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ABSTRACT

The problem of proper noun recognition is key to developing pervasive voice interfaces in applications

such as directory assistance and data entry for telecommunications. It is a challenging problem because a

large number of proper nouns do not follow typical letter-to-sound conversion rules and their

pronunciations are influenced by numerous sociolinguistic factors. The recognition system needs to

generate accurate pronunciation networks for correct recognition of such words. Yet, despite being a

seemingly intractable problem, humans do amazingly well at generating and recognizing the pronunciation

of a name never before encountered.

This paper presents an algorithm based on a Boltzmann machine type of neural network that generates the

most likely pronunciations of a proper noun from the text-only spellings of the name. This system does not

require any voice data containing the spelling or nominal pronunciation. The generated pronunciation

output can be used to build better acoustic models for the proper noun that result in improved recognition

performance. The document also describes a corpus comprising more than 18000 proper nouns (surnames)

along with 24000 pronunciations developed to train and evaluate the system. While conventional

rule-based text-to-speech (TTS) systems provide a single pronunciation for the name, the Boltzmann

machine system is perhaps the only one capable of generating multiple pronunciations possible for the

proper noun.
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1. INTRODUCTION

A critical aspect of voice-driven interfaces is their ability to perform accurate recognition of proper no

In many applications, particularly those related to medicine [1, 2], the ability to recognize a physicia

patient’s name is crucial in providing a usable interface. A comparable problem involving company n

and product names exists in voice interfaces for advanced telecommunications services. It i

well-known that a majority of errors in a continuous speech recognition system consist of proper

words.

Recognition of proper nouns requires an ability to generate accurate pronunciation networks. This p

is very challenging because a large percentage of proper nouns, such as a personal names, have no

letter-to-sound mapping rules that can be used to generate the pronunciations. It appears to

open-ended problem that is constantly evolving as a function of numerous sociolinguistic factors. In

of being a seemingly intractable problem, humans do amazingly well at generating and recognizi

pronunciation(s) of a yet unencountered name.

Traditional systems for this application require handwriting detailed phonological rule sets and lo

tables to generate an accurate pronunciation of a name. For instance, a commercial product called D

[3] was developed in the mid-1980s that converted unrestricted English text into speech. Such s

were found to be highly labor-intensive and limited in scope to the directory assistance applicatio

which they were initially designed. Since most proper nouns have a number of highly prob

pronunciations which can be rarely differentiated from the context of the application, a rule-based s

generating only the single-most likely pronunciation essentially attempts to solve an ill-posed problem

a speech recognition application it is important that all plausible pronunciations be available to the sy

An alternative approach to the rule-based systems is to use massively-parallel network models

Knowledge in such connectionist systems is distributed over multiple processing units and th

exchange of information between these units determines the behavior of the network. System
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NETtalk [6] have been fairly successful in capturing most of the significant regularities of the En

pronunciations. Recently, systems that employ Hidden Markov Models [9] or decision-tree b

statistical modeling [10, 11, 12, 13] have shown the ability to generate more than one pronunciatio

regular words. However, no system has succeeded in effectively modeling the peculiarities of proper

to generate multiple pronunciations.

In the late 1980s a technique for voice recognition of proper nouns using text-derived recognition m

[7] was proposed and subsequently patented at Texas Instruments. The proposed algorithm autom

derives recognition models from the text-only spellings of the name (no voice data) and relies

particular form of neural network designed to generate multiple outputs for a given input — a Boltzm

machine [6]. It transforms its input to a network of distinctive articulatory features [8] required to pro

various pronunciations of the name. However, this system was never implemented.

Besides the implementation and evaluation of this algorithm, we have also addressed the serious

an overall lack of proper noun databases by developing a comprehensive training database of

twenty thousand representative surnames and their many likely pronunciations (using the Wo

phonetic transcription) to support training and development of the system, as well as application to

speech recognition problems.

2. NEURAL NETWORKS FOR PATTERN CLASSIFICATION

Artificial neural networks (ANNs) implement complex operations using massive integration of indivi

computing units, each of which performs an elementary computation. The output of this basic u

neuron, represents a nonlinear transformation of its inputs. Individual neurons link through wei

connections to form various computing machines capable of parallel operation and adaptive lea

Adaptation takes the form of adjusting the connection weights in order to achieve the desired input-

mapping. An advantage of using ANNs for feature extraction and pattern classification is their capab

capture the inherent functionality of the data without anya priori statistical characterization or
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2.1. Layered Networks

Multilayered neural networks form a significant class of pattern classification networks. In such sy

the external inputs are fed to an initial ‘layer’ of neurons. The remaining cells constitute successive

which receive as inputs the weighted outputs of the previous layer. The outputs of the final layer a

external outputs of the network. A network can also exist with only a single layer. Two architectur

layered neural networks prevalently used as classifiers are —

Feedforward networks : A feedforward or nonrecurrent ANN is one for which neurons in one layer are

strictly connected only to those in the immediate next layer. There is no feedback from the outer layers.

Such an architecture is also called a multilayered perceptron (MLP) [16, 17]. These require supervised

training i.e. the network is updated with regard to achieving the expected output pattern.

Learning vector quantizers : A learning vector quantizer (LVQ) [18] is a single layer ANN which

automatically adjusts its weights so that input patterns similar in some sense produce similar outputs.

These are usually trained in an unsupervised fashion.

2.2. Hopfield Network

A Hopfield network [19] contains pairs of neurons interconnected through symmetric weights. D

training the neurons update their weights asynchronously based on their local connections with

neurons. The network views each global state as ahypothesis. It supports or rejects a hypothesis b

assigning positive or negative weights to the associated node connections. Any such global state

network can be associated with a numerical function calledenergyof the network for that state. This can

be interpreted as the extent to which that combination of hypotheses violates the constraints implicit

problem domain. By minimizing the global energy the system evolves towards interpretation

classifications) of the input that increasingly satisfy the constraints of the problem space.
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Hopfield networks often get trapped in local energy minima via a completely distributed trai

algorithm. To achieve an interpretation of the inputs that satisfies as many interacting constrai

possible, the system must achieve a globally optimal state of minimum energy.

Both these architectures are limited to a single output per input pattern. To yield multiple possible o

corresponding to the same input pattern, a stochastic component needs to be introduced in such n

so that the system can generate a different output at different times. Also, it is not possible to rea

such a network to reach another stable state. A Boltzmann machine is a system capable of these pr

and therefore emerges as a viable alternative.

3. THE BOLTZMANN MACHINE

A Boltzmann machine is a neural network that is trained to represent the probability density distribut

observables in a particular domain. It is similar to a Hopfield network i.e. we can assign each globa

of the network a numerical energy value, and then make the individual units act to minimize the g

network energy compatible with each input configuration. However, each neuron has a stoc

activation which is a function of the global energy. Thus each neuron fires with some probability

particular input pattern; and therefore may produce a different output at different times. It is from

ability to generate multiple outputs for a single input that the Boltzmann machine derives its stren

handle the problem of generating multiple pronunciations of proper nouns. Figure 1 illustrates a t

neuron connection in the Boltzmann machine network and related concepts.

3.1. Boltzmann Machine Architecture

A prototype of the neural network architecture for generating proper noun pronunciations is giv

Figure 2. It consists of three principal components: an input layer that buffers n-tuples of input letter

maps them to binary-valued inputs, a hidden layer that maps such bit streams into a set of interna

(that derive and store the context-sensitive information regarding the “sounds” such n-tuples produc

an output layer that mixes long-term and short-term constraints to interpret the groups of letters
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phonetic representation. The network models the n-tuples of input letters using local and/or long-di

constraints.

The Boltzmann machine training algorithm is a procedure for gradually adjusting the weight

connections between units so that the network comes to model the domain of interest. Once train

network can perform pattern completion tasks probabilistically — a subset of its external units are

values representing the input, and all other units are set randomly. Activations are propagated throu

network, with the resulting states of the remaining external units representing the output. If the ne

has been trained successfully, the set of outputs produced for a given input represents the pro

distribution of these outputs for the given input in the domain represented by the network.

The architecture shown in Figure 2 is designed specifically for the problem of n

pronunciation/recognition. In a sense, the network is designed to model n-tuples of letters using loc

long-distance constraints [20]. To implement this in a manner consistent with a Boltzmann machin

have devised a shift register structure that is used to buffer characters as they are input to the system

a time. This approach is similar to other time-delay techniques that have become popular in s

recognition systems [21, 22].

3.2. Training Algorithm

The connection weight values associated with the network are derived using the backpropagation t

algorithm and a training database of names. The training database contains the spelling and all e

pronunciations of each name. During the training phase, each name in the database is input to the sy

a text string. Each output unit is clamped to represent the correct feature sequence, while each inpu

clamped to represent the correct letter combination. The output of the network is compared wit

expected output and the weights are updated accordingly. This step is repeated for each ex

pronunciation for each letter in each name.

The Boltzmann machine is capable of learning the underlying constraints that characterize a pr
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domain given some examples in that domain, simply by modifying the weights of its interconnectio

construct an internal model that is capable of producing similar examples with the same proba

distributions. By modifying the weights the machine can be made to approach any desired

probabilities. Since the Boltzmann machine can be viewed as a stochastic version of the multila

perceptron, the backpropagation method combined with a simulated annealing procedure [24] serve

most ideal training algorithm for this system. The backpropagation training algorithm is described b

in detail for a single context multilayered Boltzmann machine. Figure 3 contains a brief sche

summary of the same.

Given: A set of input spellings along with the corresponding phonetic transcriptions.

To compute: The set of weights for a network with K multiple layers that maps the inputs o

corresponding outputs.

Algorithm:

1. As there are K layers in the network, layer 1 corresponds to the one clamped with the inputs and

layer K corresponds to the neuron layers that constitute the system output. Let Nk be the number

of neurons in the kth layer. Also, let N0 be the number of bits that are input the first layer of

neurons. These bits are the accumulation of the bit-strings corresponding to all the symbols

loaded in the input buffer, and hence N0 is fixed once the context size is decided. Let the input

bits be denoted by xi, the activation levels of the neurons in the kth hidden layer be denoted as

hki and the output bits of the Kth (output) layer be oi. We indicate the weight connecting the ith

neuron in the k-1th layer to the jth neuron in the kth layer by wkij. t is the index of the number of

training loops. T(t) is the temperature in the ith iteration through the training data. Let η be the

learning rate and α(t) be the feedback coefficient or the momentum term used to update the

connection weights. The learning rate is a fixed constant that characterizes the impact of the

output error of a neuron on the weights connected to it. The momentum determines how much
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the previous training affects the weight update.

2. For t = 0, initialize the weights to random values between -0.1 and 0.1. Set the initial values of

the momentum α(0) = 0 and the temperature T(0) = T0. The initial temperature T0 is a parameter

specified by the user.

For

3. For an input vector , the output of a hidden layer neuron clamped to it is calculated in terms

of its energy gap —

(1)

4. The output of the units in the first hidden layer is propagated through the network to compute the

outputs of neurons in the subsequent layers. Thus for all  —

(2)

5. Finally, the output bits of the outermost layer are computed.

(3)

6. The output bit-string is compared to the bit-string that corresponds to the expected or

target output phoneme. The error in the system output is computed based on the actual output

and the target output. Since this error corresponds to the outermost layer, the error for the jth

neuron in this layer is denoted as .

(4)

7. The error in the output of a neuron in an earlier layer is computed. The error at the kth layer is
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calculated by backpropagating the error in the k+1th layer and is denoted by . For all

 —

(5)

8. The weights are updated using these error values with some feedback from the updates in the

previous training pass (see Appendix A for derivation). This feedback is controlled using the

learning rate η and the momentum or feedback coefficient α. For all  —

(6)

9. Steps 3 through 8 are repeated for the next input token. This is continued till all input tokens are

exhausted. A complete pass through all the input tokens is called an iteration or an epoch.

10. The momentum and temperature parameters are updated for the next iteration through the

training data. The momentum term is slowly increased to be small in the beginning and to

approach unity as the network runs through more epochs. The temperature is gradually

decreased i.e. the system is allowed to cool down as per the simulated annealing paradigm. A

most common cooling schedule for such networks follows an exponential function. The cooling

exponent β is specified by the user to customize the training schedule.

(7)

11. The machine continues to make passes of the training data till the cumulative mean squared

error in the output values drops below a suitable threshold. At this juncture the system is said to

have achieved convergence . The training may be stopped according to several other criteria as

well. These may include stopping the training once some minimum value of the system

temperature is reached, or when the largest increment in any of the connection weights falls less

than a threshold value etc.

δ
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The training algorithm, while applying the simulated annealing technique to an error backpropag

algorithm, essentially implements a gradient-descent kind of error minimization for updating

connection weights. The error function to minimize is a divergence measure [25, 26] between the ne

energy distributions corresponding to the outputs generated by the network and the desired value

given input. A mathematical definition of the error function and the derivation of the weight up

equations is provided in [27].

This training process is strongly biased towards low energy states at a low temperature, and takes

achieve equilibrium. At higher temperatures the bias is not so favorable towards energy minima b

learning is faster. A good trade-off is to begin annealing at a high temperature and gradually cool

performing a coarse-to-fine search for the global minimum.

3.3. Evaluation Strategy

The paradigm used to evaluate the system performance is as follows —

1. The Boltzmann machine neural network is loaded according to the specified parameters with

trained connection weights.

2. The test word is loaded in the corresponding input buffer(s).

3. The output phoneme string corresponding to this word is evaluated.

4. Steps 2 and 3 are repeated till N-best number of pronunciations are generated. Often the

number of total output pronunciations is constrained by the training. In such cases the

pronunciation generation is stopped after a certain number of iterations.

5. The pronunciations are sorted in decreasing order of likelihood scores and output to the user.

6. The N-best pronunciations list is compared with the reference list of pronunciations for that word.

The system is considered to output an error if none of the reference pronunciations feature in the

system output list.
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Sometimes, all the reference pronunciations will be generated by the system. In other cases, only a

of the number of reference pronunciations will appear in the output list of the system. We have te

these cases asall correct pronunciationsandsome correct pronunciationsrespectively. The error case in

step 6 above is labeled as theno correct pronunciationscase. Thus the system error rate is the same as

“no correct pronunciations” performance. We present a detailed analysis of evaluations in Section 5

4. PRONUNCIATION DICTIONARY

A comprehensive database is an essential component of technology development, and we have d

significant amount of effort in building one for our task. Previously, numerous data has been coll

anecdotally on the problem of alternate pronunciations, but none of this data had ever been incorp

into a publicly available pronunciation dictionary.

Our database currently consists of 18494 American surnames (last names) and a total of

pronunciations. It represents a diverse set of ethnic origins and contains a reasonable mix of co

names, names with infrequent occurrence and names that are known to present problem

letter-to-sound conversion because of complex morphology or difficult stress assignments [28, 29]

name was transcribed by hand using the Worldbet standard phone set to obtain all the possible

pronunciations.

The Boltzmann machine network is designed to output a phoneme corresponding to every letter

input spelling. Since in many cases a single phoneme encompasses a group of letters such on

alignment is not possible. To align the spellings with the corresponding phonetic expression we

developed a dynamic programming algorithm that performs automatic alignment by introducing anempty

phoneme“_” at appropriate places. For instance, the name ‘Wright’, where ‘Wr’ corresponds to a s

phoneme ‘9r’ and ‘igh’ is mapped to ‘aI’, is transcribed and aligned as ‘_ 9r aI _ _ t’.

5. PERFORMANCE EVALUATION

The performance of the Boltzmann machine system was evaluated on the basis of its capab
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automatically generate accurate multiple pronunciations of the input name. We have follow

simple-to-complex approach in evaluating this system. Our initial experiments with simple alphabet s

provide us with a broad idea of the basic functioning of the system, its dependence on various para

how the network scales up to a more challenging task. Similarly with real data (proper nouns

pronunciations) we first evaluate on a pilot benchmark of 4 and 5 letter surnames before scaling the

up to handle the larger database.

5.1. Calibration Experiments

We conducted a series of basic experiments that involved classification of simple linearly sep

character string classes. These helped us in realizing the effect of individual network parameters as

gaining some insights into the performance pattern of the system. Specifically, the following param

were the focus of our attention —

• number of hidden layers • number of neurons in each layer

• effect of shifting letters in the input buffer • context length

Two-Class Classifier:The data used for this set of experiments consisted of 4-letter strings correspo

to the two classes, (e.g.aaaafor class 1;bbbbfor class 2). The training set was created by corrupting su

strings in at most two random positions (e.g.aaxa, bcyb, kaafetc.). The evaluation was closed loop i.e. th

system was tested on the training data itself.

In the first round of evaluations the system was made to look at the entire 4-letter string and output

at once in a single step. Since there was no shifting of the input letters the context length was fixed t

The system was trained and tested on 22 strings created as described above. The performance for

number of neuron layers and neurons per layer is given in Table 1. The effect of various paramet

system performance with a single hidden layer and with two hidden layers is displayed in Figure

Figure 5 respectively.
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Next, the input strings were fed to the Boltzmann machine buffered through the input shift registe

displayed in Figure 6, a context of at least 5 letters is necessary to completely solve the 2-class prob

data strings of length 4. This is expected as the machine needs a minimum of three letters at each

map a letter string to a phoneme, and at the end points of the data string (first and last letters) th

buffer can hold 3 letters only for a context length of 5.

With a small number of neurons the error rate as well as the generation rate were high. Thus a

number of spurious pronunciations were generated until an optimal number of hidden layer neuron

crossed. With two layers of hidden neurons the number of neurons per layer required for s

convergence was found to be much smaller. The results with a single hidden layer of neuron

summarized in Table 2. The performance as a function of number of hidden neurons for this context

is depicted in Figure 8, and that for the effect of number of training iterations is displayed in Figure 

Alphabet Classifier: A similar set of experiments was carried out with 26 classes (one correspondin

each letter of the alphabet) to study how the system performance scales up for a larger problem spa

data consisted of pure strings (i.e. consisting of a single letter such asaaaa(classA), xxxxx(classX) etc.)

with corruption in one or two positions (e.g.aahad(classA), vddd(class D) etc.). It was observed that

large context (length 5) was required to achieve a reasonable classification performance. The syst

trained on simple character sequences that corresponded to 26 output phonemes. The results for

runs for fixed-length alphabet strings are described in Figure 7 (casesi-v). Performance for variable length

strings is depicted as casevi in Figure 7 and described in detail in Table 3.

These elementary results show that the context duration is of extreme importance for accurate gen

of pronunciations. It can also be deduced that the context duration is a loose function of the rando

associated with the groups of adjacent letters in the spelling of the input word.

5.2. Evaluation With Four-letter Proper Nouns

To study the capacity of the Boltzmann machine of generating multiple output pronunciations for a
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input proper noun we devised a pilot experiment that consisted of proper noun data with text spelling

fixed length 4. As no significant gain in performance was observed for a system using multiple h

layers compared to that using only a single internal layer, these experiments were carried out onl

single hidden layer system. The training set comprised of 1665 proper nouns and 2022 pronunciatio

results for this evaluation are summarized in Table 4. Even though the closed loop performance

system differs considerably on this “real” application, there is a significant amount of information tha

be gathered from this evaluation.

Effect of context length: It can be deduced that as the context length in which each input lette

evaluated (as regards its mapping to a corresponding phoneme) is increased, the performance imp

well. This behavior is described in Figure 10.

Effect of number of neurons: It appears that the number of hidden layer neurons has an optimal valu

which the performance is maximized, and the error rate increases if the number deviates from thi

value. This number varies with the type of input data and is therefore difficult to predetermine analyti

Shorter context lengths are more susceptible to changes in the number of hidden neurons than the

contexts, as evident from Figure 11.

Training schedule: The most ideal training schedule for all the experiments performed was found t

the one with an initial temperature of 100 and a temperature decay rate of 0.1 per training iteration.

60 training iterations were found to be necessary and/or sufficient for reasonable performance.

The rate of generation of pronunciations was found to be loosely bound to the number of neurons a

context length. Also, there was considerable overgeneration of pronunciations compared to the re

pronunciations in the dictionary.

5.3. Evaluation On Real Data

The final set of evaluations was an open loop test on the full data set. To achieve a compreh
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benchmark of performance we divided the complete data set into training and test subsets. This divi

data was done thrice to create three overlapping training sets of 15000 names and approximately

pronunciations each. The remaining names constitute the corresponding test set. All test set

completely disjoint from any of the training sets. The system was trained and evaluated on each

three data sets for each set of system parameters (such as the number of hidden neurons, nu

training iterations and training schedules), thus producing three benchmarks for each case. We fo

significant difference in these over any parameter set and therefore present only the overall (av

results here.

The benchmark for a single context system is described in Table 5. Table 6 depicts the perfor

measured for a system using both the short-term and long-term contexts simultaneously. It can be s

the performance degrades significantly as the problem is made more complex by introduction

complete data set for training. In spite of using a large number of hidden neurons and a reasonable

of training iterations, the system proves to be incapable of capturing the underlying letter-to-s

information in the training data. We believe that this breakdown in performance is due to a proliferati

conflicting letter-to-sound mappings inherent in the training data which confuses the Boltzmann ma

network. In the previous experiments the training sets were fairly smaller in comparison and henc

effect was not as drastic as it appears now. Also, the network is now presented with text strings of va

length as input. This added dimension of complexity further degrades the network performance.

5.4. Computation and Memory Issues

The Boltzmann machine neural network was implemented with an object-oriented data-driven appro

the C++ programming language. The code was highly optimized and the training and evalu

experiments were carried out on a Sun SPARCstation20. The system required on average approx

160ms to train each proper noun-pronunciation pair per iteration of training and about 5ms for gene

of each pronunciation. These figures scaled up almost linearly with contexts length and/or the num
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hidden neurons. This demonstrates a need for faster CPUs to train a reasonably large network in a p

time frame. The memory space required to store the trained network (the connection weights be

different layers of the network) was in accordance with the network size.

6. CONCLUSIONS

Accurate pronunciation of proper nouns is a key issue in speech recognition and voice int

applications. Since proper nouns follow unconventional letter-to-phoneme transformations, a rule

generation of pronunciations is not very effective. The Boltzmann machine can generate an N-best

pronunciations by simply analyzing the text spelling of a proper noun.

Implementation of such a system has proved to be a non-trivial problem. A major task in the design o

a network is the selection of various network parameters such as the optimal number of hidden laye

number of units in these hidden layers, and the training schedule. These parameters are application-

functions of quantities such as the amount of training data, the context size and the stopping crite

training. The Boltzmann machine system performs to a reasonable grade for comparatively

subclasses of proper nouns. However, at a larger scale the performance degenerates as the presen

architecture shows limited capacity to adapt to a large training set of variable length proper noun st

A significant contribution of this exercise is the pronunciation dictionary which currently consists of 18

surnames and 25648 pronunciations. We expect it to be a valuable and useful resource to the entire

research community in fueling further research towards accurate recognition of proper noun

preparing batter acoustic models corresponding to different pronunciations.

The complete database, as well as all the software for the Boltzmann machine system is available

public domain athttp://www.isip.msstate.edu/software/n_best_pronunciations/. A graphical user interface

has been developed for this application that allows the user to enter any proper noun spelling, gene

multiple pronunciations and a graphic of its pronunciation network.
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Our future work will be focused on overcoming the present problems of the pronunciations system

proposed modifications include development of alternative architectures such as subnetworks of ML

different input string lengths and exploring alternative training paradigms that facilitate confusion

modeling of the letter-to-phone features. One such possibility is to combine the Boltzmann machine

time-delayed neural network (TDNN).

We also plan to further develop the pronunciation database by adding more names to it, as well as c

pronunciation sets for different kinds of proper nouns such as geographical names (countries, majo

in the United States of America and other countries, street names etc.), corporate names (compan

products) etc.
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# neurons classification error
#neurons per layer

classification error
layer 1 layer 2

2 27.27% 1 2 100.00%

8 50.00% 2 1 100.00%

64 4.55% 2 2 22.73%

75 0.00% 2 16 50.00%

80 0.00% 16 2 13.64%

125 0.00% 16 4 45.45%

 (a) Single hidden layer                                                                            (b) Two hidden layers

Table 1:  Performance of the Boltzmann machine on the 2-class problem (no shifting of input letters).

context
length

# neurons classification error
context
length

# neurons classification error

3 70 41.00% 5 50 5.00%

3 100 36.00% 5 80 5.00%

4 100 33.00% 5 96 5.00%

5 16 50.00% 5 105 0.00%

Table 2: Performance of the Boltzmann machine on the 2-class problem. In this case the input letters are shifted

through the Boltzmann machine shift registers.

training data
string size

# training
strings

context type context size
# hidden
layers

# neurons /
layer

classification
error

3 1000 both
short 3
long 7

1
1

125
125

22.03%

4 10000 both
short 3
long 7

1
1

125
100

56.47%

4 1000 both
short 4
long 7

1
1

200
200

7.28%

4 1000 short 4 1 200 8.47%

4 or 5 1000 short 5 1 300 9.14%

4 or 5 1000 short 5 1 500 7.76%

4 or 5 2000 short 5 1 1000 3.77%

4 or 5 1000 short 5 1 300 37.46%

4 or 5 1000 short 5 1 500 27.74%

Table 3: Summary of the Boltzmann machine performance on the 26-class problem. The first seven rows correspond

to closed loop evaluation, the last two rows describe open loop results.
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context
length

# hidden
neurons

#training
iterations

training schedule
init. temp. / decay rate

pronunciations
generation rate

% correct pronunciations

all some none

3 200 50 1000 / 0.1 1.64 17.12 13.75 69.13

3 200 60 1000 / 0.1 1.87 17.60 14.35 68.05

3 110 60 100 / 0.1 2.93 3.24 43.60 53.15

3 125 90 100 / 0.05 1.37 26.49 9.13 64.38

3 125 90 1000 / 0.1 1.55 18.74 10.69 70.57

3 125 60 100 / 0.1 1.87 20.54 33.69 45.77

3 150 70 100 / 0.1 3.04 3.90 49.37 46.73

4 125 60 100 / 0.1 2.89 5.29 50.93 43.78

7 125 60 100 / 0.1 2.60 10.99 53.21 35.80

7 150 60 100 / 0.1 2.66 10.87 51.29 37.84

7 200 60 100 / 0.1 2.67 10.45 50.15 39.40

7 300 60 100 / 0.1 2.66 12.25 54.23 33.51

Table 4: Summary of performance of the Boltzmann machine pronunciations generation system evaluated on proper

nouns of length 4.

context
length

# hidden
neurons

#training
iterations

training schedule
init. temp. / decay rate

pronunciations
generation rate

% correct pronunciations

all some none

3 100 40 1000 / 0.1 1.41 5.21 2.46 92.33

3 100 90 100 / 0.05 1.31 22.78 6.78 70.44

3 150 70 100 / 0.1 2.48 2.18 15.41 82.41

3 200 90 100 / 0.05 1.23 29.33 6.72 63.95

3 200 40 1000 / 0.1 2.46 2.23 14.88 82.89

3 500 60 1000 / 0.1 1.38 6.07 1.37 92.56

7 100 90 1000 / 0.05 1.08 23.46 1.37 75.17

7 100 60 1000 / 0.1 1.28 10.47 2.23 87.30

7 200 60 100 / 0.1 2.28 5.04 11.44 83.52

7 200 60 1000 / 0.1 1.30 14.13 3.29 82.58

7 300 60 100 / 0.1 2.26 1.77 5.12 93.10

7 300 60 1000 / 0.1 1.29 15.65 3.20 81.14

Table 5:  Performance of the single-context Boltzmann machine pronunciation generation system.
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context
length

# hidden
neurons

#training
iterations

training schedule
init. temp. / decay rate

pronunciations
generation rate

% correct pronunciations

all some none

3
7

1000
1000

99 100 / 0.1 1.84 3.63 2.98 93.39

3
7

2000
2000

35 100 / 0.1 2.30 0.00 2.14 97.86

3
7

4000
4000

62 100 / 0.1 1.30 1.28 4.19 94.53

3
7

8000
8000

15 100 / 0.1 2.47 0.00 0.01 99.99

3
7

10000
10000

25 100 / 0.1 1.26 0.00 0.01 99.99

Table 6:  Performance of the both-context Boltzmann machine pronunciation generation system.
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Figure 1. Typical neuron connections in a Boltzmann machine network, along with the Boltzmann

distribution function that governs the activation probability of a neuron.
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Figure 2. An overview of a neural network architecture that performs letter to sound conversion. In this ex-

ample, there are three layers: a layer that converts letters to binary-valued inputs, a layer that converts n-tu-

ples of letters into sounds, and a layer that applies a mixture of short-term and long-term relationships.
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Figure 3. A schematic overview of the simulated annealing used to train the Boltzmann machine neural net-

work. The backpropagation of error training pass is displayed in detail in the inset.
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with two hidden layers of neurons. The number of neurons is specified in the form 1st layer, 2nd layer on the

horizontal axis.
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Figure 6. Performance on two-class problem for five-letter strings fed sequentially as input data. This case is

with a single hidden layer of neurons.
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