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ASSESSING SEARCH TERM STRENGTH IN SPOKEN TERM DETECTION

ABSTRACT

Spoken term detection (STD) is an extension of text-based
searching that allows users to type keywords and search
audio files containing recordings of spoken language.
Performance is dependent on many external factors such as
the acoustic channel, the language and the confusability of
the search term. Unlike text-based searches, the quality of
the search term plays a significant role in the overall
perception of the usability of the system. In this paper, we
present a system that predicts the strength of a search term
from its spelling that is based on an analysis of spoken term
detection output from several spoken term detection systems
that participated in the NIST 2006 STD evaluation. We
show that approximately 57% of the correlation can be
explained from the search term, but that a significant
amount of the confusability is due to other acoustic
modeling issues.

Index Terms— spoken term detection, voice keyword
search, information retrieval

1. INTRODUCTION

Spoken term detection (STD) systems differ from text
search engines in one significant manner — the match
between a keyword and the audio data is approximate and is
typically based on a likelihood computed from some sort of
pattern recognition system. The performance of such
systems depends on many external factors such as the
acoustic channel, speech rate, accent, language, and the
confusability of search terms. In this paper, our focus is on
the latter issue. Our goal is to develop algorithms to predict
the reliability or strength of a search term using the error
rate of the system as measure of the performance.

The accuracy of a search term is a critical issue for
frequent users of this technology. Unlike text searches,
sorting through audio data that has been incorrectly matched
can be a time-consuming and frustrating process. State of
the art systems based on this technology produce results that
are not always intuitive — a close acoustic match might not
necessarily be close in the semantic space. Therefore, the
goal of this work is provide users some prior knowledge of
which search terms are likely to be more accurate than
others. Password strength checkers, which are a similar
technology, have become very commonplace, and represent
a functional model for this work.

An online demo of the system is available at:
http.//www.isip.piconepress.com/projects/ks_prediction/demo/. A
screenshot is shown in Figure 1. Our general approach has
been to analyze error patterns produced by existing keyword
search systems and to develop a predictive model of these
errors. The basis for this work is the NIST Spoken Term
Detection (STD) conducted in 2006 [1]. This data is rather
unique because we have reference transcriptions for the
utterances as well as keyword search results for three of the
participants: BBN, IBM and SRI. With such data, we can
explore machine learning algorithms that attempt to develop
mappings between features derived from the spelling of a
keyword and the associated error rate for that keyword. This
process is summarized in Figure 2.

Note that this strength prediction function is not just a
function of the term’s spelling (and other linguistic
properties that can be derived solely from the spelling). For
example, if a term appears in audio data from a noisy
acoustic channel much different than the conditions of the
STD evaluation, the error rate associated with that term
might not be correctly predicted. Acoustic issues are
difficult to represent with this model. One way of
overcoming this problem is by marginalizing over all other
factors, either by imposing similar conditions for the entire
corpus (which is very difficult) or by using a very diverse
and large corpus to minimize the average effect of other
factors.

In this research, however, we do not have access to the
STD systems and we are simply given their output data on
various recognition and keyword search tasks. As a result of
this limitation, the error rate calculated for each term is not
completely marginalized over all other factors and
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Figure 1. A screenshot of a tool that assesses voice keyword
search term strength and displays a confidence measure.
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Figure 2. An overview of our approach to search term strength
prediction that is based on decomposing terms into features.

effectively contains some noise. Therefore, a secondary goal
from this work was to see precisely how much of the
performance can be explained simply from automatically
generated linguistic information.

2. SEARCH TERM STRENGTH PREDICTION

The goal of a typical STD system [1] is “to rapidly detect
the presence of a term in large audio corpus of
heterogeneous speech material.” STD systems for practical
reasons typically index the audio data as a preprocessing
step, allowing users to rapidly search the index files using
common information retrieval approaches. Indexing can be
done using speech to text (STT) systems with phonetic
acoustic models [2], or simpler engines based on phoneme
recognition [3][2]. The STT approach, which we will focus
on in this paper, is summarized in Figure 3.

STD like most detection tasks can be characterized in
terms of two kinds of errors: false alarms and missed
detections. The first type of error occurs when the system
declares an occurrence falsely and the second type occurs
when the system does not spot an actual occurrence. In
practice, there is always a trade-off between these two kinds
of errors and users can tune the system to work according to
the application requirements. The overall error could be
defined as a linear combination of these two terms. In this
paper, we give equal weights to both factors.

A summary of our approach is given in Figure 2. The
preprocessing block performs normalization. Post-
processing is an optional block to convert the predicted error
to a more proper score (i.e. score between 0-100) using a
deterministic function. A key element of this work is the
machine learning algorithm. We investigated three
approaches using standard MATLAB toolboxes [4]: linear
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Figure 3. An overview of a common approach to voice keyword
search that uses an STT system to perform indexing [2].

regression (regress), a feed-forward neural network (Neural
Network Toolbox) and regression trees (classregtree).

A fourth approach based on a k-nearest neighbor
(KNN) regression was also developed. An intuitive
approach to estimate the error associated to a new term is to
look at structurally similar terms that exist in the training
data and average their associated errors. This is known as
k-nearest neighbor regression. The only difficulty is to find
structurally similar terms. We use dynamic programming to
find the distance between different terms that can be
calculated based on phonetic transcriptions. In this way, we
can find phonetically similar terms in the training dataset
and use them to estimate the error for the new term.

The first step in the process, feature generation, is
perhaps the most interesting portion of this work. In order to
use the above algorithms, features should be extracted from
the spellings of the keywords. The first step is to convert
terms into phonetic representations using a combination of
dictionaries and letter-to-sound rules [5]. Converting to
broad phonetic class (BPC) and consonant-vowel-consonant
(CVC) representations can be done easily using a
conversion table. Other features such as duration, type of
initial and final phonemes, number of vowels and
consonants, ratio of vowels to consonants, number of letters,
number of syllables and also different N-gram
representations can be calculated using the basic phonetic
representation.

Some features are more subtle to compute. An initial
hypothesis in this work is that duration plays an important
role in search term accuracy[1]. Duration can be estimated
by using a reliable dataset of phonetically-segmented data to
construct a table for the average duration of all N-grams. By
converting each term into its N-gram representation we can
simply compute its average duration using this look-up
table. Here we have used a simpler approach based on the
monophone representation. Syllable counts, which are
correlated with duration, were computed using dictionary
lookup and syllabification software [6].

Each search term was converted to its feature
representation using the above approaches. These features
represent the input to the process. The search term error rate
was extracted from the NIST 2006 evaluation results. This
represents the desired output. Our experiments focused on
predicting error rates from these features.

3. EXPERIMENTATION

Our experiments were implemented using MATLAB.
Both closed loop and open loop tests were conducted. For
the closed loop case all data was used for both training and
testing. For the open loop case, data has been divided into
two disjoint sets (80% for training 20% for testing). This
partitioning was created randomly and repeated 100 times.
The results of these 100 independent experiments were
averaged to produce our error rate estimates. Mean square
error (MSE) and correlation (R) were used to measure the



performance of the algorithms.

Four datasets were used to generate the experimental
data used for the prediction function. First, we began with
the NIST 2006 evaluation results. This dataset consists of
evaluation results for three different sites [1]: IBM, BBN
and SRI and for three different kinds of sources: broadcast
news, telephone conversations and conference meetings. To
reduce the effect of noise we have selected terms that
occurred at least three times in the dataset.

This data was supplemented by speech recognition
output on the Fisher corpus provided by BBN. This data set
was significantly larger than the NIST dataset, and we
limited it to terms that occurred at least ten times.

Third, we used speech recognition output from the WSJ
task generated by the Aurora baseline system [7]. We have
used terms that occurred at least three times in the dataset.
Finally, to estimate duration, we used the TIMIT
phonetically transcribed dataset [8].

The first correlate we explored was duration, which our
practical experience tells us is significant. In Figure 4, we
explore error rate as a function of word duration, and
confirm that as a first-order effect, duration is important.
Several features, however, demonstrate this type of
relationship. In Table 1 through Table 3, we show results for
selection of feature sets on three different corpora.

In these tables, rows correspond to feature
combinations. For example, the third row in Table 1 is
labeled “Duration+Syll” which indicates that this feature set
combines duration and the number of syllables. “Cons”
refers to the number of consonants and “Vowels” refers to
the number of vowels. A compound term like “BPC
Bigrams” refers to bigrams of broad phonetic classes (BPC).
“CVC” refers to a reduction of each phoneme label to its
consonant or vowel class.

From these tables we can conclude that fairly simple
feature combinations resulted in a correlation close to 0.5.
Performance does not improve significantly when more
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Figure 4. The relationship between duration and error rate shows
that longer words generally result in better performance.

feature combinations are added, indicating there is little new
information in these features.

We see from the first three tables that performance on
the NIST and BBN data is different from WSJ. This is an
indication of intrinsic differences between STD and speech
recognition systems. Best performance obtained for WSJ
with R=0.57. The best performance for BBN gives R=0.53.
This most likely relates to the more carefully controlled
speech rate for the WSJ corpus. Generally, we can see the
BBN data set gives better results and is stable over a variety
of algorithms and feature sets. The reason for this

Table 1. Performance of a variety of feature combinations on the
NIST 2006 data for three different learning algorithms.

Data Source: NIST 2006

Closed-Loop Open-Loop
Features
LR NN RT LR NN RT
MSEJ R IMSEJ] R JMSE] R JMSE] R [JMSE R JMSEJ R
[Duration 0.044 0.46f 0.06 043 0.04 048 0.05f 0.46f 0.06] 0414 0.05§ 045
syl 0.05§ 0.28§ 0.07 0234 0.05f 028§ 0.05§ 0.284 0.07 0.22f 0.05§ 0.27
Duration+#Syll 0.04) 0.46f 0.05 0.451 0.04 0.53f 0.05f 0.46f 0.06| 0.38) 0.05§ 0.46
#Syll+#Cons 0.05§ 0.324 0.07 0.29f 0.05f 041§ 0.05§ 031§ 0.07 0.24f 0.05§ 0.31
[Duration+#Syll+#Cons 0.04) 0.46f 0.06, 0.43f 0.04] 0.60f 0.05§ 0.46Q 0.06 0374 0.05§ 041
[Duration+Length 0.04) 0.46Q 0.06, 0.44 0.04 0.55Q 0.05§ 0.46f 0.07 0384 0.05§ 041
[Duration+Length/Duration 0.04§ 0.47f 0.06 0.46f 0.02f 076§ 0.05§ 0.47§ 0.06 0.44f 0.07§ 0.28

[Duration+#Syll+Length/Duration]  0.04] 0.47§ 0.05 0474 0.02f 079§ 0.05§ 0.46§ 0.05 0.42f 0.06§ 0.33

[Duration+#Cons+Length/Durati
on

0.04§ 0.47f 0.05 0474 0.02f 078§ 0.05§ 0.464 0.05 0424 0.07§ 031

Duration+#Vowels/#Cons+Lengt

" 0.044 0.47¢ 0.05 0474 0.02f 0.80f 0.05§ 0.46§ 0.05 0434 0.07§ 031
h/Duration

[Duration+#Cons+#Vowels/#Con

s 0.044 D.46f 0.06 0.44) 0.04 0.588 0.05§ 045§ 0.06 0374 0.06§ 0.32
[BPC BIGRAMS(36) 0.05§ 0.388 0.06 0.29f 0.024 0.77§ 0.06§ 0.23f 0.08 0.08§ 0.08§ 0.12
[CVC BIGRAMS +TRIGRMAS 0.05§ 0358 0.06 0294 0.04f 0.50f 0.05§ 0.290 0.07 0.15f 0.06§ 0.19

[CVC MONOGRAMS
[+BIGRAMS+TRIGRAMS
Duration+#Cons+Length/Durati
jon+CVC1

0.05§ 0354 0.07 0284 0.04§ 050§ 0.05§ 0.29] 0.08 0.15§ 0.06§ 0.18

0.04) 0.47Q 0.05 0454 0.02 0.79f 0.05f 0.46f 0.06] 0414 0.07§ 031

[Duration+#Cons+Length/Durati

.04] 047] 0. as| o 7] 00s] o4 ; )
oreves 0.04] 047 o0s| oas| 002] o7s] o0s] oas| oos] 03] 007f 030
?:"féi:"'#C""s**sy"m""‘“°" 004 047] 005 oas] 002] o079 00s] o46] 00s] oa1] 0.07] 029

Table 2. Performance of the same features is shown for the BBN
Fisher data. Results correlate well with the NIST STD data.

Data Source: BBN

Closed-Loop Open-Loop
Features
LR NN RT LR NN RT
MSE R VMSEj] R JMSE] R IMSEJ R MSE] R JMSE] R
[Duration 0.03] 0.40§0.03§ 0.44§ 0.0340.4240.03] 0404 0.03§0.43] 0.03§0.42
syl 0.03] 0.47§0.05§ 0.42§ 0.0340.494 0.03] 047 0.054 0.42 0.03§0.49
Duration+#Syll 0.03] 0.4840.04) 0.48) 0.0340.52| 0.03§ 0.48] 0.04§0.47Q 0.03§ 0.51
J#syli+#Cons 0.03] 0.4940.05§ 0.46] 0.0340.52§ 0.03§ 0.49§ 0.05§ 045} 0.03§0.51
[Duration+#Syll+#Cons 0.03] 0.49§0.03§ 0.51 0.0340.55§ 0.03§ 0.49] 0.03] 0.50f 0.03j 0.50
Duration+Length 0.03] 0.4840.03) 0.52 0.0340.53] 0.03§ 0.48] 0.03J0.51} 0.03§0.50
Duration+Length/Duration 0.03] 0.4940.04) 0.49] 0.0340.61] 0.03] 0.49] 0.04§ 0.48] 0.04] 0.42

[Duration+#Syll+Length/Duration]  0.03] 0.50§0.03§ 0.53] 0.02J0.66 0.03§ 0.50] 0.03] 0.52§ 0.04§ 0.42

[Duration+#Cons+Length/Durati

on

0.03] 0.50§0.04§ 0.53) 0.0240.68 0.03) 0.50] 0.04§ 0.52] 0.04] 0.41

—
[Duration+#Vowels/#Cons+Lengt
h/Duration

— —
[Duration+#Cons+#Vowels/#Con
s

0.03] 0.50§0.03§ 0.54Q 0.0240.67 0.03§ 0.50] 0.03§0.53] 0.04] 0.41

0.03] 0.49§0.04) 0.51) 0.0340.56 0.03§ 0.49] 0.04§ 0.50§ 0.03§ 0.51

[5PC_BIGRAMS(36) 0.03| 051§0.03] 0.53] 0.02f0.70f 0.03] 0.50] 0.03] 0.48] 0.04f0.41
CVC BIGRAMS +TRIGRMAS 0.03] 0.53J0.04] 050] 0.03f0.56] 0.03] 0.52] 0.04] 048] 0.03f051
kbl
[CVC MONOGRAMS
i orANe 0.03] 053J0.03] 054] 0.03fo57f 0.03f 0.52] 0.03f 052 0.03f051
Puration+#Cons+LengthiDurati | ¢ 03] 0 50]0.03| 0.55] 0.02f0.70] 0.03] 0.50] 0.03] 053] 0.04f 0.40
lon+CVC1

-
Puration+#Cons+LengthiDurati | 431 o 500 0.03] 0.53] 0.02f0.69] 0.03] 0.50] 0.03] 0.52] 0.04]0.40
jon+CVC4

|°(‘:‘\’2§;’"*"C°"s"‘sy""’“""°" 0.03| 049o.04| 0.50] 0.02f0.66] 0.03) 0.49) 0.04]0.48] 0.04]0.43




Table 3. Performance on the WSJ dataset.

Data Source: WSJ

Closed-Loop Open-Loop
Features
LR NN RT LR | RT
mse [ R [use] R Juse] R Jwmse] R Juse] R Juse] R
Duration 0.024 0.06 4 0.02§0.404 0.01) 0.66 0.0240.06§0.02§ 0.3540.01f 0.56
syl 0.0240.254 0.02 0.184 0.02) 0.26§ 0.02§0.2540.02§ 0.180.02 0.26
Duration+#Syll 0.02§ 0.28§ 0.024 0.40§ 0.01§ 0.70§ 0.02§0.28§0.02§ 0.3540.01] 0.55
#Syll+#Cons 0.0240.27§ 0.03§ 0.22§ 0.02 0.35§ 0.02§0.27§0.03§ 0.180.02 0.25
Duration+#Syll+#Cons 0.024 0.314 0.024 0.38§ 0.01§ 0.77] 0.02§0.30§0.02§ 0.270.02 0.46
Duration+Length 0.024 0.314 0.024 0.45§0.01§ 0.73§ 0.02§0.32§0.02§ 0.37§0.01§ 0.50
Duration+Length/Duration 0.0240.284 0.02§ 0.494 0.01f 0.70§ 0.02§0.2940.02§ 0.4140.01§ 0.57

Duration+#Syll+Length/Duration| 0.02§ 0.294 0.02§ 0.28 0.01} 0.72§ 0.02§0.28§0.02§ 0.21§0.01§ 0.52

—
Puration+#Cons+LengthiDuratio} 551 0.30] 0.02] 0.41f 0.01| 0.74] 0.02f0.20f0.02] 0.30f0.01] 0.52

In
-
[Puration+#VowelsiCons+Lengt

. 0.0240.294 0.024 0.4040.01) 0.754 0.020.28§0.02 0.32§0.01§ 0.52
h/Duration

Duration+ #Cons+

0.02§0.31§0.02§ 0.4440.01f 0.77§ 0.02§0.31§0.02 0.37§0.02§ 0.48
f#Vowels/#Cons

[BPC_BIGRAMS(36) 0.02§ 0.40§ 0.02 0.224 0.01] 0.66 0.02§0.21§0.03 0.0540.034 0.12
[CVC BIGRAMS +TRIGRMAS 0.0240.40§ 0.02§ 0.27 0.02] 0.45§ 0.02§0.3240.02§ 0.160.02 0.23
[—
[CVC MONOGRAMS
| BIGRAMS+TRIGRAMS 0.024 0.40§ 0.02§ 0.254 0.02 0.45§ 0.02§0.32§0.02§ 0.1540.02 0.23

—
[Duration+#Cons+Length/Duratio
jn+CVC1
[Duration+#Cons+Length/Duratio
In+CVC4

0.0240.31§0.02§0.3840.01f 0.78§ 0.024§0.30§0.02§ 0.27 § 0.02§ 0.48

0.0240.30§ 0.02 0.384 0.01f 0.75§ 0.02§0.28§0.02§ 0.28§0.02 0.49

—
#Cons+#Syll/Duration

0.0240.34§ 0.02§ 0.394 0.01] 0.76§ 0.02§0.33§0.02§ 0.31§0.01j 0.53
+CvC3

phenomenon is related to the size of the BBN data set,
allowing noise reduction through averaging.

It can be seen that “duration” is the single most
important predictor for all data and algorithms. Many other
features, like length and number of syllables, are effectively
different approximations of duration. This is the reason that
adding these features together does mnot improve
performance significantly. However, the latter statement is
not true for features like BPC and CVC N-grams. As it can
be seen from these tables, these features also give
comparable results to the best result accessible by duration
and its approximations. The last three rows of these tables
show the results of using duration and its related features
along with some CVC monograms.

Table 4 shows the result for the KNN-based algorithm
for the BBN data. Due to KNN’s need for large data, only
the data from the BBN set was used. For each new data
point, we compute its distance from all other points. This
computation is achieved using a dynamic programming
algorithm in which we try to find the smallest edit
distance [9][8] between the given phonetic representation of
a new term and all phonetic representations of terms
existing in training data. K is the number of points that we
use to compute error for the new term by averaging. In this
algorithm we use a weighted averaging method in which the
weight of each data point is reciprocal to its distance from
the new data point. The results for K >3 are comparable to
the first three algorithms. Table 4 shows K controls the error
rate for both open loop and closed loop cases and there is a
tradeoff between these error rates.

Table 4. Performance on the BBN data using the KNN algorithm.
As expected, the closed-loop results are good, and open loop
performance increases with the number of clusters.

Data Source: BBN
K Closed-Loop Open-Loop
MSE R MSE R
1 0.00 0.97 0.05 0.32
3 0.02 0.74 0.03 0.43
100 0.03 0.54 0.03 0.53
400 0.03 0.53 0.03 0.51

4. CONCLUSION

In this paper, the problem of assessing search term
strength for STD systems has been introduced. Four
relatively simple algorithms were explored using a wide
variety of feature combinations. The best open loop
performance achieved a maximum R value of approximately
0.5. This leads us to believe there are limits to the ability of
the proposed prediction paradigm to account for recognition
errors. Further refinement of the predictor can come from
either an improved machine learning algorithm or
incorporation of more knowledge of the acoustic models
used in the recognition engines. We are currently exploring
hierarchical Bayesian frameworks to construct a more
powerful predictor.
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