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Abstract— Electrocardiogram (ECG) recordings, which 
graphically represent the electrical activity of the heart over 
time, are essential for diagnosing a variety of heart diseases 
by identifying abnormal patterns in the signal. In this work, 
we investigate the performance of a ResNet18 deep learning 
model on raw and preprocessed ECG data for the TNMG 
CODE corpus, which consists of over 2M ECG recordings. 
While traditional ECG interpretation often relies on 
preprocessed data and channels derived from linear 
combinations of the raw signal, we hypothesize that these 
techniques may be unnecessary or even detrimental in 
modern deep learning approaches. We systematically 
demonstrate that the ResNet18 model performance 
consistently decreases with the increase in the number of 
channels. We also conduct an ablation analysis, which 
reveals that derived ECG channels have minimal or 
detrimental effect. This study demonstrates the 
effectiveness of deep learning models in processing ECG 
data, supporting the hypothesis that model-based features 
are no longer needed when there is sufficient training data 
available. This decreases the effort required to develop 
machine learning systems for new domains, contributing to 
potential improvements in medical diagnostics. 

I.  INTRODUCTION 
Electrocardiograms (ECGs) are a fundamental tool in 
cardiology, allowing physicians to diagnose a wide range 
of cardiac abnormalities. Traditionally, cardiologists 
utilize preprocessed ECG data and derived channels, 
which are linear combinations of the raw signal, to aid in 
their diagnosis. However, with the rapid advancements in 
machine learning, automated analysis of medical data is 
becoming a reality. Deep learning models have shown a 
remarkable ability for extracting relevant features from 
complex data without explicit feature engineering. This 
suggests that these models may be able to effectively 
analyze raw ECG signals, potentially eliminating the 
need for preprocessing. This new approach could 
simplify the analysis pipeline and preserve subtle 
patterns in the data that might be lost during traditional 
preprocessing steps. 

The Residual Network architecture (ResNet18), 
introduced by He et al. [1], is a significant model in deep 
learning for image recognition tasks. Its main innovation 
is the use of residual blocks, which allow the network to 
learn residual functions with reference to layer inputs. 
This approach enables the training of much deeper 
networks by addressing the vanishing gradient problem. 
The ResNet18 model consists of 18 layers, including 
convolutional layers, batch normalization, ReLU 
activation functions, and skip connections that form the 

characteristic residual blocks. These skip connections 
allow the network to bypass one or more layers, 
providing a direct route for gradients to flow backwards 
through the network during training. While originally 
designed for image classification, ResNet's ability to 
capture hierarchical features makes it well-suited for 
complex pattern recognition tasks, including time series 
analysis, where identifying both local patterns and global 
trends is crucial. ResNet18 has been successfully applied 
to EEG analysis, reducing complexity and latency [2].  

Most clinical ECG recordings are collected with a 10-
lead system. These channels are converted to eight signal 
channels as shown in Figure 1. Prior to the introduction 
of deep learning, these eight signal channels were 
converted to twelve leads using a well-known set of 
preprocessing techniques [3]. A typical system employs 
ten electrodes: six precordial leads (V1-V6) placed on the 
chest, and four limb leads places on the right arm (RA), 
left arm (LA), left leg (LL), and right leg (RL, used as a 
ground). From these, eight raw waveforms are recorded: 
the six precordial leads and two limb leads, DI and DII. 
DI is derived as the potential difference between LA and 
RA (LA – RA), while DII is the difference between LL 
and RA (LL – RA). The remaining four leads are derived 
from DI and DII as follows: 

𝐷𝐼𝐼𝐼 = 𝐷𝐼𝐼 − 𝐷𝐼  (1) 

𝑎𝑉𝑅 = !"#!""
$

  (2)	

𝑎𝑉𝐿 = !"%!""
$

	 (3)	

𝑎𝑉𝐹 = !""%!"
$

	 (4) 

We hypothesize that extensive preprocessing of ECG 
data may not be beneficial for deep learning models and 
could potentially decrease their performance. 

II. TNMG CODE CORPUS 
The TNMG CODE Corpus (TNMG) [3] represents a 
major advancement in the field of cardiology, and is the 
corpus used in this study. TNMG is a dataset of ECG 
records collected by the Telehealth Network of Minas 
Gerais (TNMG) between 2010 and 2016 in 811 counties 
in the Brazilian state of Minas Gerais, organized by the 
Clinical Outcomes in Digital Electrocardiography 
(CODE) group. The dataset contains a total of 6,716,317 
annotated records from 1,558,749 patients. 

The dataset includes a curated “golden dataset” of 827 
ECG recordings, which serves as a high-quality 
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evaluation set. These recordings were independently 
annotated by two cardiologists. In cases of disagreement, 
a third specialist reviewed the annotations to establish a 
consensus. The data set was labeled for six abnormalities 
as shown in Table 1. 

In Table 2, we show a distribution of feature vectors in 
both datasets, where presence or absence of each 
abnormality is marked in the same order as Table 1: 
1dAVb, RBBB, LBBB, SB, AF, ST. It is clear that the 
majority of both datasets consists of healthy records. 
Tokens with a single disease occur in single digit 

percentages. An even smaller fraction of tokens with 
multiple diseases appears in the corpus. Of equal concern 
is that tokens with multiple diseases are not well 
represented in the evaluation dataset, known as the gold 
standard dataset. The imbalance in this data has a 
profound impact on our ability to train high performance 
models, as we will show in Section IV. 

III. APPLICATION OF DEEP LEARNING 
A previous study by Ribeiro et al. demonstrated the 
effectiveness of deep neural networks for automatic 
classification of 12-lead ECGs [3]. They developed a 
ResNet-18 model trained on over 2 million ECG exams 
from the TNMG database. Their model was able to detect 
six types of ECG abnormalities with high accuracy, 
outperforming cardiology residents. For preprocessing, 
they resampled all ECGs to 400 Hz, zero-padded signals 
to 4096 samples per lead, used the derived channels, and 
applied z-score normalization. While their approach 
showed promising results, the impact of this 
preprocessing on model performance was not thoroughly 
investigated. 
Newer studies by Pastika et al. [5] and von Bachmann et 
al. [6] have also adopted reduced lead configurations, 
utilizing 8-lead ECGs in their deep learning models for 
body mass index and electrolyte prediction, respectively. 
However, these studies did not extensively discuss the 
rationale for lead reduction. The choice of using raw 
leads stems from the fact that they are linear 
combinations of raw leads, making them redundant. 

 
Figure 1. Conversion of an ECG collected with 10 leads to 8 and 12-channel waveforms [4] 

 

Table 1. Annotations present in TNMG 

Label Description 
1dAVb First-degree atrioventricular block: A delay in the 

conduction of electrical impulses from the atria to 
the ventricles. 

RBBB Right bundle branch block: A condition where the 
right side of the heart’s electrical conduction system 
is impaired. 

LBBB Left bundle branch block: A condition where the left 
side of the heart’s electrical conduction system is 
impaired.  

SB Sinus bradycardia: A slower-than-normal heart 
rhythm, defined as a heart rate below 60 beats per 
minute in adults. 

AF Atrial fibrillation: An irregular heart rhythm, 
characterized by chaotic electrical activity. 

ST Sinus tachycardia: A higher-than-normal heart 
rhythm, defined as a heart rate above 100 beats per 
minute in adults. 

 
 
` 
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We utilize a ResNet18 architecture adapted for multi-
label classification. We preprocess the data by extracting 
ECG signals from EDF files and annotation labels from 
CSV files. To create image-like inputs for our model, we 
transform the time series ECG data to an image. All 
signals are zero-padded to 4096 samples and undergo z-
score normalization. The normalized signals are then 
reshaped into 2D tensors, where each channel becomes a 
row in the image. The normalized signals are then 
converted into tensors of shape (C, 224, 224), where C is 
the number of ECG channels. A typical block in our 

architecture is shown in Figure 2. The overall 
architecture is shown in Figure 3. 

The first convolutional layer of our model was modified 
to take either eight or twelve channels as input. The final 
layer was adapted to output probabilities for each of the 
six cardiac conditions by utilizing a sigmoid activation 
function. We employ the Adam optimization 
algorithm [7] with a learning rate of 0.001. Due to the 
multi-label nature of our task, we use Binary Cross-
Entropy loss [8] as the objective function: 

𝐵𝐶𝐸(𝑦, ŷ) = 	− &
'
∑[𝑦( 𝑙𝑜𝑔(ŷ() + (1 − 𝑦() 𝑙𝑜𝑔(1 − ŷ()]	(5)	

Where n is the number of classes, yi is the true label, and 
ŷi is the predicted probability for class i. 

In all experiments, the training process iterated over 10 
epochs with a batch size of 32. We monitored training 
and validation losses, along with accuracy, micro-
averaged F1score, and macro-averaged F1 score to assess 
the model performance. This approach allows us to 
evaluate the effectiveness of our model in processing 
both raw and minimally preprocessed ECG signals. 

 

Table 2. Distribution of classes in TNMG CODE 

Feature 
Vector 

Train Gold (Eval) 
# % # % 

000000 6,014,462 89.55000 681 82.34583 
010000 145,208 2.16202 28 3.38573 
000001 131,820 1.96268 35 4.23216 
000010 100,865 1.50179 11 1.33011 
000100 94,500 1.40702 15 1.81378 
001000 86,487 1.28771 20 2.41838 
100000 75,924 1.13044 25 3.02297 
010010 11,910 0.17733 1 0.12092 
110000 11,168 0.16628 0 0.00000 
101000 7,580 0.11286 3 0.36276 
001010 7,019 0.10451 0 0.00000 
010100 5,713 0.08506 0 0.00000 
100100 4,215 0.06276 0 0.00000 
010001 3,408 0.05074 1 0.12092 
001001 3,066 0.04565 0 0.00000 
000011 2,860 0.04258 0 0.00000 
100010 1,871 0.02786 1 0.12092 
001100 1,625 0.02419 1 0.12092 
011000 1,621 0.02414 4 0.48368 
110100 1,165 0.01735 0 0.00000 
100001 560 0.00834 1 0.12092 
110010 515 0.00767 0 0.00000 
000110 506 0.00753 0 0.00000 
101100 331 0.00493 0 0.00000 
011100 329 0.00490 0 0.00000 
010011 292 0.00435 0 0.00000 
101010 248 0.00369 0 0.00000 
111000 220 0.00328 0 0.00000 
011010 189 0.00281 0 0.00000 
001011 143 0.00213 0 0.00000 
100110 88 0.00131 0 0.00000 
010110 82 0.00122 0 0.00000 
110110 64 0.00095 0 0.00000 
111100 56 0.00083 0 0.00000 
011001 45 0.00067 0 0.00000 
110001 43 0.00064 0 0.00000 
100011 36 0.00054 0 0.00000 
111010 19 0.00028 0 0.00000 
101001 16 0.00024 0 0.00000 
001110 14 0.00021 0 0.00000 
000101 10 0.00015 0 0.00000 
011011 5 0.00007 0 0.00000 
010101 5 0.00007 0 0.00000 
011110 5 0.00007 0 0.00000 
111011 4 0.00006 0 0.00000 
111110 3 0.00004 0 0.00000 
110011 1 0.00001 0 0.00000 
101110 1 0.00001 0 0.00000 

 
 
` 

 
Figure 2. A typical block in the ResNet-18 architecture 

 
Figure 3. The composite ResNet18 architecture uses four 
internal layers in addition to input and output layers. N 
represents the number of channels. 
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Given that our problem is a multi-label classification 
task, we employ micro and macro F1 scores [9] as a key 
metric for evaluating model performance. These metrics 
provide a comprehensive assessment of the overall 
model’s ability to identify several cardiac conditions at 
once. The micro F1 score calculates metrics by counting 
the true positives, false negatives and false positives 
across all classes. It is computed as the harmonic mean 
of precision and recall: 

𝑀𝑖𝑐𝑟𝑜	𝐹1 = 2 ∗ (*+,-(.(/'∗1,-233)
(*+,-(.(/'#1,-233)

                                 (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 5*
5*#6*

                                                 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 5*
5*#67

                                                                 (8) 

where TP, FP, and FN represent true positives, false 
positives, and false negatives, respectively. 

In contrast, the macro F1 score calculates the F1 score for 
each class independently and then averages these scores. 
Micro F1 tends to give more weight to frequent classes, 
while macro F1 gives equal weight to all classes, 
regardless of their frequency in the dataset. 

IV. EXPERIMENTATION 
We conducted eight experiments to systematically 
evaluate the impact of ECG channel reduction and 
dataset size on deep learning performance. We used four 
different training dataset sizes: 2K, 20K, 200K, and 
2,000K records, each tested with both 8-channel and 12-
channel ECG configurations. For the 12-channel sets, we 
applied minimal preprocessing consisting of resampling 
to 400 Hz and 2x scaling of the signal amplitude. To 
address class imbalance, we chose the distribution for 
each training set that balances individual feature vectors 
to the extent possible. However, as the dataset size 
increased, we had to include a higher proportion of 
healthy records due to their prevalence in the corpus. 

In each experiment, we trained a separate ResNet18 
model and evaluated its performance on the golden test 
set. We also utilized a fixed development set of 5,000 
records in all experiments to monitor training process and 
prevent overfitting. The development set was balanced to 
represent a variety of combinations of cardiac conditions: 
approximately 4,000 examples were evenly split between 
single-condition cases and healthy records, 750 evenly 
split examples with two conditions, 249 examples 
containing three conditions, and one rare example with 
four concurrent conditions. The results for each 
experiment are shown in Table 3. 

Our results reveal a consistent pattern across all dataset 
sizes: the models trained on 8-channel ECG data 
outperformed those trained on 12-channel data. The 
performance difference was more pronounced in the 
smaller datasets and gradually diminished as the training 

dataset size increased. 

We observed a significant decline in performance in both 
8- and 12-channel models in experiments with 2,000K 
records. We attribute this decrease to the inherent class 
imbalance in the larger dataset. As we expanded to a 
much higher number of records, the proportion of healthy 
ECG examples increased significantly. Although it 
reflects the prevalence of these records in the general 
population, this imbalance led to a bias in the model’s 
predictions, favoring the majority class at the expense of 
less common combinations of cardiac conditions.  

Another observation is that models trained on 2,000K 
records performed poorly on the balanced development 
set but showed a noticeably higher performance on the 
evaluation set. This discrepancy is likely caused by the 
higher proportion of healthy records in the evaluation set, 
which more closely mirrors the distribution in the 
training data. These observations are an example of the 
importance of considering dataset composition and 
carefully balancing class distributions within datasets. 

To assess the stability and reproducibility of our findings, 
we conducted several experiments to estimate the 
variance of the F1 scores on 8-channel data. For each of 
the three dataset sizes (2K, 20K and 200K) we performed 
five independent training runs. Each run utilized a 
different random seed for data shuffling and model 
initialization. The results are shown in Table 4. As 
expected, there is a significant reduction in the standard 
deviation as the training set size increases.  

This, of course, translates to an improvement in the 
statistical significance of these F1 scores. For a sample 
size of 2K at 95% confidence, a difference in the F1 score 
of 0.0174 is statistically significant on the training data. 
For sample sizes of 20K and 200K, differences greater 
than 0.0054 and 0.0017, respectively, are statistically 
significant. Hence, we see that the differences due to 
randomization in Table 4 are in fact statistically 
significant, underscoring how sensitive these deep 
learning systems are to randomization, and hence making 
reproducibility a challenge. 

Table 3. Micro F1 scores as a function of the training set size 

Train Size No. Chans Train Dev Eval 

2K 8 0.8810 0.7024 0.5029 
2K 12 0.8690 0.7050 0.2127 

20K 8 0.8870 0.8288 0.7022 
20K 12 0.8812 0.8366 0.5509 

200K 8 0.9310 0.8461 0.8421 
200K 12 0.9286 0.8545 0.7956 

2,000K 8 0.8809 0.7787 0.8649 
2,000K 12 0.8787 0.7708 0.8522 
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Nevertheless, the key point here is that performance for 
the 8-channel system is not statistically different from 
the12-channel system, indicating that the deep learning 
system is able to implement whatever signal processing 
is necessary to extract meaningful information. 

V. ABLATION ANALYSIS AND MULTICOLLINEARITY 
As a further investigation of the impact of additional 
ECG channels on model performance, we conducted an 
ablation analysis [10] to determine feature importance. 
We systematically randomized each channel’s data and 
measured the resulting change in the model’s micro F1 
score. The ablation process was performed for over 250 
iterations for each channel to ensure consistent results. 
The importance of each feature was quantified as the 
average decrease in micro F1 score when that channel 
was randomized. 

Figure 4 presents the results of three experiments using 
20K, 200K and 2,000K records. The x-axis represents the 
12 ECG channels, while the y-axis represents the change 
in micro F1 score. A positive score indicates a feature is 
important, while a negative score indicates a feature is 
redundant. Our analysis demonstrated that the precordial 
leads (V1-V6) tend to have the higher importance scores, 
while the derived channels (DIII, aVR, aVL, and aVF) 
showed lower scores and sometimes negative values, 
indicating their redundancy. Channels DI and DII 
showed mixed results, either being as important as some 
precordial leads or relatively insignificant. 

Following our ablation analysis, it is important to 
consider the issue of multicollinearity in our ECG data. 

Multicollinearity [11] occurs when there is an 
approximately linear relationship between two or more 
independent variables in a regression model. While it is 
typically discussed in the context of regression models, it 
can also affect classification models, including our deep 
learning model for ECG classification. 

In our study, by using only the eight independent leads 
and omitting the derived leads, we performed a form of 
variable selection that addresses the issue of 
multicollinearity in ECG data. Our findings in model 
training and ablation analysis support the hypothesis, 
indicating that derived ECG channels introduce 
multicollinearity and do not provide any additional 
predictive power. 

Table 4. Micro F1 scores as a function of the random seed 

Data Train Dev Eval 
2K 8 Channels (1) 0.8898 0.7235 0.4596 
2K 8 Channels (2) 0.8747 0.7047 0.4569 
2K 8 Channels (3) 0.8766 0.7074 0.5111 
2K 8 Channels (4) 0.8892 0.7163 0.4426 
2K 8 Channels (5) 0.8720 0.6876 0.5251 

StDev 0.0084 0.01356 0.03655 
20K 8 Channels (1) 0.8887 0.8187 0.7335 
20K 8 Channels (2) 0.8852 0.8132 0.7214 
20K 8 Channels (3) 0.8880 0.8229 0.6897 
20K 8 Channels (4) 0.8884 0.8241 0.6729 
20K 8 Channels (5) 0.8882 0.8243 0.6905 

StDev 0.0014 0.0047 0.0249 
200K 8 Channels (1) 0.9312 0.8534 0.8251 
200K 8 Channels (2) 0.9298 0.8523 0.8278 
200K 8 Channels (3) 0.9307 0.8510 0.7831 
200K 8 Channels (4) 0.9318 0.8451 0.8278 
200K 8 Channels (5) 0.9298 0.8481 0.7752 

StDev 0.0009 0.0034 0.0263 
 

 

 

 

 

Figure 4. Results of the ablation analysis 
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VI. CONCLUSIONS 
Our study provides evidence supporting our hypothesis 
that extensive preprocessing of ECG data may not be 
beneficial for deep learning in cardiac diagnosis. Across 
various dataset sizes, models trained on raw signal 
outperformed those using derived channels and minor 
preprocessing. The ablation analysis further revealed that 
derived channels have little or slightly negative impact 
on model performance. 

These findings highlight the capability of deep learning 
algorithms to extract meaningful patterns from complex 
physiological data without relying on handcrafted 
features. This suggests a potential for simpler, more 
direct approach for data input that may yield more 
accurate and robust models. 

FUTURE WORK 
In future studies, we plan to further refine our approach 
by conducting additional experiments with 8-channel 
ECG data. We will focus on comparing the performance 
of models trained on raw 8-channel signals against those 
trained on extensively preprocessed 8-channel data, 
excluding the derived channels entirely and isolating the 
effects of preprocessing on the primary ECG leads. 
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