. Further research led to the Fast Ha

Transform (FHT) [2,3,4] and the Split Radix (SRFFT) [5,11,12] algorithms. FFT research was consi

a fairly mature area by the mid-1980’s, but recently, two new algorithms have emerged: the Quick F

Transform (QFT) [6] and the Decimation-In-Time-Frequency (DITF) algorithm [7].

While there has been extensive discussion on the theoretical efficiency of these algorithms, there h

little research to-date comparing algorithms in practical terms. Efficiency is intrinsically related to ho

algorithm can be implemented on a given architecture. The important issues to be considered i

evaluations of efficiency are the computation speed, memory, algorithm complexity, machine archit

and compiler design. Many benchmarks for FFTs [16,17,18,19,22] have incorporated some sub

these, but none are as comprehensive as the study presented here. One of the earliest bench

efforts [19] is typical of such studies, and included Radix algorithms evaluated on Cray, VAX, PDP

IBM machines. This study included complexity analysis in terms of computations. In developing the

Bracewell [16,21] provided a comparison of the FHT and an optimized Radix FFT, and confirme

efficiency of FHT on a HP platform. A more recent effort started at the Laboratory for Computer Sc

at MIT [24] includes a comparison of many publicly available algorithms on contemporary high s

platforms like Pentium Pro, UltraSparc etc. Their comparison, however, is focused on implement

rather than algorithms, and does not include a detailed complexity analysis or coding of the algorithm

common framework, which are essential for a fair complexity analysis.

In this paper we provide a comprehensive comparison of several contemporary FFT algorithm

state-of-the-art processors. The criteria used are the operations count, CPU time, memory usage, pr

N
2 N Nlog⋅
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and compiler. The processors evaluated include the DEC Alpha, Intel Pentium Pro and Sun Ultra

Preliminary work on quantifying the effects of compilers on these algorithms is also presented. We

the following algorithms for our analysis: Radix-2 (RAD2), Radix-4 (RAD4), SRFFT, FHT, QFT, a

DITF. The choice of these algorithms was influenced by a desire to do a longitudinal study as we

complexity analysis. The QFT and the DITF are the latest proposed algorithms, while the Radix-2

oldest. As we expected in doing such a study, contrary to published results [6,7] these newest ent

not the fastest algorithms available.

2. REVIEW OF FFT ALGORITHMS

The basic principle behind most Radix-based FFT algorithms is to exploit the symmetry propertie

complex exponential that is the cornerstone of the Discrete Fourier Transform (DFT). These algo

divide the problem into similar sub-problems (butterfly computations) and achieve a reductio

computational complexity. All Radix algorithms are similar in structure differing only in the c

computation of the butterflies. The FHT differs from the other algorithms in that it uses a real kern

opposed to the complex exponential kernel used by the Radix algorithms. The QFT postpones the c

arithmetic to the last stage in the computation cycle by separately computing the Discrete C

Transform(DCT) and the Discrete Sine Transform(DST). The DITF algorithm uses both

Decimation-In-Time (DIT) and Decimation-In-Frequency (DIF) frameworks for separate parts of

computation to achieve a reduction in the computational complexity.

2.1. Radix-2 Decimation in Frequency Algorithm

The RAD2 DIF algorithm is obtained by using the divide-and conquer approach to the DFT problem

DFT computation is initially split into two summations, one of which involves the sum over the first

data points and the other over the next  data points, resulting in

. (1)

Since  and , the above equation can be simplified to

N 2⁄

N 2⁄

X k( ) x n( ) WN
kn⋅

n 0=

N 2⁄ 1–

∑ x n( ) WN
kn⋅

n N 2⁄=

N 1–

∑+=

WN
k

e
j2πk N⁄–= WN

kN 2⁄ 1–( )k=
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Considering the even and odd-numbered frequency samples separately results in

 and, (3)

. (4)

The same computational procedure can be repeated through decimation of the -point DFTs X(2

X(2k+1). The entire process involves stages with each stage involving butter

Thus the RAD2 algorithm involves complex multiplications and compl

additions, or a total of floating point operations. Observe that the output of the whole pro

is out-of-order and requires a bit-reversal operation to place the frequency samples in the correct o

2.2. Radix-4 Algorithm

The RAD4 algorithm is very similar to the RAD2 algorithm in concept. Instead of dividing the D

computation into halves as in RAD2, a four-way split is used. The -point input sequence is split into

subsequences, , , , and , where . Then,

. (5)

Setting

, (6)

X k( ) x n( ) 1–( )k x n
N
2
----+ 

 ⋅+ 
  WN

kn⋅
n 0=

N 2⁄ 1–

∑=

X 2k( ) x n( ) x n
N
2
----+ 

 + 
  WN 2⁄

kn⋅
n 0=

N 2⁄ 1–

∑=

X 2k 1+( ) x n( ) x n
N
2
----+ 
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 
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WN 2⁄
kn⋅
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N 2⁄ 1–
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N 2⁄

υ N2log= N 2⁄

N 2⁄ N2log⋅ N N2log⋅

5N N2log⋅

N
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and,

, (8)

the matrix formulation of the butterfly becomes

. (9)

Figure 1 shows the computation of a RAD4 butterfly. The decimation process is similar to the R

algorithm, and uses stages, where each stage has butterflies. The RAD4 bu

involves 8 complex additions and 3 complex multiplications, or a total of 34 floating point operat

Thus, the total number of floating point operations involved in the RAD4 computation of an -point

is , which is 15% less than the corresponding value for the RAD2 algorithm.

2.3. Split-Radix Algorithm

Standard RAD2 algorithms are based on the synthesis of two half-length DFTs and similarly R

algorithms are based on the fast synthesis of four quarter-length DFTs. The SRFFT algorithm is ba

the synthesis of one half-length DFT together with two quarter-length DFTs. This is possible becau

the RAD2 computations, the even-indexed points can be computed independent of the odd-indexed

The SRFFT algorithm uses the RAD4 algorithm to compute the odd-numbered points. Hence, the

DFT is decomposed into one -point DFT and two -point DFTs

, (10)

X p q,( ) X
N
4
---- p⋅ q+ 

 =

x l m,( ) x 4m l+( )=
l p, 0 1 2 3, , ,=

m q, 0 1 … N 4⁄ 1–, , ,=
,
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X 2 q,( )
X 3 q,( )
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where,

. (13)

An -point DFT is obtained by successive use of these decompositions. Figure 2 illustrate

decomposition of a 32-point FFT using the SRFFT paradigm. Here we treat the computational proce

RAD2 algorithm with the unnecessary intermediate DFT computations eliminated. For each

associated line segments indicate which -point DFT is computed, where . Thus at stage

five 4-point DFTs are computed. An analysis of the butterfly structures [15] for the SRFFT algor

reveals that approximately computations are required as compared to

RAD4 and  for RAD2 algorithms.

2.4. Fast Hartley Transform

The main difference between the DFT computations previously discussed and the Discrete H

Transform (DHT) is the core kernel [2]. For the DHT, the kernel is real unlike the complex expone

kernel of the DFT. The  DHT coefficient is expressed in terms of the input data points as

. (14)

This results in the replacement of complex multiplications in a DFT by real multiplications in a DHT.

complex data, each complex multiplication in the summation requires four real multiplications and

real additions using the DFT. For the DHT, this computation involves only two real multiplications and

X 4k 3+( ) g n( ) j f n( )+[ ]W3n
W

4nk⋅
n 0=

N 4⁄ 1–

∑=
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N
4
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q
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real addition. There exists an inexpensive mapping of coefficients from the Hartley domain to the F

domain, which is required to convert the output of a DHT to the traditional DFT coefficients. Equatio

relates the DFT coefficients to the DHT coefficients for an -point DFT computation.

. (15)

The FHT evolved from principles similar to those used in the RAD2 algorithm to compute D

coefficients efficiently. It is intuitively simpler and faster than the FFT algorithms as the numbe

computations reduces drastically when we replace all complex computations by real computations. S

to other recursive Radix algorithms, the next higher order FHT can be obtained by combining two ide

preceding lower order FHTs. In fact all Radix-based algorithms used in FFT implementations c

applied to FHT computations [22].

For , the Hartley transform can be represented in a matrix form as

. (16)

Following a similar procedure for , we get the matrix formulation,

, (17)

which can be easily transformed to

. (18)

N

Re DFT k( )( ) DHT k( ) DHT N k–( )+
2

-----------------------------------------------------------=

Im DFT k( )( ) DHT k( ) DHT N k–( )–
2

----------------------------------------------------------=

N 2=

X 0( )
X 1( )

1 1

1 1–

x 0( )
x 1( )
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X 0( )
X 1( )
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1 1 1 1

1 1 1– 1–

1 1– 1 1–

1 1– 1– 1

x 0( )
x 1( )
x 2( )
x 3( )

⋅=

X 0( )
X 1( )
X 2( )
X 3( )

1 1 1 1

1 1– 1 1–

1 1 1– 1–

1 1– 1– 1

x 0( )
x 2( )
x 1( )
x 3( )
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A closer look at this matrix product and a comparison with the matrix for reveals that the m

for is composed of sub-matrices of the form of the matrix for . Thus a DHT of order 4

be computed directly from a DHT of order 2. This idea can be extended to any order which is a pow

2 [4]. It is also worth noting that the Hartley Transform is a bilateral transform, i.e. the same funct

form can be used for both the forward and inverse transforms. This is an added advantage of the FH

other FFT algorithms.

2.5. Quick Fourier Transform

We have seen that the Radix-based algorithms exploit the periodic properties of the cosine an

functions. In the Quick Fourier Transform (QFT) algorithm, the symmetry properties of these function

used to derive an efficient algorithm.

(19)

We define an -point DCT as

. (20)

 An -point DST can also be similarly defined as

. (21)

We can divide an -point input sequence into its even and odd parts as

, and (22)

N 2=

N 4= N 2=

2π N n–( )k
N

---------------------------- 
 cos

2πnk
N

------------- 
 cos=

2π N n–( )k
N

---------------------------- 
 sin

2πnk
N

------------- 
 sin–=

N 1+

XDCT k( ) x n( ) πnk
N

---------cos
n 0=

N

∑= k 0 1 … N, , ,=,
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XDST k( ) x n( ) πnk
N

---------sin
n 1=

N 1–

∑= k 1 2 … N 1–, , ,=,

N

xe 0( ) x 0( )=

xe k( ) x k( ) x N k–( )+= k 1 2 … N 2⁄ 1–, , ,=,

xe N 2⁄( ) x N 2⁄( )=
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Using the above sequences and properties in Equation 19 we can define an -point DFT as

. (24)

In order to derive a recursive formulation of DCT and DST computations, we define a new sequence

. (25)

Also, the point of this sequence is the same as that of the original sequence. Thus we can for

the recursive DCT for the even numbered points as

, and (26)

. (27)

We can define a recursive equation for the odd DCT points using a new sequence  defined as

. (28)

Then,

, (29)

where . A similar recursive formulation can be derived for the DST us

symmetry properties of the sine function which results in

, (30)
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N
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where . Since the complex operations occur only in the last stage of

computation where the DCT and DST are combined using Equation 24, the QFT is well suite

operation on real data. The number of operations required to perform an -point QF

[7]. This, however, does not include the cost of computing the odd and e

parts of the data sequence at each stage of the computation.

2.6. Decimation-In-Time-Frequency (DITF) Algorithm

The DITF algorithm is based on the observation that in a DIF implementation of a RAD2 algorithm,

of the computations (especially complex multiplications) are performed during the initial stages o

algorithm. In the DIT implementation of the RAD2 algorithm, the computations are concentrated tow

the final stages of the algorithm. Thus, starting with the DIT implementation and then shifting to the

implementation at some transition stage intuitively seems to be a computation saving process.

Equations (3) and (4) define the DIF RAD2 computation. The DIT RAD2 computation is defined as

. (31)

Note that the first summation in the above equation is the -point DFT of the sequence compri

the even-numbered points of the original sequence and the second summation is the -point D

the sequence comprised of the odd-numbered points of the original sequence. The transition stage

of a conversion from the DIT coefficients to the DIF coefficients,

, (32)

where is the index of the set to which belongs and is the position of in that set. The indic

each set need to be bit-reversed. The total number of real multiplications involved in the DITF compu

is , where is the transition stage. On minimizing this

k 1 2 … N 2⁄ 1–, , ,=

N

11N 2⁄ Nlog⋅ 27N 4⁄– 2+

X k( ) x 2n( ) WN 2⁄
kn⋅

n 0=

N 2⁄ 1–

∑ x 2n 1+( ) WN 2⁄
kn⋅

n 0=

N 2⁄ 1–

∑
 
 
 

WN
k⋅+=

N 2⁄

N 2⁄

DIF k( ) WN
pq

DIT k( )⋅=

p k q k

2N Nlog⋅ 10N– 8N 2
s⁄ 8 2

s⋅ 8–+ + s
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expression, we get the optimal transition stage for minimum number of multiplications as .

3. BENCHMARKING CRITERIA

Most preceding FFT complexity studies have been conducted on special purpose hardware such a

signal processing (DSP) chips [9,10]. Typically, the primary benchmarking criteria have been the nu

of mathematical operations (multiplications and additions) and/or the overall computation speed. S

large portion of the DSP application market has transitioned to general purpose computers, benchm

these CPUs have become increasingly important. It has been a traditional belief that the efficiency

algorithm is most influenced by the arithmetic complexity, usually expressed in terms of a count o

multiplications and additions. However, on general purpose computers this is not a very good benc

and other factors need to be considered as well. For instance, the issue of memory usage is very im

for memory constrained applications. Similarly, compiler optimizations play an important part in

execution speed of algorithms. Many modern benchmarks now include compiler effect characteriza

study algorithm performances [17].

3.1. Number of Computations

Since many general purposes CPUs have significantly different speeds on floating point and

operations, we decided to individually account for floating point and integer arithmetic. It is a well kn

fact that most new architectures compute floating point operations more efficiently than integer oper

(ten years ago, this was not the case)[25,26]. Also, most indexing and loop control is done using i

arithmetic. Therefore the integer operations count directly measures the cost of indexing and loop c

Many FFT algorithms require a large number of division-by-two operations which is efficie

accomplished by using a binary shift operator. To account for this common operation, we include a

of binary shifts in our benchmarks.

3.2. Computation Speed

In most present-day applications for general purpose computers, with easy availability of faster CPU

memory not being a primary constraint, the fastest algorithm is by far treated as the best algorithm. T

Nlog
2

------------
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common choice to rank order algorithms is by their computation speed. Since the computation tim

most lower order FFTs is less than a millisecond, transients in the measuring process could skew t

considerably. Typically, these anomalies are a result of variations in the loading time of CPUs. A com

strategy employed to avoid this is to measure time over a number of iterations of the algorithm. Pre

benchmarking efforts have shown that the median time taken over a number of iterations is a

measure than the timing of one iteration. Using this iterative approach helps us deal with the measu

noise and transients more effectively. Therefore we report median CPU time in our benchmarks.

3.3. Memory Usage

One of the classic trade-offs seen in algorithm development is that of memory usage versus speed.

portable signal processing applications, the FFT is a core computational component. Howeve

applications can afford a large memory space for evaluating FFTs. Constraints on run-time m

resources coupled with static memory in the form of code space define the application’s me

requirements. While memory usage is important for specification of hardware, memory accesse

account for a significant portion of computation time. This is attributed to cache misses, swappin

other paging effects. These effects are more prominent when computing higher order FFTs (typical

4K points). The swap space required in such cases exceeds the cache size. These observations pro

to include memory usage as one of the yardsticks in judging the effectiveness of the various

algorithms.

3.4. Compiler Optimizations:

With advances in compiler technology, compiler optimizations can now result in computational spee

as high as 300%. Some of the important optimizations that modern compilers try to achieve are:

1. Tail recursion elimination— converts self-recursive procedures into iterative procedures,

saving manipulation time

2. Loop-invariant code motion — locates and removes computations that yield the same result

3. Profiling — allows optimizations to adapt themselves to program behavior
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4. Induction-variable strength reduction — replaces slower operations by faster ones

5. Loop unrolling— reduces run-time by reducing loop overhead and increasing opportunities

for more efficient instruction pipelining

6. Loop inversion— convert pre-test loops into post-test loops, reduce the number of branche

required per iteration

Loop-invariant code motion and loop-unrolling are the most effective in optimizing FFT algorith

because the nature of the problem requires loop cores with intermixed additions and multiplications

computations provide for significant pipelining opportunities which is by far the most important issu

iterative, computation-intensive algorithms. To quantify these effects, we evaluate the performance

FFT algorithms using two popular compilers for C++,MSVC++ [13] and GNU’sgcc [14].

4. BENCHMARKING RESULTS AND ANALYSIS

Each of the algorithms was implemented under a common framework using common function

operations such as bit-reversal and lookup table generation so that differences in performance c

attributed solely to the efficiency of the algorithms. Following this, we comprehensively benchma

each algorithm according to the criteria discussed in the previous section. In the process we ob

several results that were contrary to published theory. Many of these contradictions can be attribu

compiler optimizations rather than discrepancies in the algorithms or in the measurement process, a

algorithm implementations tended to be more amenable to optimizations than others.

4.1. Computation Speed

Computation speed is typically the most prominent aspect of an FFT algorithm in current

applications. Apart from the direct calibration of algorithms, we also decided to study the effect o

computer architecture on the execution speed of these algorithms. It is interesting to note ho

performance of the algorithms scales in terms of processor speed. This is very heavily influenced

architecture, cache usage, and other hardware-related features.
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In many applications, the designer does not know in advance the type of architecture to be used.

cases, information related to the performance of the FFT algorithms pertaining to the relevant

architecture can be effectively used to select the optimal algorithm for that application. Thu

comparative benchmark across various hardware platforms is quite useful for a DSP application dev

Our evaluations were performed on three of the most commonly used general purpose processors:

UltraSparc (170 MHz), the DEC Alpha 21164 (300 MHz) and the Intel Pentium Pro (200 MHz).

properties of these processors are summarized in Table 1. The computation speed of an algorithm f

data sizes can often be heavily dependent on the clock speed, RAM size, cache size and the op

system. Hence, these factors must be taken into account.

We evaluated each of the algorithms using the same compiler (GNU gcc v2.7.2.1). For the 200

Pentium Pro machine, the computation time of the worst algorithm (DITF) is more than three times g

than that of the best algorithm (FHT). It has been consistently observed in our benchmarks that the

the most efficient algorithm in terms of computation speed. Table 2 shows the variation in performa

these algorithms as a function of the FFT order for the Pentium Pro architecture.

The relative ranking of other algorithms does, however, change when benchmarked on a different m

For example when evaluated on an UltraSparc2, the RAD4 algorithm performs better than a QFT. T

possibly attributed to the paging mechanism and cache usage on the different architectures and the

to which the algorithms are susceptible to these factors.

A comparison of the computation time for the fastest algorithm, the FHT, on the three platforms is s

in Figure 3. The performance across the machines is clearly affected by the amount of RAM and cac

expected, the effect is more pronounced for higher order FFTs where cache misses become comm

observe that the performance of the Pentium Pro does not scale up as gracefully as the DEC Alpha

Sun UltraSparc. For the same processor speed the UltraSparc performs better than the Pentium P

plausible explanation for this is the cache size. The cache on the Pentium Pro is one-fourth the size

on the UltraSparc. This effect should, however, not play a significant role for lower order

computations. The performance of the CPUs on floating point operations versus integer operat
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significant as well. The Pentium Pro performs better than the UltraSparc on algorithms with a h

number of integer operations compared to the floating point operations. On the other hand, the Ultr

consistently outperforms the Pentium Pro on algorithms with a higher number of floating point opera

4.2. Number of Computations

The number of arithmetic computations has been the traditional measure of algorithmic efficiency

the advent of on-chip arithmetic units, the relative importance of this figure of merit has dwindled. A

results suggest, the number of computations derived from the typical butterfly diagrams for FFTs no

reflect the real execution cost when a designer exploits the efficiencies inherent in the implementa

avoid some redundant computations.

We have generated conclusive numbers for comparisons based on arithmetic computations. The nu

operations required by each algorithm for a 1024-point real DFT are displayed in Table 3. We obser

the faster algorithms require performing a smaller number of computations. However, there is a tra

between integer operations and floating point operations. Savings in floating point operations c

achieved at the cost of increasing the number of integer operations. This translates to achieving

numbers of computations at the cost of more indexing operations. An example of this is seen

excessive number of integer additions in the QFT. Most of the integer arithmetic is accounted for by

control or re-indexing. In the QFT implementation, the DCT and DST recursions are implemente

accessing pointers in a common workspace. This results in the large number of integer operation

large number of operations for the DITF algorithm are attributed to the bit-reversal process at va

stages of the computation. This aspect seems to have been overlooked in previous evaluation

Overall, the FHT and the SRFFT are the best in terms of effectively using computations, which tran

to greater computation speed.

One should, however, not be blindly swayed by the performance of FHT. The main drawback of the F

that the complex FHT is computed via two real FHT computations. The QFT also uses a s

methodology. The number of computations doubles when moving from real data to complex data

these algorithms. The corresponding change for the other algorithms is insignificant.
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4.3. Compiler Effects

Compiler technology has advanced greatly over the past decade. Earlier benchmarks were not as s

to compiler optimizations. In contrast, our preliminary tests revealed that variations in the compiler

optimization level improved the computation speed by as much as 300%. This prompted a

exploration of this issue. Also, an application developer could look at benchmarks performed using

compiled on gcc and assume the effects would translate smoothly to code compiled using MSV

Unfortunately, this is not necessarily true. Figure 4 demonstrates this by plotting the differen

computation speeds between SRFFT and FHT on real data when compiled using gcc and MSVC++

Pentium Pro architecture. The compiler effects are not found to be uniform across algorithms, and t

not enough evidence gained from these numbers to help us predict the relationship between the co

and the algorithms. One possible method to gain a better insight into the compiler effects is to incor

a cache model into the software and trace the profile of the code. These issues highlight the nee

closer study of compiler effects on algorithms.

Table 5 shows the effect of different levels of optimization on the algorithm implementations w

compiled using gcc. Level 2 performs all the optimizations described in Section 3.4, which do not in

time-space trade-offs. However, the compiler does not perform loop unrolling or function in-lin

Level 3 is a superset of level 2, and additionally turns on function in-lining. The SRFFT and R

algorithms seem to benefit from this more than the other algorithms.

4.4. Memory Usage and Object Code Size

One of the key issues in portable applications is memory usage. Quantification of memory requirem

glaringly missing from most benchmarks published for FFT algorithms. In our work, memory usage

includes the input and output data arrays, lookup tables and any intermediate swap space used

algorithm. Since we wanted to keep the structure of algorithms uniform, we have implemente

algorithms with lookup tables. Thus, any difference in memory usage can be attributed to variations

actual swap space usage. When implemented in a uniform framework, the object code size and exe

size are also direct measures of the complexity of an algorithm. Most of the faster algorithms h
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comparatively large object code size. Table 4 shows the memory usage profile of different algorithm

1024 point FFT on a Pentium Pro compiled using gcc.

We see from Table 4 that the RAD2 algorithm is the most memory efficient algorithm, and the QFT

least. In the case of the QFT, this is due to the large work space required to perform the recursions

DCT and the DST algorithms. The FHT is the most inefficient in terms of the executable size. Notice

as was expected, the executable size is a good measure of the complexity of the algorithm with th

being the most complex and the RAD2 the least complex algorithm.

5. CONCLUSIONS

The existence of an abundance of algorithms for FFT computations and an even greater number

implementations calls for a comprehensive benchmark which teases out the implementation-s

differences and compares the algorithms directly. We have tried to achieve this objective by implem

algorithms in a very consistent framework. Our results indicate that the overall best algorithm for

computations is the FHT algorithm. This has been, and will likely continue to be, a point of argume

many years [17,18,20,22,23]. Another feature in favor of the FHT is its bilateral formulation. Unlike D

algorithms, FHT has the same functional form for both its forward and inverse transforms.

Our work is one of the first efforts to characterize FFT algorithms in terms of memory requirements

FHT is the fastest algorithm on all platforms with a reasonable dynamic memory requirement. Howe

is the most inefficient in terms of static memory usage (measured in terms of the executable size

FFT algorithm needs to be chosen solely on the basis of static memory requirements, the RAD2 alg

is the still the best, owing to its simple implementation. The SRFFT and the FHT are comparable in

of the number of computations and are the most efficient. In the existing studies, the overhead invo

the computations used for the QFT and the DITF algorithms — especially array indexing and

preparation such as the computation of even and odd components of a data set — is often neglect

benchmarks account for all such memory requirements as well.

For the same processor speed and RAM size, the Sun UltraSparc outperforms the Intel Pentium
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algorithms with greater number of floating point operations than integer operations (e.g. FHT); whi

Pentium Pro does better on algorithms with a greater number of integer operations (e.g. QFT). This t

attributed to the performance of the CPUs on floating point operations vs. integer operations. Typica

Pentium class of CPUs perform worse than the Sparcs on floating point operations. This observa

validated by other benchmarks where floating point and integer specifications, SPECfp95 and SPE

of various CPUs are compared[25,26]. Table 6 shows the performance specifications for the Pe

UltraSparc and the DEC Alpha.

As noted earlier, compiler effects were quite significant, though the underlying phenomena could

explained directly by the algorithm implementations. The results of our benchmarks suggest the nee

cache model in our code design to bring insights into the cache-related and compiler-related issues
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Processor
type

Hardware Properties

Speed RAM size Cache size Operating System

Sun UltraSparc 200MHz 256kB 512KB Sun Solaris 2.5

DEC Alpha 21164 300MHz 128kB 2MB Windows NT

Intel Pentium Pro 200MHz 256kB 256KB Sun Solaris 2.5
Table 1:  Properties of the general purpose CPUs used for benchmarking the FFT algorithms
Algorithm
FFT Order

16 64 256 1024 4096 16384

RAD2 20 60 260 1960 6800 30500

RAD4 20 60 300 1800 6940 29000

SRFFT 20 40 140 660 3700 17260

FHT 20 40 120 560 3240 14020

QFT 20 40 180 1020 5460 27760

DITF 20 80 380 1780 8780 40200
Table 2: Computation time (in microseconds) of various algorithms in computing several orders
of FFT
Algorithm Float Adds Float Mults
Integer
Adds

Integer
Mults

Binary
Shifts

RAD2 14336 20480 19450 2084 1023

RAD4 8960 14336 12902 3071 277

SRFFT 5861 5522 12664 2542 1988

FHT 7420 8841 3235 2048 12

QFT 9026 2560 29784 1048 144

DITF 14400 17664 20333 1076 1074
Table 3:  Number of computations involved in computing a 1024-point FFT
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Algorithm
Memory Usage

(Bytes)
Object Code

(Bytes)

RAD2 72440 5190

RAD4 72536 5293

SRFFT 72508 6275

FHT 72652 11506

QFT 122072 9800

DITF 78632 8691
Table 4:  Memory usage and object code size in computing a 1024-point FFT
Algorithm
Optimization

Level 2 Level 3

RAD2 1.0 1.0

RAD4 9.2 7.9

SRFFT 13.2 13.2

FHT 3.0 3.0

QFT 2.0 0.0

DITF 2.3 3.1
Table 5:  Percent change in computation time of algorithms for a 1024-point FFT compared to
level 1 optimization in gcc
Specification DEC Alpha 21164 UltraSparc Pentium Pro

SPECfp95/MHz 0.0421 0.0468 0.0240

SPECint95/MHz 0.0309 0.0384 0.0387
Table 6:  Floating point and integer performance specifications for the various CPUs



COMPARATIVE ANALYSIS OF FFT ALGORITHMS PAGE 23 OF 24

- j

- 1
j

- 1
1
-1

j

-1
- j

WN
q

WN
2q

WN
3q

WN
0F(0,q)

F(1,q)

F(2,q)

F(3,q)

X(0,q)

X(1,q)

X(2,q)

X(3,q)
Figure 1. Radix-4 butterfly involving 3 complex multiplications and 12 complex additions
           q = 5

q = 4

q = 3

q = 2

q = 1

Bit Reversed Data

D
F

T
 L

en
gt

h

Figure 2. Split-Radix computational framework



COMPARATIVE ANALYSIS OF FFT ALGORITHMS PAGE 24 OF 24

2.5

3.0

3.5

4.0

4.5

5.0
C

om
pu

ta
tio

n 
T

im
e 

(lo
g 

sc
al

e)

FFT Order
1024 4096 16384

DEC Alpha 300MHz

Pentium Pro 200MHz

UltraSparc 200MHz
Figure 3. Comparison of computation speed across three different CPUs for the FHT algorithm
0

10

20

30

40

50

gcc, +ve

MSVC++, -ve

%
D

iff
er

en
ce

 b
et

w
ee

n 
F

H
T

 a
nd

 S
R

F
F

T

FFT Order

16 64 256 1024  4096  16394
Figure 4. Difference in computation time of FHT and SRFFT compiled using gcc and MSVC++


	List of Tables
	1. Properties of the general purpose CPUs used for benchmarking the FFT algorithms
	2. Computation time (in microseconds) of various algorithms in computing several orders of FFT
	3. Number of computations involved in computing a 1024-point FFT
	4. Memory usage and object code size in computing a 1024-point FFT
	5. Percent change in computation time of algorithms for a 1024-point FFT compared to level 1 opti...
	6. Floating point and integer performance specifications for the various CPUs

	List of Figures
	1. Radix-4 butterfly involving 3 complex multiplications and 12 complex additions
	2. Split-Radix computational framework
	3. Comparison of computation speed across three different CPUs for the FHT algorithm
	4. Difference in computation time of FHT and SRFFT compiled using gcc and MSVC++
	Figure�1.�� Radix-4 butterfly involving 3 complex multiplications and 12 complex additions
	Figure�2.�� Split-Radix computational framework
	Figure�3.�� Comparison of computation speed across three different CPUs for the FHT algorithm
	Figure�4.�� Difference in computation time of FHT and SRFFT compiled using gcc and MSVC++

	A COMPARATIVE ANALYSIS OF FFT ALGORITHMS
	Aravind Ganapathiraju, Jonathan Hamaker, Joseph Picone
	Institute for Signal and Information Processing (ISIP)
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, MS 39762
	Anthony Skjellum
	High Performance Computing Lab (HPCL)
	Department of Computer Science
	Mississippi State University
	Mississippi State, MS 39762
	ABSTRACT
	1.�� INTRODUCTION
	2.�� REVIEW OF FFT ALGORITHMS
	2.1.�� Radix-2 Decimation in Frequency Algorithm
	. (1)
	. (2)
	and, (3)
	 . (4)

	2.2.�� Radix-4 Algorithm
	. (5)
	, (6)
	 , (7)
	, (8)
	. (9)

	2.3.�� Split�Radix Algorithm
	, (10)
	and, (11)
	, (12)
	. (13)

	2.4.�� Fast Hartley Transform
	. (14)
	 . (15)
	 . (16)
	, (17)
	 . (18)

	2.5.�� Quick Fourier Transform
	(19)
	.� (20)
	. (21)
	, and (22)
	. (23)
	. (24)
	. (25)
	, and (26)
	. (27)
	. (28)
	, (29)
	, (30)

	2.6.�� Decimation-In-Time-Frequency�(DITF) Algorithm
	. (31)
	, (32)


	3.�� BENCHMARKING CRITERIA
	3.1.�� Number of Computations
	3.2.�� Computation Speed
	3.3.�� Memory Usage
	3.4.�� Compiler Optimizations:

	4.�� BENCHMARKING RESULTS AND ANALYSIS
	4.1.�� Computation Speed
	4.2.�� Number of Computations
	4.3.�� Compiler Effects
	4.4.�� Memory Usage and Object Code Size

	5.�� CONCLUSIONS
	6.�� ACKNOWLEDGEMENTS
	7.�� REFERENCES
	[1] J.W.�Cooley and J.W.�Tukey, “An Algorithm for Machine Computation of Complex Fourier Series,”...
	[2] R.N.�Bracewell, The Hartley Transform, Oxford Press, Oxford, England, 1985.
	[3] R.N.�Bracewell, “Fast Hartley Transform”, Proceedings of IEEE, pp.�1010-1018, 1984.
	[4] H.S.�Hou, “The Fast Hartley Transform Algorithm”, IEEE Transactions on Computers, pp.�147-155...
	[5] P.�Duhamel and H.�Hollomann, “Split Radix FFT Algorithm,” Electronic Letters, vol.�20, pp.��1...
	[6] H.�Guo, G.A.�Sitton, and C.S.�Burrus, “The Quick Discrete Fourier Transform,” Proceedings of ...
	[7] A.�Saidi, “Decimation-In-Time-Frequency FFT Algorithm,” Proceedings of International Conferen...
	[8] C.S.�Burrus and T.W.�Parks, DFT/FFT and Convolution Algorithms: Theory and Implementation, Jo...
	[9] http://www.ti.com/sc/docs/dsps/literatu.htm
	[10] http://www.lsi-dsp.com/c6x/tech/wpsynop.htm
	[11] J.G.�Proakis, D.G.�Manolakis, Digital Signal Processing - Principles, Algorithms and Applica...
	[12] A.V.�Oppenheim, R.W.�Schafer, Digital Signal Processing, Prentice-Hall International Inc., E...
	[13] http://www.microsoft.com/visualc
	[14] http://www.maths.lancs.ac.uk/~smithdm1/GNU/GNUWeb/documentation.html
	[15] C.V.�Loan, Frontiers in Applied Mathematics - Computational Frameworks for the Fast Fourier ...
	[16] R.N.�Bracewell, “Assessing the Hartley Transform,” IEEE Transactions on Acoustics Speech and...
	[17] M.�Popovic, D.�Sevic, “A new look at the Comparison of Fast Hartley and Fourier Transforms,”...
	[18] P.R.�Uniyal, “Transforming Real-Valued Sequences: Fast Fourier versus Fast Hartley Transform...
	[19] M.A. Mehalic, P.L. Rustan, and G.P. Route, “Effects of Architecture Implementation of DFT Al...
	[20] P.�Duhamel and M.�Vetterli, “Improved Fourier and Hartley Transform Algorithms: Application ...
	[21] H.V.�Sorensen, D.L.�Jones, M.T.�Hiedeman, and C.S.�Burrus, “Real-valued fast Fourier transfo...
	[22] H.V. Sorensen, D.L. Jones, M.T. Hiedeman, and C.S. Burrus, “On Computing the Discrete Hartle...
	[23] R.D.�Preuss, “Very Fast Computation of the Radix-2, Discrete Fourier Transform,” IEEE Transa...
	[24] http://theory.lcs.mit.edu/~fftw
	[25] http://www.contrib.andrew.cmu.edu/usr/sdavis/processor.html
	[26] http://www.digital.com/semiconductor/micro-rpt-21164.htm
	Table 1: Properties of the general purpose CPUs used for benchmarking the FFT algorithms
	Table 2: Computation time (in microseconds) of various algorithms in computing several orders of FFT
	Table 3: Number of computations involved in computing a 1024-point FFT
	Table 4: Memory usage and object code size in computing a 1024-point FFT
	Table 5: Percent change in computation time of algorithms for a 1024-point FFT compared to level ...
	Table 6: Floating point and integer performance specifications for the various CPUs




