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Abstract
There is growing interest in modeling nonlinear behavior in the speech signal, particularly for applications such as speech recognition. Conventional tools for analyzing speech data use information from the power spectral density of the time series, and hence are restricted to the first two moments of the data. These moments do not provide a sufficient representation of a signal with strong nonlinear properties. In this paper, we investigate the use of nonlinear dynamical invariants, which measure the nonlinear properties of a signal, for continuous speech recognition. We use three popular measures: Lyapunov exponents, Kolmogorov entropy and correlation dimension.  These measures quantify the presence (and extent) of chaos in the underlying system that generated the observable. We show that these invariants, when combined with Mel-frequency cepstral coefficients, can improve the recognition accuracy of continuous speech recognition applications.
Introduction
Speech recognition systems today still exploit the linear acoustics model of speech production, and rely on traditional measures of the spectrum based on Fourier transforms. While this technique has had tremendous success, it is still limited by the fact that speech signals are not necessarily linear.  Our goal in this work is to produce new features for speech recognition that do not rely on traditional measures of the first and second order moments of the signal, but rather the nonlinear characteristics of the signal.  We use a combination of these new features and the traditional linear acoustics to improve the recognition accuracy of continuous speech recognition systems.  

Dynamical systems can be represented by state-space models, where the states of the system evolve in accordance with a deterministic evolution function, and the measurement function maps the states to the observables. The path traced by the system’s states as they evolve over time is referred to as a trajectory. An attractor is defined as the set of points in the state space that are accumulated in the limit as
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. Invariants of a system’s attractor are measures that quantify the topological or geometrical properties of the attractor, and do not change under smooth transformations of the space. These smooth transformations include coordinate transformations such as Phase Space Reconstruction of the observed time series. 

These invariants are a natural choice for characterizing the system that generated the observable. These measures have been previously studied in the context of analysis and synthesis research . Our previous work involves a thorough analysis of these invariants and how well they are able to discriminate between different types of speech signals.  Using a small database of elongated pronunciations of phones, we measured the between-class separation in a feature space comprised of these invariants and found that they were able to discriminate between sustained phones.
 and more recently in the context of speech recognition
In this paper, we experiment with three standard invariants of a dynamical system: Lyapunov exponents, fractal dimension, and Kolmogorov entropy. Lyapunov exponents  defined over a state-space, measures the rate of information loss or gain over the trajectory. These measures search for a signature of chaos in the observed time series. Since these measures quantify the structure of the underlying nonlinear dynamical system, they are prime candidates for feature extraction of a signal with strong nonlinearities.  The motivation behind studying such invariants from a signal processing perspective is to capture the relevant nonlinear dynamical information from the time series – something that is ignored in conventional spectral‑based analysis. 
 is a measure that quantifies the number of degrees of freedom and the extent of self-similarity in the attractor’s structure. Kolmogorov entropy  associated with a trajectory provide a measure of the average rates of convergence and divergence of nearby trajectories. Fractal dimension 
We combine these invariants with the traditional Mel-frequency cepstral coefficients (MFCCs) to create a new feature vector that exploits both the linear acoustic model and the nonlinear dynamical information of the signal.  We use this new feature vector to evaluate the Wall Street Journal (WSJ) corpus and compare the recognition accuracy to a system using only MFCCs.

The outline of this paper is as follows. In Section 2 we review phase-space reconstruction techniques, which are the starting point for most nonlinear dynamical system analysis. We provide a brief review of the algorithms we employed for the extraction of three dynamical invariants from a time series. In Section 3, we describe the experimental setup. We also show that the MFCC/invariant combination improves basic phonetic classification of the WSJ database. Finally, in Section 4, we present the speech recognition results of the WSJ database using different MFCC/invariant feature combinations.

Nonlinear Dynamical Invariants
To characterize the structure of the underlying strange attractor from an observed time series, it is necessary to reconstruct a phase space from the time series. This reconstructed phase space captures the structure of the original system’s attractor (the true state-space that generated the observable). The process of reconstructing the system’s attractor is commonly referred to as embedding. 

 The simplest method to embed scalar data is the method of delays. In this method, the pseudo phase-space is reconstructed from a scalar time series, by using delayed copies of the original time series as components of the RPS. It involves sliding a window of length m through the data to form a series of vectors, stacked row-wise in the matrix. Each row of this matrix is a point in the reconstructed phase-space. Letting 
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 represent the time series, the reconstructed phase space (RPS) is represented as:
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where m is the embedding dimension and
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is the embedding delay. 

Taken’s theorem [4] provides a suitable value for the embedding dimension,
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. The first minima of the auto-mutual information versus delay plot of the time series is a safe choice for embedding delay [4]. 
Lyapunov Exponents
The analysis of separation in time of two trajectories with infinitely close initial points is measured by Lyapunov exponents [4]. For a system whose evolution function is defined by a function f, we need to analyze
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To quantify this separation, we assume that the rate of growth (or decay) of the separation between the trajectories is exponential in time. Hence we define the exponents,
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where, J is the Jacobian of the system as the point p moves around the attractor. These exponents are invariant characteristics of the system and are called Lyapunov exponents, and are calculating by applying (3) to points on the reconstructed attractor. The exponents read from a reconstructed attractor measure the rate of separation of nearby trajectories averaged over the entire attractor.
Fractal Dimension
Fractals are objects which are self-similar at various resolutions. Self-similarity in a geometrical structure is a strong signature of a fractal object. Correlation dimension [5] is a popular choice for numerically estimating the fractal dimension of the attractor. The power-law relation between the correlation integral of an attractor and the neighborhood radius of the analysis hyper-sphere can be used to provide an estimate of the fractal dimension:
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where
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, the correlation integral is defined as:
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where 
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is a point on the attractor (which has N such points). The correlation integral is essentially a measure of the number of points within a neighborhood of radius
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, averaged over the entire attractor. To avoid temporal correlations in the time series from producing an underestimated dimension, we use Theiler’s correction for estimating the correlation integral [5].
Kolmogorov-Sinai Entropy
Entropy is a well known measure used to quantify the amount of disorder in a system. It has also been associated with the amount of information stored in general probability distributions. 

Numerically, the Kolmogorov entropy can be estimated as the second order Renyi entropy (
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) and can be related to the correlation integral of the reconstructed attractor [5] as:
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where D is the fractal dimension of the system’s attractor, d is the embedding dimension and
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is the time-delay used for attractor reconstruction. This leads to the relation
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In a practical situation, the values of
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are restricted by the resolution of the attractor and the length of the time series. 
Experimental Setup
In this work, we combine traditional MFCCs with nonlinear dynamical invariants and use this combination to evaluate the Wall Street Journal (WSJ0) corpus.  This corpus represents a well-established LVCSR benchmark and constitutes a good trade-off between computational resources and complexity.  The data was generated from a machine readable corpus of Wall Street Journal news text.  The corpus is divided into a training set and an evaluation set.  The training set consists of 7,138 utterances from 83 speakers totaling in 14 hours of speech.  The evaluation set consists of 330 utterances from 8 speakers.   All utterances were generated at 16 kHz.

The baseline system used in this evaluation was modeled after a 16-mixture WSJ0 system with a WER of 27.7%.  The feature vector used to achieve the baseline consists of 12 MFCCs and absolute energy.  No derivatives were included in the features for these experiments. We append each of the nonlinear invariants to the original MFCC feature vector to create three new feature vectors. These new feature vectors exploit both the linear acoustic model and the underlying nonlinear dynamical information of the signal.  
In order to determine whether or not the combination of these invariants with MFCCs is able to better model acoustics, we perform a set of preliminary phoneme classification experiments.  A 16-mixture GMM is estimated for each of the 40 phonemes in the corpus using each of the new feature vectors. The experiment then attempts to classify each of the feature vectors as one of the 40 phonemes. Table 1 summarizes the difference in classification accuracy for each of the new feature vectors compared to the baseline MFCC feature vector.
	
	Dimension
	Lyapunov Exponent
	Entropy

	Affricates
	10.3%
	2.9%
	3.9%

	Stops
	3.6%
	4.5%
	4.2%

	Fricatives
	-2.2%
	-0.6%
	-1.1%

	Nasals
	-1.5%
	1.9%
	0.2%

	Glides
	-0.7%
	-0.1%
	0.2%

	Vowels
	0.4%
	0.4%
	1.1%


Table 1: Phoneme classification improvements using MFCCs/invariant combination feature vectors.

We see that the classification accuracy increases for many of the phoneme types.

	
	WER

	Baseline
	27.7%

	Fractal Dimension
	22.5%

	Lyapunov Exponent
	26.9%

	Kolmogorov-Sinai Entropy
	25.9%


Table 2: 

Conclusions and Future Work

In this paper, we presented the technique of combining nonlinear dynamical invariants to traditional MFCCs to create a feature vector that is able to simultaneously model the linear acoustics and the nonlinear dynamical information of a speech signal.  We saw that some of these invariants are able to improve classification of certain phonemes within continuous speech.  We also found that these invariants are able to improve the accuracy of continuous speech recognition tasks.
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