CONTINUOUS SPEECH RECOGNITION USING NONLINEAR DYNAMIC INVARIANTS
Abstract
In this paper, we combine the traditional MFCC feature vector with nonlinear dynamical invariants in an effort to produce a more robust feature vector for continuous speech recognition. This new feature vector exploits the linear acoustic properties of the speech signal as well as the underlying nonlinear dynamical properties that traditional linear techniques fail to capture. We perform a set of preliminary experiments which use these new feature vectors to classify segments of continuous speech as different phonemes and saw a maximum relative improvement of 10.3% for certain phoneme types. Preliminary experiments on continuous speech recognition on the Aurora-4 corpus show a maximum relative increase of 11.1% for the clean evaluation set. However, an average relative decrease of 7.6% was observed for the data sets containing noise.

1 Introduction
For the past several decades, acoustic modeling for speech recognition has been based on the source-filter model and one-dimensional wave propagation in the vocal tract. The signal processing techniques that parameterize acoustic speech data into features operate primarily in the signal's frequency domain. Recent theoretical and experimental evidence has found the existence of nonlinear characteristics in speech and suggests that these characteristics contain significant information about speech production. While the traditional linear representation of speech has shown to be a reasonable means of acoustic modeling, it fails to capture the higher-order information of the acoustic dynamic system (Maragos, Dimakis and Kokkinos, 2002; Lindgren, Johnson and Povinelli, 2003).

Dynamic systems can be represented by state-space models, where the states of the system evolve in accordance with a deterministic evolution function. The path traced by the system’s states as they evolve over time is referred to as a trajectory. An attractor is the set of points in the state space that are accumulated as t→∞. Invariants of a system’s attractor are measures that quantify the topological or geometrical properties of the attractor and do not change under smooth transformations of the space such as phase space reconstruction of the observed time series (Kumar and Mullick, 1996). 

Dynamic invariants are a natural choice for characterizing the system that generated the observable. These measures have been previously studied in the context of analysis and synthesis research (Kumar and Mullick, 1996; Banbrook, 1996), and more recently in the context of speech recognition (Kokkinos and Maragos, 2005). Previous work also involves a thorough analysis of these invariants and their ability to discriminate between different types of speech signals (Prasad, Srinivasan, Pannuri, Lazarou and Picone, 2006). 

In this paper, we continue the analysis of three standard dynamical invariants: Lyapunov exponents, fractal dimension, and Kolmogorov entropy. Lyapunov exponents (Eckmann and Ruelle, 1985) associated with a trajectory provide a measure of the average rates of convergence of nearby trajectories. Fractal dimension (Kantz and Schreiber, 2003) is a measures the extent of self-similarity in the attractor’s structure, and Kolmogorov entropy (Kantz and Schreiber, 2003), measures the rate of information loss or gain over the trajectory. These measures search for a signature of chaos in the observed time series. The motivation behind studying such invariants from a signal processing perspective is to capture the relevant nonlinear dynamical information from the time series which is ignored in conventional spectral‑based analysis. 

Recent work has shown that the combination of fractal dimension with Mel-frequency cepstral coefficients (MFCCs) improves recognition accuracy (Pitsikalis and Maragos, 2006). This provides sufficient motivation for an investigation into additional dynamical invariants. We combine the three invariants mentioned above with the traditional MFCCs to form a new feature vector that exploits both the linear acoustic model and the nonlinear dynamical information of the signal. We use this new feature vector to evaluate the Aurora-4 large vocabulary evaluation corpus and compare the recognition accuracy to a system using only MFCCs.

The outline of this paper is as follows. In Section 2 we review phase-space reconstruction, which is the starting point for computing invariants, and provide a brief overview of the algorithms employed for the extraction of  invariants from a time series. In Section 3, we describe the preliminary signal classification experiments that demonstrate the ability of these invariants to model acoustics better than traditional MFCCs alone. Finally, in Section 4 we present continuous speech recognition results of the Aurora-4 corpus using combinations of MFCCs and invariants.
2 Nonlinear Dynamic Invariants
To characterize the structure of the underlying attractor of an observed time series, it is necessary to reconstruct a phase space from the time series. This reconstructed phase space captures the structure of the original system’s attractor. The process of reconstructing the system’s attractor is commonly referred to as embedding. 

 The simplest method to embed scalar data is the method of delays. In this method, the pseudo phase-space is reconstructed from a scalar time series, by using delayed copies of the original time series as components of the RPS. It involves sliding a window of length m through the data to form a series of vectors, stacked row-wise in the matrix. Each row of this matrix is a point in the reconstructed phase-space. Letting {xi} represent the time series, the reconstructed phase space (RPS) is represented as:
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where m is the embedding dimension and
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is the embedding delay. 

Taken’s theorem (Eckmann and Ruelle, 1985) provides a suitable value for the embedding dimension,
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. The first minima of the auto-mutual information versus delay plot of the time series is a safe choice for embedding delay (Eckmann and Ruelle, 1985). 
2.1 Lyapunov Exponents
The analysis of separation in time of two trajectories with infinitely close initial points is measured by Lyapunov exponents (Eckmann and Ruelle, 1985). For a system with an evolution function defined by f, we need to analyze
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To quantify this separation, we assume that the rate of separation between the trajectories is exponential in time. Hence we define the exponents,
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where, J is the Jacobian of the system as the point p moves around the attractor. These exponents are called Lyapunov exponents and are calculating by applying (3) to points on the reconstructed attractor, and averaging them over the entire attractor.
2.2 Fractal Dimension
Fractals are geometrical structures which are self-similar at various resolutions. Correlation dimension (Kantz and Schreiber, 2003) is a popular choice for numerically estimating the fractal dimension of the attractor. The power-law relation between the correlation integral of an attractor and the neighborhood radius of the analysis hyper-sphere can be used to provide an estimate of the fractal dimension:
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where
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where 
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is a point on the attractor (which has N such points). The correlation integral is essentially a measure of the number of points within a neighborhood of radius
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, averaged over the entire attractor.
2.3 Kolmogorov Entropy
Entropy is a well known measure used to quantify the amount of disorder in a system. It has also been associated with the amount of information stored in general probability distributions. 

Numerically, the Kolmogorov entropy can be estimated as the second order Renyi entropy (
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) and can be related to the correlation integral of the reconstructed attractor (Kantz and Schreiber, 2003) as:
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where D is the fractal dimension of the system’s attractor, d is the embedding dimension and
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is the time-delay used for attractor reconstruction. This leads to the relation
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In practice, the values of
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are restricted by the resolution of the attractor and the length of the time series.
3 Phoneme Classification Experiments
In this work, we combine the traditional MFCC feature vector with nonlinear dynamical invariants and use this combination to evaluate the Wall Street Journal derived Aurora-4 corpus. This corpus represents a well-established LVCSR benchmark and constitutes a balanced trade-off between computational resources and complexity. The subset of the corpus used for our experiments is divided into a training set and seven evaluation sets. The evaluation sets consist of one clean set, and six sets consisting of various levels of additive noise. All utterances are sampled at 16 kHz.

To determine whether the combination of these invariants with MFCCs is able to better model continuous speech, we perform a set of preliminary phoneme classification experiments. Using time-aligned phonetic transcriptions of the clean corpus data, we match segments of the continuous speech to 40 phonemes. For each of the feature combinations, a 16-mixture GMM is estimated for every phoneme. Using the same data, we then classify each of the signal frames as one of the phonemes. The results showed a relative improvement of 1.65% for fractal dimension, 1.5% for Lyapunov exponents, and 1.42% for entropy.
The accuracy improvements in these low-level phoneme recognition experiments suggest that we will likely see performance increases in continuous speech recognition experiments. 
4 Speech Recognition Experiments
The experiments outlined in Section 3 provide sufficient motivation for running a larger scale speech recognition experiments. We now run two sets of continuous speech recognition experiments, each using acoustic models trained from the clean training set mentioned in the previous section. The first set evaluates the noise-free test set using each of the new MFCC/invariant feature vector combinations. The results of these experiments are outlined in Table 1. The purpose of these experiments is to see whether or not the new feature vectors will improve recognition performance for an evaluation set with environmental conditions that match those of the training set. The second set of experiments evaluates seven different test sets, each with varying levels and types of additive noise. The results of these experiments are outlined in Table 2. The purpose of this second set is to determine whether or not these nonlinear invariants improve the robustness of the acoustic models to noise conditions that are unseen in the training data.

All experiments use the ISIP prototype system developed at Mississippi State University. This open-source speech recognition system uses HMMs to model acoustics and a trigram language model. The models trained for these experiments are cross-word context dependent HMMs with underlying 4-mixture Gaussians.

The recognition results for the clean test set are very encouraging. Each of the MFCC/invariant feature combinations results in a significant recognition performance increases over the baseline MFCC experiments. Correlation entropy results in the largest relative improvement of 11.1%.  While combining all three of the invariants results in an improvement over the baseline, this improvement is not as significant as each of the invariants by themselves. This seems to suggest that the new features contribute a certain level of overlapping information.
The recognition results for the noisy test sets are less encouraging as each experiment resulted in a performance decrease compared the baseline. These results contradict our theory that the addition of invariants would result in a feature vector that is more robust to noisy conditions unseen in the training set. We are currently taking a closer look at our invariant computations and examining some filtering methods which may enhance the algorithms’ robustness to noise. 
5 Conclusions and Future Work
In this paper, we presented the technique of combining nonlinear dynamical invariants to traditional MFCCs to create a feature vector that is able to simultaneously model the linear acoustics and the nonlinear dynamical information of a speech signal. We saw that some of these invariants are able to improve classification of certain phonemes within continuous speech. We also found that these invariants are able to improve the recognition accuracy of continuous speech recognition tasks when the evaluation data is not contaminated with noise. However, when evaluation data is contaminated with noise, our experiments indicate an increase in WER. We are still investigating the cause of this performance decrease.
In future work, we hope to develop a method for directly modeling the attractor and use this model to replace traditional HMMs for continuous speech recognition.
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�
WER (%)�
Improvement (%)�
�
Baseline�
13.5�
--�
�
Correlation Dimension (CD)�
12.2�
9.6�
�
Lyapunov Exponent (LE)�
12.5�
7.4�
�
Correlation Entropy (CE)�
12.0�
11.1�
�
All Invariants�
12.8�
5.2�
�
Table � SEQ Table \* ARABIC �1�: Continuous Speech Recognition Results for Clean Evaluation Data (no additive noise) and the Relative Improvement vs. the Baseline MFCCs


�
WER (%)�
�
�
Airport�
Babble�
Car�
Restaurant�
Street�
Train�
�
Baseline�
53.0�
55.9�
57.3�
53.4�
61.5�
66.1�
�
CD�
57.1�
59.1�
65.8�
55.7�
66.3�
69.6�
�
LE�
56.8�
60.8�
60.5�
58.0�
66.7�
69.0�
�
CE�
52.8�
56.8�
58.8�
52.7�
63.1�
65.7�
�
All�
58.6�
63.3�
72.5�
60.6�
70.8�
72.5�
�
Table � SEQ Table \* ARABIC �2�: Continuous Speech Recognition Results for Noisy Evaluation Data
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