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Imagined speech is defined as the internal simulation of speaking without producing audible sound [1]. 

Brain–computer interfaces (BCIs) that convert imagined speech promise a communication channel for in-

dividuals with severe speech impairments. While most efforts have targeted word or phoneme level classi-

fication using electroencephalography (EEG) and magnetoencephalography (MEG) as modalities, the ca-

pacity to decode continuous, coherent, and contextually relevant inner speech remains as an active area of 

research. This review examines the neuro-cognitive basis of imagined speech. We compare non-invasive 

neural acquisition modalities, surveys signal processing and decoding methodologies, and scrutinize flu-

ency-specific challenges and metrics, outlining benchmarks, current limitations. We discuss emerging so-

lutions such as large language model (LLM) integration that offer significant promise in revolutionizing 

this field. We discuss personalized pipelines for real-world, fluent BCI applications in assistive technology 

and silent communication. 

The cognitive process of imagined speech involves mentally hearing one’s own voice while thinking in the 

form of sound, without intentional movement of articulators such as lips, tongue, or hands. The phenome-

non represents a truncated form of overt speech, sharing similar neural pathways while lacking the final 

articulatory execution phase. Functional neuroimaging and neurolinguistics research highlight a core net-

work for inner speech involving the inferior frontal gyrus (Broca’s area), supplementary motor area, and 

superior temporal gyrus, interacting via the phonological loop to support lexical access and syntax genera-

tion. Fluent inner speech requires rapid lexical retrieval, seamless syntax assembly, and dynamic working 

memory updates to manage serial order and semantic coherence. Breakdowns in any component can man-

ifest as hesitations or incoherent output [2]. 

The superior temporal resolution of an EEG makes it the predominant modality for imagined speech BCIs. 

Reviews report classification accuracies for small vocabularies (3–5 words) between 60–95% using feature 

extraction and deep learning [3, 4]. However, an EEG suffers from low spatial resolution and high suscep-

tibility to noise and artifacts, impairing continuous decoding of fluent speech. MEG offers comparable 

spatio-temporal resolution with improved spatial specificity. Subject-independent imagined speech decod-

ing with MEG has achieved near subject-dependent accuracy via domain adaptation and curriculum learn-

ing, underscoring MEG’s potential for generalized fluent decoding [5, 6]. Functional near infrared spec-

troscopy (fNIRS) captures hemodynamic responses linked to imagined speech, offering greater spatial spec-

ificity than EEG but limited by latency that constrains real-time fluency [7]. Figure 1 shows various mo-

dalities preprocessing techniques covered in this review 

Fluent decoding demands continuous feature representations. Traditional approaches segment signals into 

fixed windows, extracting spectral features (power spectral density, band power) and time–frequency maps 

(e.g., SPWVD) to feed into classifiers [8]. More recent pipelines employ sliding windows combined with 

deep representation learning—such as CNNs and Bi-LSTMs—to capture temporal dependencies and han-

dle pauses or hesitations [9]. Transfer learning strategies (e.g., FSFTL) leverage simpler binary tasks (im-

agined speech vs. rest) to refine feature extractors for multi-class decoding [10]. 

Machine learning paradigms range from support vector machines and ensemble classifiers to end-to-end 

deep neural networks. Attention-based architecture has demonstrated improved local feature learning for 

multi-word classification albeit at modest accuracies ( 56%) [11]. 
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Integrating pre-trained NLP models (transformers, RNN- 

based language models) enables contextual smoothing: beam 

search and probabilistic decoding can re-rank output hypoth-

eses, while GPT-style autocorrection adapts word sequences 

for coherence. Such hybrid pipelines hold promise for elevat-

ing word-level predictions into fluid sentence strings. A sum-

mary of various post-processing techniques used is shown in 

Figure 2. 

Lexical continuity and syntactic coherence define fluency in 

BCI outputs. Key matrices that are used to measure fluency 

are Words per Minute (WPM), Sentence Coherence Score, 

Latency and Perplexity. While these matrices provide quanti-

tative measures of fluency, subjective assessments such as 

user satisfaction, perceived naturalness etc., complement ob-

jective metrics but lack standardiza-

tion. Developing benchmark tasks and 

combined fluency indices is critical for 

rigorous evaluation. 

Public EEG datasets such as the Chi-

nese Imagined Speech Corpus (Chisco) 

with more than 20,000 sentences per 

subject facilitate large-scale model 

training [11]. Paradigms include sen-

tence recall, free thought, and question-

answering tasks that simulate real com-

munication. However, continuous im-

agined speech datasets remain scarce, impeding fluent decoding research. 

Some of the current challenges and limitations include low SNR in EEG and latency in fNIRS, which hinder 

real-time continuous decoding; limited sentence-level datasets that restrict model generalization; and high 

individual differences that necessitate speaker adaptive approaches. This may be overcome by integrating 

LLMs to post-process decoded word streams, which offers dynamic context prediction and error correction, 

and smoothing disjoint outputs into coherent text. Leveraging unlabeled data and cross-subject transfer 

techniques can mitigate data scarcity, enabling models to adapt to new users with minimal calibration. 

Feedback loops in which decoded text informs subsequent decoding via reinforcement learning can pro-

gressively refine fluency through closed-loop training. Customized models that learn individual neural sig-

natures of inner speech can enhance decoding accuracy and fluency, particularly for clinical populations. 

Decoding imagined speech fluently via non-invasive BCIs remains a formidable challenge at the intersec-

tion of neuroscience, signal processing, and natural language processing. Progress from word-level classi-

fication to continuous, coherent text generation requires harmonizing high-fidelity neural recording, ad-

vanced decoding architectures, and powerful language models, underpinned by standardized datasets and 

fluency focused evaluation frameworks. Achieving this milestone will unlock transformative applications 

in assistive technology, silent communication, and neurorehabilitation. 
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Figure 1. Modalities and Preprocessing Tech-

niques. 

 

 
Figure 2. Machine learning and Deep Learning Approaches. 
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