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Abstract 
We propose Linear Dynamic Models (LDMs) as an 
alternative to hidden Markov models (HMMs) for robust 
speech recognition in noisy environments. HMMs in speech 
recognition typically utilize a diagonal covariance matrix 
assumption in which correlations between feature vectors for 
adjacent frames are ignored. LDMs use a state space-like 
formulation that explicitly models the evolution of hidden 
states using an autoregressive process. This smoothed 
trajectory model allows the system to better track speech 
dynamics in noisy environments. We demonstrate that LDMs 
provide a 4.9% relative improvement on the Aurora-4 clean 
evaluation set, and a 6.5% relative improvement on the noisy 
evaluation set. 
Index Terms: linear dynamic models, speech recognition, 
acoustic modeling, nonlinear statistical modeling 

1. Introduction 
Over the past several decades, hidden Markov 
models (HMMs) have been the most popular approach for 
acoustic modeling in speech recognition. An HMM can be 
regarded as a finite state machine in which the states of the 
system evolve in accordance with an inherent deterministic 
mechanism and the emission probability function maps the 
hidden states to observation domain. HMM modeling 
techniques for speech recognition have relied on the standard 
assumption that speech features are temporally uncorrelated. 
Recent theoretical and experimental evidence [1][2][3] has 
suggested that exploiting frame to frame correlations in the 
speech signal will further improve performance of speech 
recognition systems by developing an acoustic model which 
represents higher order statistics in the signal. The phone level 
in the speech recognition modeling hierarchy is a good level 
to explore exploiting such statistics [4]. 

Linear Dynamic Models (LDMs) have generated 
significant interest in recent years [4][5] due to their ability to 
model higher order statistics. The fundamental idea behind an 
LDM is to describe a linear dynamic system as underlying 
states and observables with a measurement equation to link 
the internal states to the observables, and an autoregressive 
model to capture the time-evolution of the states [2][4]. An 
LDM models every word or phoneme segment as a 
nonseparable unit which incorporates the dynamic evolution 
of the hidden states. Digalakis et al. [3] present both an LDM 
maximum likelihood approach and a derivation of the EM 
algorithm [3]. In subsequent work by Frankel and King [4], 
LDMs were applied to the acoustic modeling problem to 
model articulatory dynamics. 

In this paper, we began with Digalakis and Frankel’s work 
as a starting point, and refined these approaches for a more 
difficult evaluation task – the Aurora-4 large vocabulary 
evaluation task [6] that includes clean and noisy speech data 
as well as conditions simulating mismatched training 
conditions. We show that LDM provides improved 

performance in noisy environments. 
The outline of this paper is as follows. In Section 2 we 

briefly review the underlying concept behind LDMs including 
model assumptions and equations, state inference and 
smoothing, and EM training. In Section 3, we describe the 
preliminary sustained phoneme classification experiments that 
demonstrate the ability of LDM to model acoustics better than 
traditional HMM. We also present phonetic recognition 
results of the Aurora-4 corpus which demonstrates LDM as a 
good acoustic modeling technique for noise robust speech 
recognition. We conclude with a discussion of our ongoing 
research on extending these approaches to more challenging 
and complex speech recognition tasks. 

2. Linear Dynamic Models 
Linear Dynamic Models (LDMs) are an example of a 
Markovian state space model, and in some sense can be 
regarded as analogous to an HMM since LDMs do use hidden 
state modeling. With LDMs, systems are described as 
underlying states and observables combined together by a 
measurement equation. Every observable will have a 
corresponding hidden internal state. This is illustrated in 
Figure 1. 

Suppose yt is a p-dimension observation vector and xt is a 
q-dimension internal state vector. The LDM formulation is 
based on a state-space model: 
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where F is the state evolution matrix and H is the observation 
transformation matrix. The variables ωt and νt are assumed to 
be uncorrelated white Gaussian noise with covariance 
matrices Q and R, respectively, which drive the linear 
stochastic system. The sequence of observations, yt, and the 
sequence of underlying states, xt, are finite dimensional and 
follow multivariate Gaussian distributions for every time t. 
The first equation is an autoregressive state process which 
describes how states evolve from one time frame to the 
next [3]. The second equation maps the output observations to 
the internal states. 

The system’s hidden states are the deterministic 
characteristic of an LDM which are also affected by random 
Gaussian noise [7]. The state and noise variables can be 
combined into one single Gaussian random variable. Based on 
Figure 1, the conditional density functions for the states and 

 

Figure 1: Internal states and observations in a LDM. 



output can be written as follows: 

 
Figure 2: A Kalman Filter 
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According to the Markovian assumption, the joint probability 
density function of the states and observations becomes: 
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The system’s states are hidden. We need to estimate the 
hidden state evolution given an N-length observation 
sequence yt and the model parameters. This can be 
accomplished using a Kalman filter combined with a Rauch-
Tung-Striebel (RTS) smoother. The Kalman filter provides an 
estimate of the state distribution at time t given all the 
observations up to and including that time. The RTS smoother 
gives a corresponding estimate of the underlying state 
conditions over the entire observation sequence. For the 
smoothing part, a fixed interval RTS smoother is used to 
compute the required statistics once all data has been 
observed.  

 
Figure 3: A Kalman filter with an RTS smoother 

The RTS smoother adds a backward pass that follows the 
standard Kalman filter forward recursion [2]. In addition, in 
both the forward and the backward pass, we need some 
additional recursions for the computation of the cross-
covariance. The RTS equations are: 
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A synthetic LDM model with two-dimensional states and 
one-dimensional observations was created to demonstrate the 
contribution of RTS smoothing. In Figure 2 we show the state 
predictions of this LDM model using traditional Kalman filter. 
In Figure 3, the performance of the Kalman filter with RTS 
smoothing is shown. In both figures, the green lines represent 
the trajectories of the two-dimensional true state evolution for 
our synthetic LDM model. The blue points are the scatter plot 
of the noisy observations of the LDM model. 

We can see the predicted results roughly simulate the true 
state evolution. After adding RTS smoothing into the Kalman 
filtering process, we observe significantly better prediction for 
the system internal states. 

The Expectation-maximization (EM) algorithm [7] is used 
to find the maximum likelihood estimates of parameters for a 
specific word or phone, where the model depends on 
unobserved latent variables. The relevant equations are: 
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The E step algorithm consists of computing the conditional 
expectations of the complete-data sufficient statistics for 
standard ML parameter estimation. Therefore, the E step 
involves computing the expectations conditioned on 
observations and model parameters. The RTS smoother 
described previously can be used to compute the complete-
data estimates of the state statistics. EM for LDM then 

consists of evaluating the ML parameter estimates by 
replacing xt and xtxt

T with their expectations. 
The EM algorithm converges quickly and is stable for our 

synthetic LDM model of two-dimensional states and one-
dimensional observations. After initilizing this LDM model 
with an identity state transition matrix and random 
observation matrix, the first iteration of ML parameter 
estimation was applied to update the model parameters. Log-
likelihood scores of observation vectors were calculated and 
saved in order to perform further analysis. 

EM training was applied for 30 iterations. After the 
training recursion, intermediate log-likelihood scores of 
observation vectors for each iteration of LDM were plotted as 
a funtion of the number of iterations. This plot is is refered as 
the EM evolution curve. We explored 1-, 4-, 7-, and 10-
dimensions for a state in the LDM approach, and applied EM 
training for each specified dimension. In Figure 4, the EM 
evolution curve is shown as a function of the state dimension. 

 
Figure 4: EM evolution vs. state dimension 



One important practical issue about our EM 
implementation is that the linear transformation matrix F 
might lead the ML parameter estimation to produce erroneous 
parameters when |F| > 1. The reason for this is that the LDM 
state evolution would grow exponentially if the matrix F is 
not a decaying transformation [4]. Such behavior may not be 
apparent over a small numbers of frames, but it appears quite 
often when the training dataset gets large, especially in the 
situation where the state is not reset between models. 

In this case, the most common solution is to use Singular 
Value Decomposition (SVD) to force |F| < 1 after each 
iteration of EM training. SVD provides a pair of orthonormal 
bases U and V, and a diagonal matrix of singular values S 
such that: 

 .TUSVF = (6) 

Every element of S greater than 1-ε will be replaced by 1-ε for 
a small number of ε (usually ε = 0.005). By adding the SVD 
component, we attain good model stability for LDM training, 
as was described in [2]. 

For a given speech segment, the likelihood that this 
segment was generated from a specific LDM can be 
calculated from Kalman filter equations. For a standard 
Kalman Filter, the state estimation error at time t can be 
represented as: 
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After replacing yt with the observation equation, the error 
term becomes: 
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The associated covariance is: 
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Since errors are assumed uncorrelated and Gaussian, the log-
likelihood of an N-length observation sequence yt given the 
model parameters can be calculated as: 
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where et and Σet are computed as part of the standard Kalman 
filter recursions. In classification applications, the latter 
normalization term can be omitted because it is constant [2]. 

Some researchers report that the state’s contribution to the 
error covariance Σet is detrimental to classification 
performance [2]. During EM training, the resulting 
fluctuations in the likelihoods computed during the segment-
initial frames have the most effect on the overall likelihood of 
shorter phone segments. For shorter speech segments, it is 
recommended to replace the error covariance calculation 

 .1| RHHe T
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with 
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However, our experimental results did not show a 
performance improvement for shorter speech segments by 
using this approach. Hence, in the following experiments, the 
LDM implementations used the traditional error covariance 
form. 

3. Pilot Classification Experiments 
Since LDM has proven to be effective on simulated data, a 
logical next step was to apply it to the classification of 
phonetic segments in speech. Our first experiment involved 
evaluating LDM as a classifier on a simple database 
consisting of a few phones clearly articulated by a small 
group of speakers. This data was used to gain a better 
understanding of key algorithm parameters and their impact 
on convergence. We refer to this data as the sustained phones 
database. 

The sustained phone database is composed of 2 speakers 
with 3 phones recorded for each speaker. Each speaker 
produced 0.5 second utterances of the following phonemes: 
one vowel ‘aa’, one nasal ‘m’ and one fricative ‘sh’ at a 
sampling rate of 16 kHz. Feature vectors were generated by 
computing 12 mel-scaled cepstral coefficients and absolute 
energy. A frame duration of 10 milliseconds and a window 
duration of 25 milliseconds was used for feature extraction. 
The training set consisted of 210 examples (70% of the 
sustained phone database) of 3 phones from two speakers and 
the test set consisted of 90 examples (30% of the sustained 
phone database). 

After the data recording and feature extraction, we 
initialized 3 LDMs (phonemes ‘aa’, ‘m’, and “sh”) using the 
following strategy: state transition matrix as identity matrix; 
observation matrix as random entries; observation noise 
covariance as identity matrix; state transition matrix as 
identity matrix multiplied by a factor 0.1. The EM algorithm 
was used for training. We observed that EM training 
converges after approximately 5 iterations. Different 
dimensionalities of the state-space were examined and we 
found 13 dimensions were adequate. Increasing the 
dimensionality of the state-space to 40 did not improve the 
classification accuracy in this case. 

An HMM system with GMMs was built as the benchmark 
to evaluate LDM as a phoneme classifier. Table 1 summarizes 
the relative difference in classification accuracy between 
LDMs and HMMs. We see that the classification accuracy of 
the LDM system is 98.9%, which outperforms the best HMM 
baseline classification accuracy of 91.1% (8-mixture). In the 
next section, we will further assess LDMs on a large 
vocabulary evaluation corpus Aurora-4. 

Table 1. Classification (% accuracy) results for 
sustained phone database. 

model vowel 
aa

nasal 
m 

fricative 
sh total 

HMM 
(2-mixt) 66.67 70.0 96.77 77.8 

HMM 
(4-mixt) 90.0 70.0 100 86.7 

HMM 
(8-mixt) 100 73.33 100 91.1 

LDM 100 96.67 100 98.9 



4. Aurora Experiments 
Motivated by the encouraging results on the sustained phone 
classification experiment, we continued to evaluate LDMs on 
the Aurora-4 large vocabulary evaluation corpus [6]. This 
corpus is a well-established LVCSR benchmark that does not 
require extensive computational resources. The data was 
generated from a machine readable corpus of Wall Street 
Journal news text.  The corpus is divided into a training set 
and an evaluation set.  The training set consists of 7,138 
utterances from 83 speakers totaling in 14 hours of speech.  
The evaluation set consists of 330 utterances from 8 speakers.   
All utterances were generated at 16 kHz. 

The HMM system is used to generate alignments at the 
phone level. Each phone instance is treated as one segment. A 
total of 40 LDM phone models, one classifier per model, were 
used to cover the pronunciations. Each classifier was trained 
using the segmental features derived from 13-dimensional 
frame-level feature vectors comprised of 12 cepstral 
coefficients and absolute energy. The full training set has as 
many as 30k training examples per classifier. Each phone-
level classifier is trained as a one-vs-all classifier. The 
classifiers are used to predict the probability of an acoustic 
segment. 

Table 2 summarizes the results of the Aurora-4 phoneme 
classification experiments. The baseline system is composed 
of 3-state HMMs with varying numbers of mixtures. We show 
results only for 4-mixture GMMs since the performance 
increase for larger mixtures was only marginal. The HMM 
system achieves up to 46.9% and 36.8% accuracy for the 
clean evaluation data and noisy evaluation data respectively. 
For the noisy evaluation data, six different kinds of noise 
(Airport, Babble, Car, Restaurant, Street, and Train) were 
added randomly to better simulate the real world noisy 
environment.  

From Table 2, we can see that the LDM classifiers 
achieve superior performance to the HMM classifiers with a 
classification accuracy of 49.2% for the clean evaluation data 
and 39.2% for the noisy evaluation data. This represents a 
4.9% relative and a 6.5% relative increase in performance 
over a comparable HMM system with 3-state models. We 
claim that the LDM model generalizes better than HMM 
across different channel conditions, which makes LDM a 
noise robust speech recognition technique. 

5. Conclusions and Future Work 
In this paper, we proposed LDMs as a noise robust acoustic 
modeling technique for speech recognition. EM-based 
training algorithms and other related issues such as model 
initialization and dimensionality were investigated. We 
presented results on two tasks: a sustained phone 
classification experiment and a phone classification 
experiment on the Aurora-4 large vocabulary corpus. In these 
two experiments, LDMs outperformed baseline HMMs, 
particularly for the noisy evaluation data set. We believe that 

the state transition noise component and measurement noise 
component in LDM equations are the major contribution for 
the noise robust characteristic of LDMs. Theoretical 
verification is being investigated and will be reported later. 

We are currently developing a HMM/LDM hybrid 
decoder architecture to model the frame correlation using 
LDMs as well as utilizing HMMs techniques for phone 
segment alignment. Preliminary experiments will be 
presented on the Alphadigits (AD) and Resource Management 
(RM) speech corpora. This HMM/LDM hybrid decoder 
architecture will be a good evaluation of LDMs on continuous 
speech recognition tasks, and can be compared to other hybrid 
decoders we have developed that utilize other nonlinear 
statistical models (e.g., support vector machines and relevance 
vector machines). 

6. Acknowledgements 
This material is based upon work supported by the National 
Science Foundation under Grant No. IIS-0414450. Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science 
Foundation. 

7. References 
[1] Digalakis, V., “Segment-based Stochastic Models of Spectral 

Dynamics for Continuous Speech Recognition,”  Ph.D. 
Dissertation, Boston University, Boston, Massachusetts, USA, 
1992. 

[2] Frankel, J., “Linear Dynamic Models for Automatic Speech 
Recognition,”  Ph.D. Dissertation, The Centre for Speech 
Technology Research, University of Edinburgh, Edinburgh, UK, 
2003. 

[3] Digalakis, V., Rohlicek, J. and Ostendorf, M., “ML Estimation 
of a Stochastic Linear System with the EM Algorithm and Its 
Application to Speech Recognition,” IEEE Transactions on 
Speech and Audio Processing, vol. 1, no. 4, pp. 431–442, 
October 1993. 

[4] Frankel, J. and King, S., “Speech Recognition Using Linear 
Dynamic Models,” IEEE Transactions on Speech and Audio 
Processing, vol. 15, no. 1, pp. 246–256, January 2007. 

[5] Tsontzos, G., Diakoloukas, V., Koniaris, C., and Digalakis, V., 
“Estimation of General Identifiable Linear Dynamic Models 
with an Application in Speech Recognition,” Proceedings of the 
IEEE International Conference on Acoustics, Speech and Signal 
Processing, pp. IV-453– IV-456, Honolulu, Hawaii, USA, 
April 2007. 

[6] Parihar, N. and Picone, J., “An Analysis of the Aurora Large 
Vocabulary Evaluation,” Proceedings of the European 
Conference on Speech Communication and Technology, 
pp. 337-340, Geneva, Switzerland, September 2003. 

[7] Roweis, S. and Ghahramani, Z., “A Unifying Review of Linear 
Gaussian Models,” Neural Computation, vol. 11, no. 2, 
February 1999. 

[8] Ostendorf, M., Digalakis, V. and Kimball, O., “From HMMs to 
Segment Models: A Unified View of Stochastic Modeling for 
Speech Recognition,” IEEE Transactions on Speech and Audio 
Processing, vol. 4, no. 5, pp. 360–378, September 1996. 

[9] Picone, J., Pike, S., Regan, R., Kamm, T., Bridle, J., Deng, L., 
Ma, Z., Richards, H. and Schuster, M.,  “Initial Evaluation of 
Hidden Dynamic Models on Conversational Speech,”  
Proceedings of the IEEE International Conference on Acoustics, 
Speech and Signal Processing, pp. 109-112, Phoenix, Arizona, 
USA, May 1999. 

Table 2. Classification (% accuracy) results for the 
Aurora-4 large vocabulary corpus (the relative 

improvements are shown in parentheses). 

model clean 
dataset 

noisy 
dataset 

HMM 
(4-mixt) 46.9(-) 36.8(-) 

LDM 49.2 (4.9%) 39.2 (6.5%) 

[10] Rosti, A. and Gales, M., “Generalized Linear Gaussian 
Models,” Cambridge University Engineering, Technical Report, 
CUED/F-INFENG/TR.420, 2001. 

[11] Ghahramani, Z. and Hinton, G. E., “Parameter Estimation for 
Linear Dynamical Systems," Technical Report CRG-TR-96-2, 
University of Toronto, Toronto, Canada, 1996. 


	1. Introduction
	2. Linear Dynamic Models
	3. Pilot Classification Experiments
	4. Aurora Experiments
	5. Conclusions and Future Work
	6. Acknowledgements
	7. References

