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Abstract—In this paper, we studied the variability of 17 CAIDA
Internet traffic traces which were collected in 2013, 2014, 2015
and 2016. The variability of these traces was measured by using
the Index of Variability. Based on the results, we outlined several
important observations. In particular, the Index of Variability
has the ability to reveal significant differences between traffic
traces. It is dynamic and its behavior depends on several factors,
such as network protocol dynamics and link speeds. In addition,
traffic source link speeds have a major impact on network
traffic variability (burstiness). Also, results show that there is
a significant reduction in the variability for the 2015 and 2016
traces.

1. INTRODUCTION

An extensive volume of research studies have demonstrated
that Internet traffic manifests high variability, that is, it is
bursty over a wide range of time scales [1]-[6]. High variability
in network traffic has been shown to have a significant impact
on network performance [2]. Consequently, knowledge of
traffic characteristics on multiple time scales can help to
improve the efficiency of traffic control mechanisms, and thus
improve network performance. Particularly, the design and
provision of quality-of-service-guarantees over the Internet
requires the understanding of traffic characteristics, such as
variability (traffic burstiness).

Most of these studies advocate that Poisson or Markovian
based models are no longer appropriate for modelling the
packet arrival process, since these models do not capture the
traffic burstiness over a wide range of time scales. However,
several other studies dispute these findings and argue that
the Poisson and Markov based models are still applicable
for capturing the performance relevant characteristics of the
Internet core traffic [7], [8].

The study presented in this paper is motivated by the
following:

« Provide evidence whether Poisson or Markovian based
models are appropriate or not for modelling the packet
arrival process of Internet traffic.

« Show whether Internet traffic still exhibits high variability
over a wide range of time scales that are relevant to
network performance.

In this paper, we present the results from measuring and
analysing the variability of many CAIDA [9] Internet traffic
traces. These CAIDA traces were collected in 2013, 2014,
2015 and 2016. The variability (burstiness) of these traffic
traces was measured by using the Index of Variability [1]. The
Index of Variability is a rigorous measure of network traffic
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variability that can capture the degree of burstiness of a typical
network traffic process over all times scales. That is, it greatly
helps in determining the complexities of traffic variability over
network performance relevant time scales.

Based on the results, the following important observations
were made:

o The Index of Variability has the ability to reveal signifi-
cant differences between traffic traces. It is dynamic and
its behavior depends on several factors, such as network
protocol dynamics and link speeds.

« Source link speeds have a major impact on network traffic
variability. A significant increase in source link speed can
greatly reduce the burstiness of packet traffic over the
network perfomance relevant time scales. As the source
link speed increases, the variability is shifted to higher
times scales. The 2013 and 2014 traces and subtraces
exhibit significant variability over a significant range of
times scales, while the ones collected in 2015 and 2016
do not. The most probable reason for this is that prior
to collecting the 2015 and 2016 traces, the source link
speeds must have been significantly increased.

« Link speed has a major impact on network traffic vari-
ability. A significant increase in link speed can greatly
reduce the burstiness of packet traffic.

« TCP traffic traces can yield variability curves that exhibit
oscillatory behavior.

« Poisson or Markovian based models can not be used to
model the complexities of the 2013 and 2014 CAIDA
Internet traffic traces.

« Poisson or Markovian based models can be used as
analytical models for generating traffic traces similar to
the 2015 and 2016 CAIDA Internet traffic traces.

The remainder of this paper is organized as follows: Section
II reintroduces the definition of the Index of Variability and
presents the significant steps for estimating H,(7) from data.
Section III provides a short description of the CAIDA Internet
traffic traces and presents the empirically obtained results. The
paper concludes in Section IV.

II. INDEX OF VARIABILITY FOR PACKET TRAFFIC SEQUENCES

This section provides a brief derivation of the Index of
Variability. For a detailed derivation of the Index of Variability,
see [1].



A. Definition

Let N(7) denote the number of events (packet arrivals) of
a stationary point process in the interval (0, 7]. For each fixed
time interval T > 0, an event count sequence Y = {Y,(1),7 >
0,n = 1,2,...} can be constructed from each point process,
where Y, (1) = N[nt]-N[(n—1)7] denotes the number of events
(packet arrivals) that have occurred during the n™ time interval
of duration 7. Clearly, Y is also (weakly) stationary for all
7> 0. Y represents a network traffic trace where Y, (1) denotes
the number of packets observed from an arbitrary point in the
network during the n” time interval of duration 7. 7 denotes
the time scale of the traffic trace and represents the length (i.e.,
10ms, 1s, 10s, e.t.c.) of one sample of Y.

The expected number of events that have occurred during
the interval (0, 7] is always: E[N(#)] = ﬁ = At where E[X] is
the expected interarrival time and A is the mean event (packet)
arrival rate. The index of dispersion for counts (IDC) is defined
as [10]: IDC(?) = Vg[rl[\fzt()?] = % Note that for a Poisson
process, IDC(t) = 1 Vt. Since the point process is stationary,
IDC has the same value over any interval of length #; thus,
t can be viewed as the time scale 7 of the traffic process Y.
Henceforth ¢ will be used to denote generality and 7 to denote
time scales, i.e., the time length of each sample of the packet-
count sequence Y.

A distinctive attribute of IDC is that it is mathematically
equivalent to the Aggregated Variance [13] method for esti-
mating the Hurst parameter H of a self-similar process. For
a self-similar process, plotting log(IDC(mt)) against log(m)
results in an asymptotic straight line with slope 2H — 1. When
Y is a long-range dependent (LRD) process, the slowly decay-
ing variance property of LRD processes [2] with parameter
0 < B < 1 is equivalent to an IDC curve' with an asymptotic
straight line with slope 1 — g, implying 0 < slope < 1. When
the IDC curve converges to an asymptotic straight line with
slope = 0 for some 7 < oo, then Y is considered to be a short-
range dependent (SRD) process. Based on the above property
of IDC, the following measure of variability is defined as
follows [1]:

Definition 1: For a general stationary traffic process ¥ whose
IDC(7) is continuous and differentiable over (0, o), we refer
to:

d(log(IDC(1)))
diogm)  t 1 n
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as the Index of Variability of Y for the time scale 7, where
% is the local slope of the IDC curve at each T when
plotted in log-log coordinates.

Note that the Index of Variability is defined such that
in order for an asymptotically or second-order self-similar
process H,(t) — H € (0.5,1) as T — oo. In case that the
process is exactly self-similar, then H,(t) = H € (0.5, 1) for
all 7 > 0. That is, if log(/DC(7)) is linear with respect to
log(1)), then H,(7) reduces to H. The Index of Variability can
be viewed as the Hurst parameter defined at each time scale

H,(1) =

'In log-log coordinates.

7. In general, the process Y exhibits significant variability
for those time scales 7 such that 0.5 < H,(r) < 1. When
% — 1, then H,(r) — 1, implying very high
variability or burstiness. Plotting H,(7) versus T would depict
the fluctuation of traffic variability over different time scales
for a particular traffic trace. 7.

Expanding the local slope of the IDC curve at each time

scale, the following can be obtained:
d(log(IDC(1))) _ T d(Var[N(1)]) B
d(log(t))  Var[N(7)] dr

Using the above in (1), a more convenient form of the Index
of Variability is obtained:

dVar[N(7)] 1 d(IDC(1))
Hy(t) =057 —& —|=-{1+ dr 3
@ T(Var[N(T)]] 2{ T(IDC(T) ]} ©
d(IDC(7))
dr

1. 2)

In case that Y is Poisson, then = (0 for all T and hence

H,(t) = 0.5 for all 7.

B. Measuring the Index of Variability from Traffic Traces

The estimation of the Index of Variability from traffic traces
requires the computation of the first derivative of the variance
curve (i.e., Var[N(7)]) from discrete samples (Var[N(1;)], i =
1,---,n). To accomplish this, an analytic function that best
fits the discrete variance data must first be estimated. This in
turn requires the use of an interpolation scheme. There exist
many such as scheme, which are either based on polynomial-
based interpolation methods, or cubic and smoothing splines
[11]-[12].

Since we use the sample variances as the estimates of
Var[N(tj)], i = 1,---,n, these estimates of the variances
are considered to be noisy samples. The smoothing spline
interpolation methods are known to have optimal properties
for estimating continuous functions and their derivatives from
a finite number of noisy samples [11], [12]. Note that non-
smoothing interpolation methods such as cubic spline produce
estimated curves that pass through all the sample points.
Therefore, in case of noisy data, non-smoothing interpolation
methods yield rough curves, and therefore erroneously high
first derivatives.

1) Smoothing Spline Interpolation: For a given data series

(xi,yi), i =1,2,---,n, the smooth function f(x) is the solution
of the minimization problem
I v n
L= S we [ gORdu @
i=1 i

where ¢ is the smoothing parameter and f® is the k™
derivative of f. For k = 2, f is just a cubic smoothing spline.

The first term in (4) is the residual sum of squares, an
indicator of the goodness-of-fit of the spline curve to the
data. In other words, it measures the degree of fidelity of
the smoothing spline function to the data. The second term
measures the roughness of the resulting smoothing spline
curve. The roughness of a function can be characterized by
its curvature. For example, if a function is a straight line, then



its 2" derivative (and therefore, roughness) is zero. That is,
the second term is a penalty term that measures how close the
function is to a straight line.

The smoothing parameter & plays an important role. It
weights two aspects: smoothness and fit. Large values of &
give a smoother curve, while small values of & result in a
closer fit.

2) Steps for Estimating H,(t) from Traffic Traces: In this
subsection we briefly describe a practical method for estimat-
ing the Index of Variability from traffic traces. This method
was first introduced in [1]. Let assume that a traffic trace is
the realization of a second-order ergodic point process whose
variance curve is continuous and differentiable. H,(t) can be
estimated as follows:

(I) Using the Aggregated Variance method [13] estimate the
variance-time sequence: VL;”[N(T,')], i=1,---,n.

(I) Using an appropriate smoothing spline implementa-
tion estimate the smoothing spline Var[N(1)] from
Var[N(m)l, i=1,---,n.

(III) Using (3) estimate the Index of Variability I/-I\V(‘r).

To estimate the smoothing splines, we used the MATLAB
Spline Toolbox. Its smoothing spline implementation is based
on the Reinsch’s approach [11], [12]. This algorithm computes
the optimal smoothing parameter ¢ such that the penalized
residual sum of squares is less than a tolerance value € > 0.
In all cases, we used the default value of k (= 2) and € =
0.0001. Note that prior to estimating the Index of Variability
for a particular traffic trace, we did not perform any test of
differentiability. Rather, we made the restrictive assumption
that their variance curves are differentiable. The accuracy and
robustness of this procedure was validated in [1] by estimating
and matching the Index of Variability curves from test data.

III. CAIDA INTERNET TRAFFIC DATASETS

In this study, using the steps outlined in the previous section,
we estimated the Index of Variability curves (H, (1)) for 17
empirically collected CAIDA Internet traffic traces [9]. We
processed 4 traces from the 2013 Anonymized Internet Traces
(AIT) dataset, 7 from the 2014 AIT dataset, 4 from the 2015
AIT dataset, and 2 traces from the 2016 AIT dataset. All
these traces were collected using the equinix-chicago passive
monitor [15]. In addition, all these traces were collected when
the backbone ISP link was 10GigE.

Each trace is 1-hour long containing the following: De-
tailed traces files in a compressed pcap format and packet
times files that contain nanosecond-precision timestamps. The
timestamps in each time file line up exactly with the packets
in the corresponding pcap file. Note that the timestamps in
each pcap file are truncated to a microsecond precision.

Using the network protocol analyzer tshark [16], we also
generated ipv4, ipv6, tcp, udp, and http subtraces from six of
the traces. We did that to better understand the impact of these
protocols on the variabilty of the aggregated traffic trace. Table
I lists the number of packes collected for each of the subtraces,
including the percentage to the total number of packets for
each aggregated trace. The trace label indicates the date that

it was collected and the direction of the packet flow (i.e., dirA
indicates the Chicago to Seattle flow and dirB indicates the
Seattle to Chicago flow). We also listed the pacjet, bits and
flow rates for each of the traces, as well as the link load. With
the exception of one trace (20140619-dirB, load: 62.7%), the
link was underutilized during the collection of the rest of the
traces. More detailed information about these traces can be
found in [15], [9].

A. Empirical Results

Figure 1 depicts the estimated Index of Variability curves
for all the 17 CAIDA aggregated traces. As shown, 9 of the
2013 and 2014 traces exhibit moderate to high variability
(burstiness) over all relevant time scales. Unlike the Hurst pa-
rameter, the Index of Variability clearly captures the fluctuating
burtiness of each traffic trace at each time scale. Only two of
the 2014 traces have very low variability for most time scales,
however, it slowly increases at high time scales. Clearly, the
2015 and 2016 packet traces do not exhibit any variability
over the times scales under study. That is, H,(7) = 0.5 for all
relavent time scales.

Figure 2 compares the variability of the aggregated traces
to the variability of its ipv4, ipv6, fcp, udp, and http subtraces
for the following traffic traces: 20130529-dirA, 20130529-
dirB, 20130620-dirA, 20130620-dirB, 20160218-dirA, and
20160218-dirB. The results shown in this figure are surprising,
and nowhere else such results were previously reported.

20130529 Traces: The ipv4 subtraces basically have the
same variability curves as with their corresponding aggregated
ones. This is expected since the aggregated traces consist
mostly of IPv4 packets (99.98% and 99.96%). For the dirA
trace, 88% of the packets were generated by the TCP transport
protocol. Hence, the variability curve of the 7cp subtrace is al-
most the same as with the varability curve of the aggreageted.
However, for the dirB trace, the packets generated by TCP
is about 68%, and therefore, the variability curve of the rcp
subtrace is different than the one of the aggregated. The
variability curves of the http subtraces are almost the same
as with the ones of the fcp subtraces, since HTTP operates
over TCP and, as seen in Table I, the majority of TCP packets
were generated by the HTTP application.

Both ipv6 subtraces depict high fluctuation in their variabil-
ity curves with an increasing trend. Since the number of IPv6
packets is only a very small fraction of the total number of
packets of the aggregated trace, the high variability of the ipv6
subtraces do not seem to have any impact on the variability
of the aggregated traces.

The udp subtraces are characterized by almost monotically
increasing variability curves. This is due to the nature of
the UDP protocol, a bursty packet (datagram) transmission
protocol. Comparing the fcp varibility curves with the curves
of the udp subtraces, it becomes evident that the oscillatory
behavior of the 7cp curves is due to the dynamics of TCP.

20130620 Traces: For both directions, the variability curves
of the agreggated traces follow closely to the ones of the rcp
and http subtraces, for the same reason as mentioned above.



TABLE I
THE CAIDA INTERNET TRAFFIC TRACES THAT WE ANALYSED, INCLUDING THE NUMBER OF IPv4 AND IPV6 PACKETS INCLUDED IN THESE TRACES. ALSO, THE NUMBER OF TCP, UDP
AND HTTP PACKETS 1S SHOWN ONLY FOR THE 2013 AND 2016 TRACES. IN ADDITION, THIS TABLE SHOWS SOME IMPARTANT TRAFFIC STATISTICS FOR EACH TRACE.

Trace Number of | Number of | Number of | Number of | Number of Pkts/s | Bits/s Load | Flows/s
IPv4 Pkts IPv6 Pkts TCP Pkts UDP Pkts | HTTP Pkts
(Fraction) (Fraction) (Fraction) (Fraction) (Fraction)

20130529-dirA | 1107530928 201139 979703011 122417898 804682651 | 297.78k | 1.62G | 16.3% 8.50k
(99.98%) (0.0182%) (88.44%) (11.05%) (72.64%)

20130529-dirB | 1284234871 456221 873723503 374057272 695070788 | 345.35k | 2.11G | 21.2% 16.40k
(99.96 %) (0.0355%) (68.01%) (29.11%) (54.10%)

20130620-dirA | 1179974998 196779 | 1063609052 111689230 929718974 | 317.25k | 2.21G | 22.2% 7.41k
(99.98 %) (0.0167 %) (90.12%) (9.46%) (78.78 %)

20130620-dirB | 1465553045 299262 | 1184436853 263167922 976258761 | 394.05k | 2.79G | 28.0% 17.16k
(99.98%) (0.0200%) (80.80%) (17.95%) (66.60%)

20140320-dirA | 1116009669 4553693 - - - | 301.23k | 1.46G | 14.6% 8.24k
(99.59%) (0.4064%) - - -

20140320-dirB 2100185181 745912 - - - | 564.77k | 4.32G | 43.4% 18.41k
(99.96%) (0.0355%) - - -

20140619-dirA 967713972 200208 - - - | 260.19k | 1.62G | 16.3% 9.23k
(99.98%) (0.0207%) - - -

20140619-dirB | 2822246142 1446259 - - - | 759.06k | 6.25G | 62.7% 28.26k
(99.95%) (0.0512%) - - -

20140918-dirA | 1898079340 3063416 - - - | 511.06k | 3.93G | 39.5% 11.01k
(99.84%) (0.1611%) - - -

20140918-dirB | 2026574556 907872 - - - | 545.02k | 4.06G | 40.7% 27.29k
(99.96%) (0.0448%) - - -

20141218-dirA | 1586482873 1330366 - - - | 426.83k | 2.82G | 28.3% 12.11k
(99.92%) (0.0838%) - - -

20150219-dirA 1245244103 1155036 - - - | 32843k | 2.11G | 21.2% 8.95k
(99.91%) (0.0927%) - - -

20150219-dirB | 2318481104 8100606 - - - | 613.07k | 436G | 43.8% 24.95k
(99.65%) (0.3482%) - - -

20150917-dirA | 1109704671 58427102 - - - | 313.59k | 1.78G | 17.9% 7.51k
(95.00%) (5.0000%) - - -

20150917-dirB | 1487443672 17092717 - - - | 403.90k | 2.93G | 29.4% 9.18k
(98.86%) (1.1361%) - - -

20160218-dirA | 1916892228 74647492 | 1775824548 198136019 | 1487647284 | 524.97k | 3.09G | 31.0% 12.55k
(96.25%) (3.7482%) (89.17 %) (9.95%) (74.80%)

20160218-dirB | 1653211782 90123691 | 1388687750 336057375 | 1155301323 | 459.97k | 3.25G | 32.6% 10.10k
(94.83%) (5.1696 %) (79.66 %) (19.27%) (66.27 %)

Again, these curves exhibit an oscillatory behavior due to the
dynamics of TCP. For the udp subtraces, the variability curves
have a similar trend as with the curves of the 20130529 traces.
Note that, for the dirB traces, the UDP packets make up about
18% of the total traffic trace. For the dirA traces, were not
enought IPv6 packets toward to the end of the traces, so we
were unable to accurately compute the ipv6 subtrace variability
curve of the same timescale range. Notable is the difference
between the ipv6 variability curves between this dirB subtrace
and 20130529 subtraces. It is clear so far that the behavior of
the variability curve of a traffic trace, and hence its burstiness,
is dynamic.

20160218 Traces: Suprisingly , all the subtraces of these
traces on both directions exhibit no variability over the times
scales under study (H,(7) = 0.5 for all relavent time scales).
These results, and the ones from Figure 1, lead to the following
question: why the 2013 and 2014 traces and subtraces exhibit
significant variability and the 2015 and 2016 traces (and their
subtraces) do not? What changed between the year 2014 and
20157 Analysing all the information about the traces, we could
not find a justifable reason. By further investigation, we found
the most probable cause in [17]: the source link speeds have

signficantly increased. The study in [17] presents results that
shows when the source link speed increases, the range of time
scales (lower part of times scales) that the variability is either
very low or absent increases towards to higher time scales.
Due to this, we strongly believe that the high variability of
the 2015 and 2016 traces has shifted to much higher time
scales, depending on how much the source link speeds have
increased.

IV. ConNcLusIoN

In this paper, we analysed the variability (burstiness) of 17
CAIDA Internet traffic traces collected in 2013, 2014, 2015
and 2016. The variability of these traces was obtained by
estimating the Index of Variability curves (H,(7)), a measure
of network traffic variability that has the ability to discern
qualitative differences between various traces. The following
summarizes the key observations:

o The Index of Variability clearly can capture the fluctu-
ating variability of each traffic trace over at each time
scale.

« The Index of Variability has the ability to reveal signifi-
cant differences between traffic traces. It is dynamic and
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its behavior depends on several factors, such as network
protocol dynamics and link speeds.

Source link speeds have a major impact on network traffic
variability. A significant increase in source link speed can
greatly reduce the burstiness of packet traffic over the
network perfomance relevant time scales. As the source
link speed increases, the variability is shifted to higher
times scales.

TCP traffic traces can yield variability curves that exhibit
oscillatory behavior. It was found in [17] that this oscilla-
tory and periodic behavior of the variability curve occurs
when the maximum TCP window size is smaller than the
delay-bandwidth product.

The 2013 and 2014 traces and subtraces exhibit signifi-
cant variability over a significant range of times scales,
while the ones collected in 2015 and 2016 do not. The
most probable reason for this is that prior to collecting
the 2015 and 2016 traces, the source link speeds must
have been significantly increased.
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Fig. 1. Each plot shows the estimated Index of Variability (IV) Curves for the traces indicated by the plot legends. The IV curves reveal that the 2013 and
2014 traffic traces exhibit burstiness, however the 2015 and 2016 traces do not.

Internet traffic traces.

The results indicate that Poisson or Markovian based
models can be used as analytical models for generating
traffic traces similar to the 2015 and 2016 CAIDA Internet
traffic traces. However, it is important to note that these
legacy models can only be used to approximate the be-
havior of network traffic under certain network scenarios
in which source link speeds are extremely high.
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