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Abstract 
In this paper, we combine traditional MFCCs with nonlinear 
dynamic invariants in an effort to produce a more robust 
feature vector for continuous speech recognition. This new 
feature vector exploits the underlying nonlinear dynamic 
properties that traditional linear techniques fail to capture. 
We performed a set of phoneme classification experiments 
using these new features and saw a maximum relative 
improvement of 10.3% for certain phoneme types. 
Evaluations of the Aurora-4 continuous speech recognition 
corpus show a maximum relative increase of 11.1% for the 
clean evaluation set. However, an average relative decrease 
of 7.6% was observed for the data sets containing noise. 
Index Terms: nonlinear systems, nonlinear features, speech 
recognition 

1. Introduction 
For the past several decades, acoustic modeling for speech 
recognition has been based on the source-filter model and 
one-dimensional wave propagation in the vocal tract. The 
signal processing techniques that parameterize acoustic 
speech data into features operate primarily in the signal's 
frequency domain. This approach models the vocal tract as a 
linear filter and captures the lower-order characteristics of the 
speech production process. Recent theoretical and 
experimental evidence has suggested the existence of 
nonlinear characteristics in different types of speech and that 
that these characteristics contain significant information about 
speech production. While the traditional linear representation 
of speech has shown to be a reasonable means of acoustic 
modeling, it fails to capture this higher-order information of 
the acoustic dynamic system [1][2]. 

Dynamic systems can be represented by phase space 
models, where the states of the system evolve in accordance 
with a deterministic evolution function, and the measurement 
function maps the states to the observables. The path traced 
by the system’s states as they evolve over time is referred to 
as a trajectory. An attractor is defined as the set of points in 
the state space that are accumulated in the limit as t→∞. 
Invariants of a system’s attractor are measures that quantify 
the topological or geometrical properties of the attractor and 
do not change under smooth transformations of the space. 
These smooth transformations include coordinate 
transformations such as phase space reconstruction of the 
observed time series [3]. 

Dynamic invariants are a natural choice for characterizing 
the system that generated the observable. These measures 
have been previously studied in the context of analysis and 
synthesis research [3][4] and more recently in the context of 
speech recognition [5]. Our previous work involves a 
thorough analysis of these invariants and their ability to 
discriminate between different types of speech signals [6]. 

Using a small database of elongated pronunciations of 
phones, we measured the between-class separation in a 
feature space comprised of these invariants and found that 
they were capable of discriminating between sustained 
phones. 

In this paper, we continue our analysis of three standard 
dynamic invariants: Lyapunov exponents, fractal dimension, 
and Kolmogorov entropy. Lyapunov exponents [7] associated 
with a trajectory provide a measure of the average rates of 
convergence and divergence of nearby trajectories. Fractal 
dimension [8] is a measure that quantifies the number of 
degrees of freedom and the extent of self-similarity in the 
attractor’s structure. Kolmogorov entropy [8] defined over a 
state-space, measures the rate of information loss or gain over 
the trajectory. These measures search for a signature of chaos 
in the observed time series. Since these measures quantify the 
structure of the underlying nonlinear dynamic system, they 
are prime candidates for feature extraction of a signal with 
strong nonlinearities. The motivation behind studying such 
invariants from a signal processing perspective is to capture 
the relevant nonlinear dynamic information from the time 
series – something that is ignored in conventional 
spectral-based analysis. 

Recent work has shown that the combination of fractal 
dimension with Mel-frequency cepstral coefficients (MFCCs) 
improves recognition performance for speech contaminated 
with noise [9]. This provides sufficient motivation for an 
investigation into additional dynamic invariants. We combine 
the three invariants mentioned above with the traditional 
MFCCs to create a new feature vector that exploits both the 
linear acoustic model and the nonlinear dynamic information 
of the signal. We use this new feature vector to evaluate the 
Aurora-4 large vocabulary evaluation corpus and compare the 
recognition accuracy to a system using only MFCCs. The 
outline of this paper is as follows. In Section 2 we review 
phase-space reconstruction techniques, which are the starting 
point for most nonlinear dynamic system analysis. We 
provide a brief review of the algorithms we employed for the 
extraction of three dynamic invariants from a time series. In 
Section 3, we describe the preliminary signal classification 
experiments that demonstrate the ability of these invariants to 
model acoustics better than traditional MFCCs by themselves. 
Finally, in Section 4 we present continuous speech 
recognition results of the Aurora-4 corpus using different 
combinations of MFCCs and invariants. 

2. Nonlinear Dynamic Invariants 
Nonlinear systems can best be represented by their phase 
space which defines every possible state of the system. The 
dimensions of the phase space correspond to the system's 
dynamic variables, and each point in the space corresponds to 
a unique state of the system. To characterize the structure of 
the underlying strange attractor from an observed time series, 
it is necessary to reconstruct a phase space from the time 



series. This reconstructed phase space captures the structure 
of the original system’s attractor (the true state-space that 
generated the observable). The process of reconstructing the 
system’s attractor is commonly referred to as embedding. 

The simplest method to embed scalar data is the method 
of delays. In this method, the pseudo phase-space is 
reconstructed from a scalar time series, by using delayed 
copies of the original time series as components of the RPS. It 
involves sliding a window of length m through the data to 
form a series of vectors, stacked row-wise in the matrix. Each 
row of this matrix is a point in the reconstructed phase-space. 
Letting {xi} represent the time series, the reconstructed phase 
space (RPS) is represented as: 
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where m is the embedding dimension and τ is the embedding 
delay. Taken’s theorem [7] provides a suitable value for the 
embedding dimension, m. The first minima of the auto-mutual 
information versus delay plot of the time series is a safe 
choice for embedding delay [7].  

2.1. Lyapunov Exponents 

The analysis of separation in time of two trajectories with 
infinitely close initial points is measured by Lyapunov 
exponents [7]. For a system whose evolution function is 
defined by a function f, we need to analyze 
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To quantify this separation, we assume that the rate of growth 
(or decay) of the separation between the trajectories is 
exponential in time. Hence we define the exponents, iλ as 
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where, J is the Jacobian of the system as the point p moves 
around the attractor. These exponents are invariant 
characteristics of the system and are called Lyapunov 
exponents, and are calculating by applying (3) to points on 
the reconstructed attractor. The exponents read from a 
reconstructed attractor measure the rate of separation of 
nearby trajectories averaged over the entire attractor and 
quantify the level of chaos present in the attractor. Attractors 
corresponding to chaotic systems will generally have high 
Lyapunov exponents while the exponents from more stable, 
periodic systems will have lower exponents.  Through 
experimentation, it was found that an embedding dimension 
of 5 since the Lyapunov spectra converge at 5 over a range of 
embedding dimensions. A more detailed explanation of this 
and other parameter values can be found in [6]. 

2.2. Fractal Dimension 

Some geometrical objects have a characteristic called self-
similarity. An object is characterized as self-similar if a close-
up examination of the object reveals that it is composed of 
smaller versions of itself. Self-similarity in a geometrical 
structure can be quantified and defines the degree to which it 
occupies a space. This value is called fractal dimension.  

Correlation dimension [8] is a popular choice for 
numerically estimating the fractal dimension of an attractor. 
The power-law relation between the correlation integral of an 
attractor and the neighborhood radius of the analysis hyper-
sphere can be used to provide an estimate of the fractal 
dimension: 
 

ε
ε

ε ln
)(lnlimlim

0 ∂
∂

=
→→∞

CD
N

 ,                       
(4) 

 
where )(εC , the correlation integral, is defined as: 
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where xr  is one of N points on the attractor. The correlation 
integral is essentially a measure of the number of points 
within a neighborhood of radius ε averaged over the entire 
attractor. To avoid temporal correlations in the time series 
from producing an underestimated dimension, we use 
Theiler’s correction for estimating the correlation integral [8]. 

2.3. Kolmogorov Entropy 

Entropy is a well known measure used to quantify the amount 
of disorder in a system. It has also been associated with the 
amount of information stored in general probability 
distributions.  

Numerically, the Kolmogorov entropy can be estimated as 
the second order Renyi entropy (K2) and can be related to the 
correlation integral of the reconstructed attractor [8] as: 
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where D is the fractal dimension of the system’s attractor, d is 
the embedding dimension and τ is the time-delay used for 
attractor reconstruction. This leads to the relation 
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In practice, the values of ε and d are restricted by the 

resolution of the attractor and the length of the time series. 
We found that an embedding dimension 15 gives consistent 
estimations of Kolmogorov entropy [6]. 

3. Phoneme Classification Experiments 
In this work, we combine the traditional 39 dimensional 
MFCC feature vector (consisting of 12 MFCCs, absolute 
energy, and their first and second derivatives) with nonlinear 
dynamic invariants and evaluate this combination on the Wall 
Street Journal derived Aurora-4 large vocabulary evaluation 
corpus. This corpus represents a well-established LVCSR 



benchmark and constitutes a balanced trade-off between 
computational resources and complexity. Also, the limited 
5,000 word vocabulary makes this corpus conducive to 
acoustic modeling research. The subset of the corpus used for 
our experiments is divided into a training set and seven 
evaluation sets. The training set consists of 7,138 utterances 
from 83 speakers totaling 14 hours of speech. The evaluation 
sets consist of one clean set, and six sets consisting of various 
levels of digitally-added noise. Each evaluation set consists of 
330 utterances from 8 different speakers. All utterances are 
sampled at 16 kHz. 

In an effort to determine whether or not the combination 
of these invariants with MFCCs is able to better model 
continuous speech, we perform a set of preliminary phoneme 
classification experiments. Using automatic, time-aligned 
phonetic transcriptions of the clean corpus data, we match 
segments of the continuous speech to 40 phonemes. For each 
of the feature combinations, a 16-mixture GMM is estimated 
for every phoneme. Using the same data, we then classify 
each of the signal frames as one of the 40 phonemes. Table 1 
summarizes the relative difference in classification accuracy 
between the baseline MFCC feature vector and the 
MFCC/Invariant combination feature vector. Figure 1 
illustrates relative improvements for several individual 
phonemes. 

In Table 1, we see that the average relative classification 
accuracy increases significantly for affricates and stops, with 
the most dramatic increase for affricates using the correlation 
dimension invariant where we get an increase of 10.3%. Stops 
show a fairly consistent increase for all three invariants. The 
use of the correlation entropy invariant resulted in an 
improvement for all phoneme types except for fricatives. 
Many of the phoneme types saw little or no improvements, 
and although some suffered a decrease in accuracy, these 
decreases are minimal. 

Figure 1 illustrates some of the results seen in Table 1 by 
showing the relative classification improvement for several 
individual phones. The relative improvements for affricates 
and stops are high for each of the invariants while the nasal 
phonemes saw little or no improvements. These results are 
encouraging. The accuracy improvements in these low-level 
phoneme recognition experiments suggest that we will likely 
see accuracy increases in continuous speech recognition 
experiments. 

4. Speech Recognition Experiments 
Our preliminary experiments provide strong support that the 
addition of these nonlinear invariants the standard MFCC 
feature vector will improve the accuracy of speech 
recognition tasks. We next present two sets of continuous 
speech recognition experiments, each using acoustic models 
trained from the clean training set mentioned in the previous 

section. The first set evaluates the noise-free test set using 
each of the different MFCC/invariant feature vector 
combinations. The results of these experiments are outlined in 
Table 2. The purpose of these experiments is to determine 
whether these new feature vectors will improve recognition 
performance for an evaluation set with environmental 
conditions that match those of the training set. The second set 
of experiments evaluates seven different test sets, each with 
varying levels and types of additive noise that would be 
encountered in the following environments: an airport, 
random babble, a vehicle, a restaurant, the street, and on a 
train. The results of these experiments are outlined in Table 3. 
The purpose of this second set is to determine whether or not 
these nonlinear invariants improve the robustness of the 
acoustic models to noise conditions that are unseen in the 
training data. 

All experiments use the ISIP prototype system developed 
at Mississippi State University. This open-source speech 

a.  

b.  

c.  
 

Figure 1: Relative improvements for several 
phonemes. (Affricates (a), Stops (b), Glides (c)) 

Table 1. Average relative phoneme classification 
improvements using MFCC/Invariant combination 

 Correlation 
Dimension 

Lyapunov 
Exponent 

Correlation 
Entropy

Affricates 10.3% 2.9% 3.9% 
Stops 3.6% 4.5% 4.2% 
Fricatives -2.2% -0.6% -1.1% 
Nasals -1.5% 1.9% 0.2% 
Glides -0.7% -0.1% 0.2% 
Vowels 0.4% 0.4% 1.1% 



recognition system uses HMMs to model acoustics and a 
trigram backoff language model. The models trained for these 
experiments are cross-word context dependent HMMs with 
underlying 4-mixture Gaussians. 

The recognition results for the clean test set are very 
encouraging. Each of the MFCC/invariant feature 
combinations results in a significant recognition performance 
increases over the baseline MFCC experiments. Correlation 
entropy results in the largest relative improvement of 11.1%. 
This reflects the results in Section 3 where we saw a 
relatively consistent improvement in phoneme accuracy for 
correlation entropy. While combining all three of the 
invariants results in an improvement over the baseline, this 
improvement is not as significant as each of the invariants by 
themselves. This seems to suggest that the new features 
contribute a certain level of overlapping information. 

The recognition results for the noisy test sets are less 
encouraging as each experiment resulted in a performance 
decrease compared the baseline. These results contradict our 
theory that the addition of invariants would result in a feature 
vector that is more robust to noisy conditions unseen in the 
training set. We are currently doing further research to 
understand this discrepancy, and are focused on a closer 
examination of our invariant computations. We are also   
more closely examining some filtering methods which may 
enhance the algorithms’ robustness to noise. 

5. Conclusions and Future Work 
In this paper, we presented the technique of combining 
nonlinear dynamic invariants to traditional MFCCs to create a 
feature vector that is able to simultaneously model the linear 
acoustics and the nonlinear dynamic information of a speech 
signal. We saw that some of these invariants are able to 
improve classification of certain phonemes within continuous 
speech. We also found that these invariants are able to 
improve the recognition accuracy of continuous speech 
recognition tasks when the evaluation data is not 
contaminated with noise. However, when evaluation data is 
contaminated with noise, our experiments indicate an increase 

in WER. We are still investigating the cause of this 
performance decrease and experimenting with some various 
filtering methods which will attempt to remove the adverse 
noise effects from the attractor. 

In future work, we hope to develop a method for directly 
modeling the attractor and use this model to replace 
traditional HMMs for continuous speech recognition 
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Table 2. Continuous Speech Recognition Results for 
Clean Evaluation Data (no additive noise) and the 
Relative Improvement vs. the Baseline MFCCs 

 WER (%) Improvement (%)
Baseline 13.5 -- 
Correlation Dimension (CD) 12.2 9.6 
Lyapunov Exponent (LE) 12.5 7.4 
Correlation Entropy (CE) 12.0 11.1 
All Invariants 12.8 5.2 

 

Table 3. Continuous Speech Recognition Results for 
Noisy Evaluation Data 

 WER (%) 
Airport Babble Car Restaurant Street Train

Baseline 53.0 55.9 57.3 53.4 61.5 66.1
CD 57.1 59.1 65.8 55.7 66.3 69.6
LE 56.8 60.8 60.5 58.0 66.7 69.0
CE 52.8 56.8 58.8 52.7 63.1 65.7
All 58.6 63.3 72.5 60.6 70.8 72.5

 


