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Abstract— Recent advances in multimodal large language 
models (MLLMs) have opened new possibilities for 
biomedical image interpretation without task-specific 
training. This study explores the zero-shot visual reasoning 
capabilities of a leading MLLM, the ChatGPT vision model, 
for two challenging biomedical image classification tasks: 
electroencephalogram (EEG) signal interpretation and 
digital pathology (DPATH) image diagnosis. In this work, 
datasets of single-frame and three-frame EEG images and 
breast cancer pathology patches were used to benchmark 
performance. We show that while zero-shot MLLMs lag 
specialized models in accuracy,  ChatGPT’s vision model 
delivers moderate performance and meaningful 
explanations compared to popular supervised computer 
vision models (ViT, ResNet). We also apply parameter-
efficient fine-tuning (PEFT) to an open-source MLLM 
(the Qwen model) to improve accuracy across both 
domains. We find that off-the-shelf ChatGPT (o3-mini-
high) can serve as a strong baseline model for biomedical 
tasks, highlighting the potential for model adaptation 
through lightweight supervised fine-tuning. The integration 
of AI-generated reasoning can enhance explainability and 
decision-making in clinical contexts. 

Keywords— multimodal large language models, genera-
tive artificial intelligence, EEG, digital pathology 

I. INTRODUCTION 

The interpretation of biomedical images, including EEG 
and digital histopathological slides, remains central to 
clinical practice and biomedical research. This complex 
task requires domain expertise, high-quality annotated 
data, and robust modeling approaches. Modern systems 
using deep learning architectures, such as convolutional 
neural networks (CNNs) [1][2] and vision transformers 
(ViT) [3] have improved classification accuracy in 
domains such as cancer detection and seizure 
classification [4][5]. However, these approaches often 
demand vast amounts of labeled training data and 
domain-specific fine-tuning, limiting their scalability and 
flexibility in low-resource settings.  

In contrast, MLLMs that integrate vision and language 
inputs promise zero-shot generalization: the ability to 
perform tasks outside their training domain when 
provided only with prompt-based guidance. Such models 
can interpret images provided with the annotation 
guideline (created by domain experts) or minimal 
context, without task-specific training. In biomedical 
fields where annotated datasets are frequently scarce or 
rapidly evolving, this capability indicates significant 

appeal for rapid prototyping, human-in-the-loop 
workflows, and early-stage annotation support. 

Another key driver behind the recent success of MLLMs 
is their capability of in-context learning, meaning the 
ability to perform new tasks by learning from 
instructions, demonstrations, or annotation guidelines 
provided directly within the prompt, rather than through 
additional parameter updates or retraining. In biomedical 
applications, in-context learning enables these models to 
generalize to unseen image types and diagnostic 
categories simply by presenting a few annotated 
examples or a detailed guideline along with some 
example images. This is in contrast to conventional 
supervised learning, which demands labeled datasets and 
explicit model fine-tuning for each new classification 
task. This paradigm shift offers a powerful new 
mechanism for knowledge transfer and supports flexible 
deployment of AI-driven decision support in real-world 
clinical workflows. 

Recent literature provides empirical support for zero-shot 
potential of MLLMs for biomedical image classification 
tasks. The systematic evaluation of GPT-4V 
demonstrated that in-context learning is sufficient to 
match or even outperform specialized neural networks on 
histopathology classification tasks involving colorectal 
and breast tumor images [6]. Zhu et al. [7] showed 
diagnostic accuracy of 77.01% for USMLE-style 
questions using GPT‑4V and achieved an AUC of 
76.80% in detecting abnormality in chest radiography 
with zero-shot prompting. Researchers also confirmed 
that vision-language approaches can handle 
classification, segmentation, report generation, and 
visual question answering (QA) with zero-shot 
performance across different domains such as 
histopathology and radiology with minimal domain-
specific supervision [8]. 

This literature indicates that modern MLLMs, even those 
without training on medical images, can show 
respectable zero-shot classification accuracy and 
generate interpretable explanations. Performance is 
sensitive to prompt design, context inclusion, and 
minimal example in-context learning. Performance can 
approach the lower end of domain-trained benchmarks, 
but this approach alleviates the time-consuming and 
costly process of generating large amounts of annotated 
data. Our findings suggest with more training data, 
performance can be significantly improved. 
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II. DATASET DEVELOPMENT 

Our study rigorously evaluates the zero-shot visual 
reasoning capability of ChatGPT vision model (o4-mini-
high) [9] on two demanding biomedical classification 
tasks: seizure detection in EEG signals [10] and breast 
histopathology [5]. We briefly describe each corpus here. 

THE NATUS AMBULATORY EEG CORPUS 

A total of 104 EEG recordings were randomly selected 
from the Natus Ambulatory EEG Corpus (NAEG: 
v1.0.0) [12] maximizing the diversity of patients. This 
sampling method ensures that the dataset captures inter-
patient variability in seizure and background activity. 
NAEG was used because these are continuous recordings 
that have been carefully annotated for seizure events. 

For this study, the EEG annotation process follows the 
guidelines developed by Ochal et al. [11] for the TUH 
EEG Seizure Corpus. EEG signals are annotated using a 
set of over 25 event types, including seizure subtypes 
(e.g., focal non-specific, tonic-clonic) and non-epileptic 
artifacts (e.g., muscle activity, eye blinks). Events are 
annotated with precise start/stop times and localized to 
specific channels. 

Key criteria for identifying seizures include morphology 
(e.g., spike-and-slow-wave), rhythmicity, synchrony 
across channels of interest, evolution over time, and 
duration (> 3 secs for absence seizures or > 10 sec for 
other types of seizures). In this study, non-seizure events 
(e.g., artifacts, background rhythms) are grouped under a 
unified class named background (bckg). 

Figure 1(a) shows a typical example of an absence 
seizure. This is one of three seizure types we asked 
ChatGPT to identify. Absence seizures are characterized 
by an abrupt onset and a 3 Hz spike-and-slow-wave 
morphology. A typical example of “bckg” is also shown 
in Figure 1(b).  This class includes any activity that is not 
ictal. In this example, we observe eye movements along 
with muscle artifacts, most prominently visible in the 
temporal channels. 

THE TUH DIGITAL PATHOLOGY CORPUS 

The TUH Digital Pathology (TUDP) Corpus [13] was 
developed to support machine learning in breast cancer 
pathology by providing a standardized, well-informed 
annotation of digital pathology slides. Annotation is 
divided into three main categories: non-cancerous, 
carcinogenic and benign structures. Non-cancerous 
labels include norm (normal ducts/lobules with intact 
architecture), bckg (background tissue such as stroma 
and adipose tissue), null (indistinguishable tissue), and 
artf (artifact like pen marks or dust). Cancerous labels 
include dcis (ductal carcinoma in situ characterized by 
high nuclear density and preserved ductal boundaries) 
and indc (invasive ductal carcinoma, showing cellular 

growth into surrounding tissue, unconfined, and 
disorganized). Neoplastic-associated or benign labels 
encompass nneo (non-neoplastic changes such as 
fibrosis, hyperplasia, and intraductal papilloma), 
infl (inflammatory response to abnormalities), and 
susp (suspicious regions with atypical features). Images 
were created by an annotation team of trained 
undergraduate annotators, with oversight from 
pathologists. The staining methods include hematoxylin 
and eosin (H&E) and immunohistochemistry (IHC), 
which help differentiate tissue architecture. 

The annotation process is described in detail in [5][14]. 
JPEG image patches that capture the annotated regions 
were used for model development. We selected 10-12 
representative JPEG images per annotation label, 
resulting in a total of 101 images. This dataset was 
carefully curated to ensure diversity of histological stain, 
variation in tissue architecture, and clear depiction of the 
defining features of each label. Examples of three types 
of labels are shown in Figure 2. 

        
 (a) dcis (b) norm (c) indc 

Figure 2. Typical examples of annotated events in TUDP 

 

I.  

 
(a) a typical absence seizure (absz) 

II.  
(b) a typical example of background (bckg) 

Figure 1. Typical examples of annotated events in TUSZ 
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III. EXPERIMENTAL DESIGN 

We designed our experimentation in two stages: 
(1) prompt engineering, and (2) parameter-efficient fine-
tuning of an open-source MLLM. The end-to-end 
workflow is shown in Figure 3. First, we load biomedical 
image datasets and initialize a chat session with the 
annotation guidelines, then we present one image query 
at a time with explicit instructions and increment the 
annotation counter until we reach the target sample size. 
Second, we have experts review the responses from the 
chat sessions, curate a representative reasoning subset as 
a training set for fine-tuning and convert it into 
instruction tuning format. Finally, we initialize a 
pretrained multimodal LLM backbone, configure fine-
tuning hyperparameters, and perform supervised fine-
tuning across multiple epochs until the model completes 
the specified number of iterations.  

For prompt engineering, we upload the annotation 
guideline, followed by a general system message. Next, 
we upload a query image with a specific prompt to guide 
ChatGPT’s output. 

Our query prompt looks something like this: 
Query Prompt: ‘<img/> As an output, give me a 
dictionary as follows: 

{"label": label, "reasoning": "Correct and accurate 
medical reasoning to classify the image, think of yourself 
as a cancer physician/EEG technologist, and give 

reasoning."}. Do not give any extra output. I repeat, do 
not give extra output. This is an important task for me. You 
will be penalized if you give the wrong label.” 

Empirical evidence [15] exists that suggests including 
specific phrases in the query prompt improves 
ChatGPT’s response. This motivated us to add a warning: 
“You will be penalized if you give an incorrect label” at 
the end of the query prompt. 

To evaluate the impact of fine-tuning, we conduct both 
quantitative and qualitative analysis against prompt-
based zero-shot (ZS) responses as well as traditional deep 
learning models. 

IV. CASE STUDY: EEG 

To evaluate ChatGPT o3-mini-high’s visual reasoning 
capabilities in EEG classification, we designed three 
experiments using annotated images from NAEG. Each 
experiment involved prompting ChatGPT with EEG 
screenshots and asking it to perform classification.  

EXP. 1: SINGLE-FRAME, FOUR-WAY CLASSIFICATION 

In this experiment, we classified single-frame EEG 
images into one of four classes: (1) generalized seizure 
(gnsz), (2) focal non-specific seizure (fnsz), (3) absence 
seizure (absz), or (4) background (bckg). We utilized 104 
randomly sampled images (26 per class) and obtained 
25% accuracy. 

ChatGPT struggled to classify absz correctly, often 
mislabeling them as musc (muscle artifact) or gped 
(generalized periodic epileptiform discharges), due to its 
expectation of seizure evolution. However, absz typically 
starts and stops abruptly without evolution. Gnsz were 
frequently misclassified as artf (artifact) or musc (muscle 
artifact), especially when the image came from the mid-
ictal phase, where artifact content is high. Fnsz were 
often missed due to the difficulty detecting low-
amplitude rhythmic activity, leading to misclassifications 
such as slow (slowing) or artf (artifact). Bckg were 
sometimes misinterpreted as fnsz, particularly when eye 
movements or blinks were present. 

We hypothesize that the lack of temporal context in 
single frames limited ChatGPT’s ability to recognize 
seizure evolution (pre- and postictal phases) 

EXP. 2: SINGLE-FRAME, BINARY CLASSIFICATION 

To analyze how the o3-mini-high model performs when 
we have binary cases, we use the same 104 images to 
classify either “seizure” or “no seizure” and obtained 
49% accuracy. Performance improved compared to the 
first experiment due to the reduced classification 
complexity. Removing seizure subtype differentiation 
reduces confusion and allows more accurate 
identification of clear ictal vs. non-ictal signals. 
Simplifying the label space helped ChatGPT focus on  

Figure 3. A two‐stage workflow 
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broad seizure indicators like rhythmicity and 
morphology, improving performance. 

EXP. 3: TEMPORAL-CONTEXT, FOUR-WAY CLASSIFICATION 

To identify how zero-shot prompting is affected by 
context, we provided ChatGPT with three sequential 
EEG screenshots (preictal, ictal, and postictal) and asked 
for one of four labels: gnsz, fnsz, absz, bckg. For 
conducting this experiment, we used 300 images across 
100 cases (75 seizure, 25 background) and obtained an 
accuracy of 35%. 

Accuracy improved over the first experiment, confirming 
the value of temporal context. Gnsz were better 
recognized due to visible evolution. However, absence 
seizures remained a challenge. Despite an increase in 
context, abrupt onsets were often missed, and absz were 
confused with gnsz. Context helped in some fnsz cases 
where the buildup of focal rhythmic activity could be 
seen over time. 

Temporal input improved classification, but challenges 
remained, particularly in capturing absz morphology and 
onset cues. This suggests that future prompts might 
benefit from emphasizing absz characteristics explicitly 
or adjusting visualization (e.g., channel sensitivity). 

ChatGPT did a good job when correctly classifying and 
reasoning gnsz as follows: 

“The EEG demonstrates a clear evolution of rhythmic 
epileptiform activity across nearly all channels, beginning 
around 00:02:00 with low‐amplitude rhythmic theta 
activity that builds in amplitude and frequency into high‐
amplitude, rhythmic discharges by 00:02:03–00:02:05. 
This widespread symmetrical involvement without 
localization suggests a generalized onset. The 
morphology—progressing from lower‐voltage rhythmic 
waves to high‐voltage rhythmic spike‐and‐wave bursts 
and then abruptly terminating—fits the pattern of a 
generalized seizure. The absence of a tight 3 Hz spike‐
and‐wave pattern excludes typical absence, and there is 
no focal evolution to indicate a partial seizure. Therefore, 
the appropriate classification is a generalized non‐
specific seizure (GNSZ)“ (Experiment 1) 

ChatGPT did not such a good job when classifying absz 
as gnsz: 

”The high-amplitude spike‐and‐wave bursts emerge 
nearly simultaneously across bilateral frontal, temporal, 
and posterior channels with clear synchrony and 
rhythmicity. This pattern is characteristic of a generalized 
epileptic seizure rather than a focal discharge or artifact, 
as it does not remain confined to a single region, nor does 
it display the slower, asymmetric morphology of eye‐
movement or muscle‐artifact.” (Experiment 1) 

Although all absence seizures are generalized, as they 
involve synchronous activity across all channels, 
ChatGPT should have been more precise in this case. 

Absence seizures are specifically characterized by 3 Hz 
spike-and-slow-wave discharges and an abrupt onset. 
Therefore, this seizure should not be classified merely as 
a generalized seizure, but more specifically as an absence 
seizure as stated in the guidelines. 

ChatGPT did perform poorly when classifying bckg as 
fnsz and gave the following reasoning: 

“These three snapshots show rhythmic spike-and-slow-
wave complexes that arise focally—most prominently in 
the left frontotemporal leads (Fp1–F7, F7–T3)—and then 
evolve in frequency and morphology over more than 10 
seconds before spreading. The clear focal onset with 
subsequent evolution without immediate bilateral 
synchronous involvement is characteristic of a focal non-
specific seizure (fnsz).” (Experiment 3) 

The activity that ChatGPT classified as rhythmic spike-
and-slow-wave complexes in the frontal channels is, in 
fact, simply eye blinks – normal background activity for 
the patient. While eye blinks can appear rhythmic, they 
lack evolution and typically do not exceed 2.5 Hz, which 
is necessary for seizure classification. These distinctions 
are clearly outlined in the guidelines, indicating that 
ChatGPT misinterpreted the features in this case. 

ANNOTATOR ANALYSIS 

From an annotator’s perspective, ChatGPT’s reasoning 
often demonstrated partial understanding of EEG 
patterns – highlighting concepts like spike-wave 
morphology, synchrony, and regional distribution. 
However, its limitations include: (1) rigid assumptions 
about seizure evolution (especially problematic for absz), 
(2) difficulty distinguishing low-frequency artifacts from 
ictal activity, and (3) lack of adaptability to typical EEG 
conventions such as sensitivity adjustments. 

Despite these shortcomings, the model’s structured 
reasoning outputs were often clinically interpretable and 
occasionally insightful. 

V. CASE STUDY: DPATH 
To assess the performance of the multimodal language 
model within the DPATH framework, 101 high-
resolution images and standardized annotation guidelines 
were used. The model is prompted to generate three 
outputs: (1) whether the image contains cancer or not, 
(2) the appropriate diagnostic label from the predefined 
classes, and (3) a concise, pathology-informed reasoning 
for its decision. No additional output and utilization of 
outside sources were permitted.  

After review of 101 unknown images, o3-mini-high 
returned accurate cancer vs non-cancerous prediction 
54% of the time, andachieved correct classification of the 
nine diagnostic labels in 48% of cases. Evaluation shows 
that o3-mini-high is successful in certain instances at 
providing detailed, histologically accurate rationales that 
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directly correspond to the structures visible in the image. 
For example, in one correct prediction of both label and 
cancerous vs non-cancerous inflammation, the model 
accurately stated:  

“The image displays a dense inflammatory infiltrate 
composed predominantly of lymphocytes within the 
fibrous stroma, without any clear evidence of ductal 
structures or atypical epithelial proliferation. There is no 
architectural distortion, mitotic activity, or cytologic 
atypia suggestive of malignancy. This pattern is consistent 
with a benign inflammatory process, not cancer.”  

The response not only identified the dominant cellular 
population and its context within stroma but also 
appropriately ruled out malignant characteristics through 
negative reasoning, demonstrating a nuanced 
understanding of the histopathological features.  

Notably, the o3-mini-high model demonstrated the 
ability to distinguish between cancerous cells confined 
within a duct (dcis), compared to cancer invasion of 
surrounding tissue (indc). A key diagnostic characteristic 
of breast cancer that annotators considered would be 
difficult for a multimodal language model to grasp based 
on training images. In one reasoning, the model clearly 
can identify the differentiation between the borders of the 
basement membrane, surrounding tissue and cancerous 
cells, stating:  

“This image shows a duct completely filled with a 
monomorphic population of atypical epithelial cells, 
demonstrating cribriform and solid architecture with 
clear preservation of the basement membrane—classic 
features of DCIS. The nuclei are enlarged, irregular, and 
hyperchromatic, consistent with neoplastic changes. 
There is no evidence of stromal invasion, so this is non-
invasive but still classified as cancer (in situ).”  

The model’s ability to generate decisions and 
demonstrate accurate identification of subtle 
histomorphological features is notable. The level of 
understanding of the tissue architecture and the ability to 
contextualize separate structures to make decisions 
highlight the model’s potential. When describing a 
normal ductal formation, the model properly identifies 
three separate aspects of normal ductal formations to 
contextualize its decision:  

“This image depicts small ductal and lobular units 
embedded in fibrous stroma. The ducts and lobules show 
bland nuclear morphology with clear luminal spaces, no 
architectural distortion, and preservation of the dual cell 
layers (epithelial and myoepithelial). The stromal 
background is unremarkable. There are no cytologic 
atypia or features of neoplasia. This is consistent with 
normal breast tissue histology.” 

However, the model’s output was not uniformly reliable. 
Several responses included an improper description of 
tissue architecture.  A common error pattern involved the 
misclassification of benign, non-neoplastic structures as 

malignant cells. Identifying any abnormality as either 
suspicious (susp label or labeling it as cancer). In these 
incorrect outputs, o3-mini-high’s reasoning often 
accurately described the characteristics associated with 
its predicted label but failed to reflect the actual features 
present in the image. When doing the analysis of a single 
normal duct, ChatGPT o3 incorrectly predicted dcis and 
properly described ductal carcinoma in situ, but the 
models reasoning did not speak to the image. One 
reasoning showing this is:  

“The image reveals invasive epithelial structures with 
irregular, angulated glands infiltrating a fibrotic stroma. 
There is an absence of a continuous myoepithelial layer, 
nuclear atypia, and loss of normal ductal architecture, 
consistent with invasive ductal carcinoma (indc). These 
features indicate malignant cells breaching the basement 
membrane and invading surrounding tissue.” 

In this instance, though the model correctly identified 
cellular atypia, it frequently failed to distinguish between 
benign and malignant processes. ChatGPT o3’s 
predictions on the DPATH dataset generally fell into five 
categories: (1) correct identification of the primary tissue 
structure; (2) correct recognition of secondary features 
such as background or artifact, while failing to classify 
the main diagnostic structure; (3) misclassification of 
non-neoplastic structure as malignant; (4) incorrect 
labeling of an image with different or darker 
immunohistochemical stains as cancerous; and 
(5) complete mischaracterization of the content and label. 

It is important to note that all the images only contained 
a single morphological structure often surrounded by 
background stromal or adipose tissue. These errors may 
prevent it from generalizing to more complex contexts, 
and its error rate is expected to increase if asked to 
analyze larger images or whole slide images with a 
greater frequency of morphological features.  

ANNOTATOR ANALYSIS 

From an annotator’s perspective, instances in which 
ChatGPT identifies pathological images correctly are 
often impressive, particularly due to the depth and 
accuracy of its reasoning. However, despite evaluating 
images of the same label and structurally similar features, 
the model frequently succeeds on one instance while 
failing on another. This suggests that the ChatGPT 
interpretative framework lacks generalizability across 
subtle changes in tissue architecture, falling into one of 
the error categories above. The reasoning behind errors 
does not align with the structural element in the image. 
Therefore, its ability to characterize pathological images 
varies considerably. 

VI. FINE-TUNING USING EXPERT REASONING 

We use the expert-validated subset from the previous step 
as a parameter-efficient finetuning training dataset for the 
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Qwen2-VL [16] model. Following best practices for 
instruction-tuning large multimodal models [17], each 
training example was structured using a conversational 
style: a system message provided the model with the 
instruction of the classification task and valid label set, a 
user message supplied the tissue image and a query 
prompt, and an assistant message containing the correct 
reasoning response as validated by the domain experts 
and true class label. For both the EEG and DPATH 
domains, we have followed the same data formatting and 
training technique. One example of the preprocessed 
training sample from DPATH dataset is given below: 

System Prompt: "You are a medical professional 
specialize in detecting cancer from pathology images. 
Based on the provided pathology images and query, you 
detect if the image contains label:{CLS_NAMES}. Also 
you provide a factual reasoning about your decision." 

Query Prompt: "Given the tissue image, classify it into one 
of the following categories: {CLS_NAMES}. Provide a 
valid JSON dictionary as output with two keys: 'label': the 
correct classification label for the digital pathology tissue 
image. 'reasoning': detailed clinical reasoning supporting 
the classification, written as a pathologist would explain, 
referencing histologic patterns, spatial distribution of 
cells and structures, cellular morphology, and other 
relevant tissue features. Output Format Example: {'label': 
'dcis', 'reasoning': 'The image shows enlarged, atypical 
nuclei and increased cell density within ductal structures, 
without stromal invasion—findings consistent with ductal 
carcinoma in situ.'}" 

Assistant Response: {'label': 'right class, 'reasoning': 
'valid reasoning text'}" 

We train the base model using a technique called Low-
Rank Adaptation (LoRA) [18], which is an effective 
parameter-efficient finetuning technique for large 
language and vision models. Instead of updating all the 
model’s parameters, LoRA only adds and updates small, 
trainable adapters inside specific parts of the network. 
For this experiment, we used Qwen2-VL-7B Instruct [16] 
as our base model, loaded it in an efficient 4-bit quantized 
format to optimize memory usage, and applied LoRA 
adapters to its cross-attention layers. The configuration 
for LoRA was set to a rank of 8, alpha of 16, and dropout 
of 0.05, balancing training efficiency and capacity. After 
applying LoRA, 2.5M parameters were set as trainable 
out of the total approximately 8.3B parameters, meaning 
that only about 0.03% of the model’s parameters were 
updated during fine-tuning. 

We trained the model for 20 epochs, using a batch size of 
one and gradient accumulation steps of two. The learning 
rate was set at 2e-04, a value chosen for stable training in 
low-data regions. We also enable gradient checkpointing 
and mixed-precision training (using bf16 precision), both 
of which helped keep memory usage low and speed up 
training. All the training and evaluation were done on a 

single NVIDIA GPU where the process took 12 GB of 
memory, along with about 4 GB of system RAM. Each 
epoch took around 2,212 seconds to complete. During 
response generation, we used a max token size of 1,024, 
and each response took around 48 seconds. 

In Table 1, we summarize several key insights about the 
comparative strengths of MLLMs (o3-mini-high and 
Qwen) and traditional computer vision models (ResNet, 
ViT) on complex biomedical classification tasks. For 
EEG, we use two classes by collapsing “gnsz”, “absz” 
and “fnsz” into “seiz”, alongside “bckg”. From the 
prompt engineering (Step-1), we obtained expert 
validated 25 correct samples with reasoning text 
generated by o3-mini-high model. In these training 
samples, the label distribution is: bckg (13) and seiz (12). 
We observe that the ZS accuracy of o3-mini-high (49%) 
and Qwen (74%) matches the pretrained version of 
ResNet. We used a ResNet model with ImageNet-
pretrained weights.  

However, fine-tuning performed worse than the zero-
shot version for the Qwen model because the training 
samples were extremely limited. During evaluation, we 
use 104 samples, with the majority belonging to “seiz” 
(77 samples). The Qwen ZS version predicted all 
evaluation samples as “seiz,” leading to high accuracy. In 
contrast, the fine-tuned version correctly predicted 
33 samples as “seiz” and 23 as “bckg”, with the 
remaining samples misclassified. The macro F1 scores 
for the fine-tuned and zero-shot versions were 53% and 
43%, respectively, which suggests that the fine-tuned 
Qwen model is a better classifier than the ZS version. 

For DPATH, we observe a similar pattern, with accuracy 
improving after fine-tuning (from 6% ZS to 29%). From 
Step-1, we collected 48 correct samples, with the 

Table 1. A performance comparison of zero-shot (ZS) 
prompting, a pretrained model (PT) and a domain-specific fine-
tuned (FT) model. 

Data System Method Accuracy  

EEG 

o3-mini-high ZS 49.00 
Qwen ZS 74.04 
Qwen FT 53.85 

ResNet PT 74.04 
ResNet FT 100.00 

DPATH 

o3-mini-high ZS 47.52 
Qwen ZS 5.94 
Qwen FT 28.71 

ResNet PT 00.00 
ResNet FT 68.32 

ViT PT 14.85 
ViT FT 75.25 
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majority belonging to “indc” (14), followed by “bckg” 
(10), “norm” (8), “infl” (7), “dcis” (6), and “nneo” (3). 
For this dataset, both the ZS and FT versions show a bias 
toward “dcis” as it was the most accurate class prediction 
during evaluation, while “nneo” was the most 
misclassified class, which is expected due to the limited 
number of training samples. 

Another interesting observation is that the ZS 
performance of o3-mini-high and Qwen is comparable to 
the pretrained versions of ViT and ResNet. Similar to the 
MLLM models, ViT and ResNet are also generic models 
trained on general images rather than biomedical images. 
In the case of DPATH, the ZS version of o3-mini-high 
even outperforms both the ViT and ResNet pretrained 
models. This suggests a probable shift in what should be 
considered a baseline model, highlighting the importance 
of including recent closed-source and open-source 
MLLMs performance in benchmarking studies. 

In both cases, the domain-specific deep learning models 
perform best, as they were trained with a large number of 
EEG and DPATH images from classification tasks. We 
developed these domain-specific models upon using our 
open-source EEG [19] and digital pathology 
toolboxes [13]. 

VII. SUMMARY 

In this paper, we have: 
• introduced a two-step approach combining prompt 

engineering and parameter-efficient fine-tuning to assess 
and enhance the reasoning abilities of MLLMs; 

• designed experiments to compare single-frame and 
temporal-context EEG classification (four-way and 
binary tasks), and multi-class versus binary pathology 
classification drawn from expertly curated datasets; 

• developed a structured ZS evaluation framework that 
uses annotation guidelines to provide ChatGPT with 
additional context; 

• benchmarked MLLMs against domain-specific 
supervised vision models (ResNet and ViT); 

• conducted expert reviews of the models’ reasoning 
outputs to evaluate interpretability and provide 
actionable clinical insights. 

Our study demonstrates that multimodal large language 
models (MLLMs) such as ChatGPT-o3 and Qwen can 
perform ZS biomedical image classification and generate 
clinically relevant reasoning, even without domain-
specific training. Our findings show that, while MLLMs 
currently lag supervised models in raw accuracy, they 
can provide moderately accurate classifications along 
with insightful, human-interpretable explanations. In 
particular, the ChatGPT model excelled in digital 
pathology tasks, showing clear differentiation between 
cancerous and non-cancerous features in breast tissue 
images, and its ability to provide pathology-informed 
reasoning is a promising step toward clinical 

applicability. However, the model struggled more with 
EEG signal interpretation, often requiring additional 
temporal or contextual information to improve 
performance. 

These results also suggest that integrating explainability-
based reasoning and human-in-the-loop feedback will be 
beneficial for future developments. We propose that 
future work should focus on incorporating explainable 
reasoning directly into MLLM outputs, enabling human 
experts to interactively refine and fine-tune models 
during the annotation process. This approach will 
enhance the demonstration and deployment of whole-
slide DPATH image segmentation within our digital 
pathology tool. 

Our results indicate that MLLMs may be more 
immediately beneficial for digital pathology than EEG 
tasks. DPATH images offer more visually accessible 
patterns for the model,while EEG interpretation often 
requires nuanced context and an understanding of 
underlying signal dynamics, which current visual 
language models do not fully capture. However, 
experimenting further with MLLMs for EEG analysis 
remains valuable, as advances in model architecture and 
prompt design could improve their ability to reason over 
signal data. 

Overall, these primary results highlight the promise of 
MLLMs for augmenting clinical workflows, especially in 
digital pathology. Integrating explainable AI outputs and 
human expertise has the potential to create robust, 
scalable tools for biomedical image analysis. 
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