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Abstract— Crystallization processes in soft tissues have long 
been analyzed in relation to pathology and have been 
proven to positively correlate with precursory 
pathological cell activity. Accurate and early detection of 
breast cancer remains a daunting challenge in artificial 
intelligence, in part, due to the prevalence of overdiagnosis 
and a lack of transparency in experimental results. Among 
histopathological specimens, tissue calcifications, ranging 
from dystrophic hydroxyapatite deposits to idiopathic 
oxalate crystals and psammoma bodies, have long held 
diagnostic promise but remain underexploited by visual 
models. In this paper, we have introduced a novel 
crystallization‐focused approach to multi-classification 
tasks derived from the Fox Chase Cancer Center Breast 
Tissue Corpus (FCBR). We constructed an annotated 
subset comprising 439 patches categorized into Crystalline 
Non-Neoplastic (cnno: n = 51), Crystalline Ductal 
Carcinoma In Situ (cdcs: n = 168), and Crystalline Invasive 
Ductal Carcinoma (cidc: n = 220). Leveraging this subset, 
we conducted a baseline experiment comparing a simple 
Random Forest classifier trained on (1) a standard, non-
crystallization dataset (1,850 patches) versus (2) an 
enriched dataset including the crystallization annotations 
(2,243 patches). Models were evaluated on held-out FCBR 
samples (18,224 patches) and externally validated on the 
Temple University Hospital Digital Pathology (TUDP) 
Corpus (46,666 patches). Incorporation of crystallization 
annotations more than doubled the overall accuracy: from 
18.4% to 34.6% on FCBR and from 20.7% to 23.5% on 
TUBR. These improvements held under domain shift, 
indicating enhanced generalization and statistical 
significance. Our findings demonstrate that explicit 
modeling of microcalcification patterns provides 
biologically meaningful features that strengthen deep 
learning based breast cancer detection. We propose that 
further expansion of crystallization annotations, especially 
for underrepresented non-neoplastic cases, and integration 
into more complex architectures may drive additional gains 
in sensitivity and diagnostic granularity. 
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I. INTRODUCTION 
Crystallization in tissue refers to the formation and 
deposition of microscopic crystals within biological 
tissue [1]. The process of crystallization is naturally 
regulated by healthy tissues, such as in bone and teeth. 
Recent studies [2] highlighted that ectopic calcification 
is often an active, cell-driven process, contrary to the 
expectation of a passive precipitation, and that 
intracellular Ca²⁺ signaling is central to both 
physiological mineralization and pathological 

calcification. This shifts the view of calcification from 
being solely a product of aging or genetics to a process 
that is potentially preventable, monitorable, and 
treatable. A detailed understanding of its underlying 
mechanisms is therefore essential for clarifying its role in 
pathophysiology. 

In breast cancer, calcifications arise through active 
processes promoted by the presence of cancer that mirror 
aspects of human physiology [3]. Some examples are 
shown in Figure 1. Cancer cells and adjacent stromal 
tissue can undergo osteogenic-like reprogramming, 
characterized by upregulation of transcription factors 
such as Runx2 and Osterix. This leads to the expression 
of bone-associated proteins including alkaline 
phosphatase and osteocalcin. These molecules promote 
the deposition of calcium phosphate, predominantly 
hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂), and calcium oxalate 
(CaC₂O₄), which serve as the fundamental components of 
calcification. 

Concurrently, necrosis, apoptotic bodies, and matrix 
vesicles released by tumor cells generate localized niches 
enriched with calcium- and phosphate-binding proteins, 
while showing reduced concentrations of calcification 
inhibitors such as matrix Gla protein and fetuin-A. This 

 
(a) samples of calcification associated with dcis 

 
(b) samples of calcification associated with nneo 

 
(c) samples of calcification associated with indc 

Figure 1. Examples of calcification in a breast tissue image 
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breast cancer–derived microenvironment fosters 
hydroxyapatite and calcium oxalate crystal growth, 
rendering calcification a defining non-neoplastic 
hallmark of the disease. Nevertheless, mechanistic 
understanding remains incomplete [2], with particularly 
limited exploration in the context of computer vision-
based analysis. 

To this day, accurate and early detection of cancer 
remains a profound challenge in modern oncology [4]. 
Studies have shown that routine yearly imaging for 
people without symptoms usually  does not lower the 
death rate when compared to routine check-ups. Instead, 
those scans often find  numerous extra lesions that may 
not be carcinogenic. For example, in breast cancer 
screening, about 22% of detected cases are considered 
“over-diagnosed” [4]. One of the most dependable clues 
doctors look for in breast tissue is calcifications since 
these have long been recognized as an important 
diagnostic sign. But even though calcifications clearly 
play a key role in diagnosis, we still haven’t fully utilized 
its potential with modern artificial intelligence (AI). In 
this study, we used the signatures of mineral deposits as 
morphological biomarkers to explore the influence of 
crystallization in cancerous tissue detection. 

II. PATHOLOGICAL CRYSTALLIZATION 
Pathological crystallization [5] in human tissues 
encompasses a variety of processes by which calcium 
salts and, in some cases, ionic structures are deposited in 
soft tissues under pathological conditions, such as 
necrosis, chronic inflammation, or apoptosis through 
apoptotic bodies [6]. Some examples are shown in 
Figure 1. Chemically, soft-tissue mineralization 
segregates into two primary crystal classes: Type I 
(calcium oxalate) and Type II (calcium phosphate/  
hydroxyapatite). 

Recent investigations [7] have increasingly suggested 
that specific mineral compounds may be linked to the 
development and progression of cancer. In the case of 
breast lesions, for example, work on ductal carcinoma in 
situ (dcis) has reported that hydroxyapatite deposits 
occur more frequently than in benign tissue, display 
lower levels of carbonate substitution, and contain higher 
concentrations of magnesium whitlockite, with these 
features aligning with both lesion grade and biological 
aggressiveness. Yet, the relationship is not entirely 
consistent. Shin et al. [3] observed findings that 
contradicted earlier associations of whitlockite with 
malignancy, while other studies [7] have more often 
connected this mineral with non-malignant processes.  
Nevertheless, it has been shown [2] that X-ray diffraction 
has demonstrated potential clinical utility, with 
measurements of carbonate substitution achieved alone a 
sensitivity of 85% and specificity of 88% in 

distinguishing benign and neoplastic cases using the 
average carbonate content alone. 

In mammography, the most common type of 
crystallization is dystrophic calcification, independent of 
systemic calcium levels; as membrane integrity is lost, 
intracellular calcium floods the extracellular space 
precipitates with phosphate to form hydroxyapatite 
crystals within mitochondria and the surrounding 
matrix [9]. In contrast, metastatic calcification results 
from elevated serum calcium or phosphate, often due to 
hyperparathyroidism or chronic renal failure, leading to 
diffuse crystal deposition in otherwise healthy tissues. 
While metastatic calcifications typically affect the 
kidneys, lungs, and gastric mucosa, rare cases of breast 
parenchymal involvement have been reported in long-
term hemodialysis patients and those with secondary 
hyperparathyroidism [10]. 

Secretory calcification, or idiopathic crystal deposition 
within glandular lumina, produces calcium oxalate 
(weddellite) crystals (Type I calcifications) most often in 
apocrine cysts of the breast. These birefringent, 
concentric crystals form within secretions and are 
typically benign. Their presence can occasionally 
coincide with proliferative lesions such as lobular 
carcinoma in situ [5]. 

Certain neoplasms generate psammoma bodies, 
concentric, lamellated calcium spherules thought to arise 
via dystrophic mechanisms within papillary tumor 
structures. In invasive micropapillary carcinoma of the 
breast, psammoma bodies have been observed in up to 
64% of cases, reflecting localized cell death and mineral 
nucleation within micropapillary clusters [11].  

At the extreme end of the spectrum, tumoral calcinosis 
and calcinosis cutis represent massive calcium phosphate 
accumulation, but the frequency is relatively low, 
especially in breast tissue. Another example of such rare 
formations is heterotopic ossification, representing true 
lamellar bone formation, with organized cortical and 
trabecular architecture, within soft tissues following 
trauma, surgery, or neurologic injury. This process, in 
which mesenchymal cells differentiate into osteoblasts 
outside the skeleton, can occur in muscle and 
periarticular tissues and is distinct from amorphous 
calcific deposits [12]. 

In this paper, we focus on the distinctive calcification 
patterns in breast tissue, exploring how these diverse 
pathological crystalline deposits can be quantitatively 
characterized and integrated into AI-driven models for 
improved cancer detection. We hypothesize that 
calcifications may serve as discriminative morphological 
markers, offering an opportunity for deep learning 
models to enhance the diagnosis and overall efficiency of 
cancer detection. 
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III. FCCC BREAST CRYSTALLIZATION SUBSET 
The Neural Engineering Data Consortium (NEDC) has 
released two significant open-source annotated digital 
pathology datasets related to breast tissue [13]: the 
Temple University Hospital Digital Pathology Corpus 
Breast Tissue Subset (TUBR) and the Fox Chase Cancer 
Center (FCCC) Digital Pathology Corpus Breast Tissue 
Subsect (FCBR). A summary of the labels used in these 
corpora is given in Table 1. The process of annotating 
these corpora is described in detail in [13] and serves as 
a basis for this work. 

Since FCCC specializes in cancer treatment, the FCBR 
data represents a large sample of the most common and 
most dangerous types of breast cancer – invasive ductal 
carcinoma. The FCBR contains 12,164 non-cancerous, 
1,967 carcinogenic, and 5,954 cancerous identified 
structures. This corpus, heavily weighted towards 
malignant pathology, was selected as the basis for 
constructing a new subset focused specifically on tissue 
crystallization phenomena. To our knowledge, no other 
open-source subset exists that isolates and annotates 
crystallization patterns in breast histopathology. 

We augmented the original FCCC dataset with an 
additional 440 detailed crystallization annotations. These 
annotations were developed to test our hypothesis that 
including calcification in our models would advance state 
of the art. We will refer to this subset as the Fox Chase 

Crystallization Corpus (FCCR). To facilitate structured 
analysis, we organized the crystallization annotations 
into three distinct classes, based on visual and spatial 
characteristics of the calcific deposits: Crystalline Non-
Neoplastic (cnno: n = 51), Crystalline Ductal Carcinoma 
in Situ (cdcs) (n = 168), and Crystalline Invasive Ductal 
Carcinoma (cidc: n = 220). This categorization was 
informed by observed variations in morphology, 
localization, and spatial distribution of the calcific 
material, each correlating with distinct diagnostic. 

Importantly, we noted that the crystallization profiles 
differ subtly and slightly consistently across these 
pathological classes. For example, cnno structures tend 
to present with discrete, loosely clustered calcific 
fragments typically isolated within fibroglandular 
stroma, whereas cdcs annotations display larger, denser, 
and more irregular mineral formations situated within 
atypical ductal epithelial arrangements. In cidc cases, the 
calcifications are often embedded within chaotic, 
infiltrative patterns consistent with stromal invasion, 
some even having a scattered aspect. These findings 
point to potential microstructural markers that may assist 
in differentiating borderline or ambiguous lesions. 

IV. EXPERIMENTAL RESULTS 
To evaluate the discriminative power of calcification 
patterns in histopathological classification, we conducted 
a baseline experiment to determine whether the inclusion 
of detailed annotations for crystalline structures 
improved the predictive accuracy of a deep learning 
model trained for multi-class classification of breast 
tissue pathology. The results of these experiments are 
shown in Table 2 through Table 5. 

All experiments were conducted in a closed-set scenario 
using a fixed random seed. The data was extracted by 
converting the annotated image to a black and white 
image, resizing the image to a 256 x 256 px matrix, then 
flattening it and applying it to a balanced Random Forest 
(RNF) model. This RNF model was trained on two 
separate configurations: (1) a non-crystallization dataset 
consisting of 1,850 patches, and (2) a crystallization-
enriched dataset containing 2,243 patches. The latter 
included an additional 440 manually annotated samples 
of cnno, cdcs, and cidc classes, mapped as nneo, dcis and 
indc. The models were evaluated on the remaining 
portion of FCBR (comprising 18,224 samples) and 
further validated on TUBR (comprising 46,666 samples). 
The latter constitutes true open set testing since no TUBR 
data was annotated. 

We used an RNF model because of its simplicity, speed 
and stability. We have calibrated performance of several 
deep learning models on this data in [13]. Performance is 
generally consistent – improvements with one classifier 
tend to hold up across other classifiers. 

Table 1. Labels used for annotation of TUBR and FCBR 

Label Description / Features 

Normal 
(norm) normal ducts and lobules 

Ductal Carcinoma  
in Situ 
(dcis) 

ductal carcinoma in situ, and lobular 
carcinoma in situ 

Invasive Ductal 
Carcinoma 

(indc) 

invasive ductal carcinoma, invasive 
lobular carcinoma, and invasive 
mammary carcinoma 

Non-Neoplastic 
(nneo) 

fibrosis, hyperplasia, intraductal 
papilloma, adenosis, ectasia, etc. 

Inflammation  
(infl) areas of inflammation 

Artifact 
(artf) 

grease pen marks, stitches, foreign 
bodies, etc. 

Indistinguishable  
(null) 

indistinguishable tissue, normally due 
to issues with the cut/stain 

Suspected 
(susp) 

regions that are at risk of developing 
into cancerous regions 

Background 
(bckg) stroma, no ducts or lobules 
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The inclusion of crystallization annotations improved the 
overall classification accuracy by more than doubling the 
no crystallization performance. In Table 2, we 
demonstrate significant gains in categories directly 
associated with calcification. These three classes are 
extremely difficult to classify using standard approaches 
and dominate the overall error rate. The most notable 
improvement was observed in the indc and dcis classes, 
indicating that annotated microcalcification structures 
enabled the model to better distinguish between early-
stage and invasive carcinoma phenotypes. 

In Table 3, we show the improvement in accuracy for 
each class. We see a significant across the board 
improvement in our ability to detect each of the three 
classes of interest. Each class experienced a three-fold 
improvement in accuracy. 

The gain in accuracy is less pronounced for TUBR. This 
is not surprising since TUBR contains a much wider 
range of morphologies. While the overall accuracy in 

Table 4 increased by 20%, and the per class accuracies 
increased significantly as shown in Table 5, other 
challenges in TUBR masked the overall improvements. 
Given the domain variability in the TUH dataset, even 
modest improvements are indicative of a model better 
attuned to the signal. 

Results for both experiments demonstrate that the 
crystallization model exhibits better calibrated behavior, 
with fewer high-magnitude misclassifications across 
dominant classes like indc and dcis. In contrast, the non-
crystallization model shows heavy confusion between 
malignant and background classes, likely due to missing 
structural cues associated with mineralization. 

V. SUMMARY 
Our results suggest that the inclusion of annotated 
crystalline structures enhances a model's ability to detect 
biologically significant pathology, particularly across 
classes that exhibit microcalcification as a morphological 
hallmark. In malignant conditions (dcis and indc), the 
localization, density, and pattern of calcification can 
serve as distinct morphological signatures that 
complement cellular and stromal features. Our findings 
support the hypothesis that explicitly modeling these 
patterns enables a more nuanced understanding of breast 
cancer pathology and strengthens the diagnostic of deep 
learning models. By capturing subtle calcific patterns 
linked to tumor biology, crystallization provides a 
biologically meaningful feature set that enhances both 
sensitivity and generalizability across datasets.  

The substantial improvement in indc performance may 
be explained by the heterogeneous and often infiltrative 
distribution of calcifications in invasive cancers, which, 
when annotated, offer additional spatial cues to the 
model. Similarly, in pre-invasive lesions like dcis or 
nneo, smaller or more localized calcifications serve as 
early warning markers, something poorly captured in 
models trained on general-purpose datasets with coarse 
labels. Expanding the cnno annotation set may further 
improve performance on the nneo class, which remains 
comparatively underrepresented, due to its higher 
prevalence in the TUBR dataset. 

The curated crystal subset, FCCR, provides a resource for 
future computational pathology studies exploring 
mineralization patterns as predictive or descriptive 
features of malignancy. The data is publicly available 
from our consortium website (www.necdata.org). 
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Table 2. Confusion matrix and accuracy for FCBR 
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