
LANGUAGE MODEL GRAMMAR CONVERSION1

 
Julie Baca, Wesley Holland, Dhruva Duncan and Joseph Picone 

 
Center for Advanced Vehicular Systems, Mississippi State University 

{baca, wholland, duncan, picone}@cavs.msstate.edu 
 

ABSTRACT 

Supporting popular language model grammar formats, such 
as JSGF and XML-SRGS, has been an important step 
forward for the speech recognition community, particularly 
with respect to integration of human language technology 
with Internet-based technologies. Industry standard formats, 
though conceptually straightforward implementations of 
context free grammars, contain restrictions that make it 
nontrivial to support probabilistic finite state machines. 
These restrictions pose serious challenges when applied to 
all aspects of the speech recognition problem, such as the 
representation of hidden Markov models in acoustic 
modeling. This paper compares and contrasts these formats, 
discusses the implications for speech recognition systems, 
and presents solutions that have been implemented in our 
public domain speech recognition system. 

1. INTRODUCTION 

Several industry standard grammar specifications such as 
the Java Speech Grammar Format (JSGF) [1] and the W3C 
XML Speech Recognition Grammar Specification (XML-
SRGS) [3] have been created to support development of 
voice-enabled Internet applications. While these standards 
allow for the specification of context free grammars 
(CFGs), most language models for automatic speech 
recognition have a regular grammar equivalent and can 
therefore be modeled as finite state machines (FSMs). To 
support language model creation using these standards, we 
developed a suite of software tools in our public domain 
speech recognition toolkit [3] that convert between these 
grammar formats. 

Issues of theoretical equivalence and restrictions on 
conversions between regular and context free grammars 
have been studied and described extensively. No algorithm 
has been proven to perform conversions from arbitrary 
CFGs generating regular languages to FSMs without 
assuming certain restrictions on the grammar, i.e. no center-
embedded non-terminals [3]. However, software tools have 

been developed for conversions between FSMs and CFGs, 
which assume such restrictions on the grammars 
handled [5]. Nonetheless, our experience has shown that the 
specifics of individual grammar formats present unique 
challenges. The remainder of this paper describes the 
technical issues encountered in our conversion process as 
well as our solutions to these issues, and offers insight into 
future development of robust, general purpose language 
model conversion tools. 

2. GRAMMAR FORMATS 

Our internal grammar format, known as IHD, is 
implemented as a set of hierarchically layered FSMs. An 
example is shown in Figure 1. Each FSM layer is a generic 
directed graph class or DiGraph. IHD binds these layers of 
FSMs together into levels. The top-most level contains a 
single DiGraph, with the nodes of this DiGraph mapping to 
more complete DiGraphs. For example, the top-most layer 
might represent the sentence level, the level below that the 
word level, the next the state level.  

Our goal was to provide a bidirectional conversion tool 
that could systematically convert to IHD, i.e., down to the 
phone and state level, so that recognition experiments could 
be performed completely in JSGF. While not all recognition 
systems supporting alternate grammar formats provide this 
capability, we believed it was an important feature to 
provide our users to reduce development efforts and 
experimental setup time. We also required the tool to 
provide the same level of conversion in reverse.  

The subtle but important distinctions between JSGF and 
XML-SRGS and other CFG-based language models have 

F

1. This material is based upon work supported by the National 
Science Foundation (NSF) under Grant No. IIS-0414450. Any
opinions, findings, and conclusions or recommendations expressed 
in this material are those of the author(s) and do not necessarily 
reflect the views of the NSF. 
 
igure 1: IHD Hierarchical Format 



proved challenging to the task of developing general 
purpose conversion tools. However, our deepened 
understanding of these nuances led to the design of more 
robust conversion tools for these and future grammar 
formats. Section 2.1 presents key theoretical and syntactic 
features of each format, both similarities and differences. 

2.1 BNF and EBNF 

First, JSGF and XML-SRGS are theoretically equivalent in 
expressive and computational power, both adhering in 
principle to Backus-Naur Form (BNF) [6], a formal notation 
for CFGs, more specifically to two equivalent variants, 
Extended BNF (EBNF) [7] and Augmented BNF (ABNF). 
Many detailed descriptions of BNF and its variants exist. 
We briefly introduce key features relevant to our discussion.  

Stated simply, BNF defines a method for describing 
production rules in a CFG, including terminal and non-
terminal symbols for rules, and a selection of alternatives 
among rules. Though numerous variants of the syntax exist, 
an example rule in a BNF grammar might be: 

<A> ::= <B>|c 

where non-terminals are represented in capital letters, A, B, 
surrounded by brackets <> and can appear on the lefthand 
side (LHS) or righthand side (RHS) of the rule demarcated 
by the := symbol. Terminals are often expressed in lower 
case (though not required), but more importantly can appear 
only on the rule RHS. Finally, selection or branching among 
alternative rule definitions is expressed by the | symbol.  

BNF also allows the use of recursive rules in a 
grammar. Such rules directly or indirectly reference 
themselves.  An example of direct recursion might be:  
<A> ::= a<A>.  The use of directly or indirectly recursive 
rules is useful to represent repetitive actions in an FSM. 
Consider the simple FSM in Figure 2. This FSM recognizes 
the regular expression, a(bc)+ that could be represented in 
BNF with the production rules: 

<S> ::= <A> 
<A>::= aB 
<B> ::= bc|B 

The use of the non-terminal B on the RHS in rule 3 is 
recursive and indicates that subgraph bc is a cycle that can 
be repeated one or more times. However, for simple regular 
expressions such as this, the cycle in this FSM could be 
represented using the Kleene + operator, a standard notation 
for regular expressions which denotes 1 or more repetitions. 
EBNF extends BNF to support the use of structures, such as 
the * and + for repetition as well as others.  (EBNF also has 
many variants, but its origins date to [7].) This allows 

creating a more intuitive set of production rules for regular 
expressions, so that rules A and B above can be reduced to: 

<A> ::= a (bc)+ 

2.2 JSGF and XML-SRGS 

Again, both JSGF and XML-SRGS provide expressive 
equivalence to EBNF. They differ, however, in syntax.  As 
an example, the above rule could be represented in JSGF as: 

<A> = a(bc)+;  

Note that the + operator is supported directly as well as the 
use of parentheses. Consider the same rule in XML- SRGS: 

<rule>   
    <item> a </item> 
    <item repeat=’1-‘> 
          <item> b</item> 
          <item> c </item> 
     </item> 
  </rule> 

The <rule> tag marks this as a production rule; no non-
terminal symbols are needed in this example; the terminal 
symbols are marked with <item> tags, and “repeat= ‘1-‘” 
before the non-terminal b denotes the Kleene + operation (1 
or more repetitions) applied to the concatenation of b and c, 
shown by listing each non-terminal in sequence with 
surrounding item tags and a close item tag for repeat ‘1-‘.  

Clearly, the JSGF syntax is more similar to EBNF than 
XML-SRGS. The differences are due in large part to their 
origins: XML was designed initially as a markup language 
for general Internet usage and later modified to provide 
support for spoken language; JSGF was designed from the 
outset to support spoken language applications.  The W3C 
SRGS attempted to address these issues first by using JSGF 
as a theoretical model in defining the XML-SRGS and 
second, by developing a standard specification for 
ABNF[4]. ABNF is an EBNF variant, with origins dating 
back to Arpanet. Any ABNF-SRGS can be mapped to 
XML-SRGS. The previous example could be written as 
shown below, using *1 for + before the item (bc) to be 
repeated:   

<A> = a *1 (bc) 

The subtle distinctions among syntaxes complicated the 
task of identifying underlying theoretical structures. A more 
interesting set of issues arose with respect to recursion. 
While a conformant JSGF grammar processor must provide 
support for recursive rules, this support is optional for the 
XML-SRGS upon which we based our conversion. We 
chose, however, to support recursion for all our grammar 
format conversion tools.  

 
 
Figu

2.3 Recursion in Speech Recognition 

The example in Figure 2 illustrates how a lexical construct 
can be represented more simply with a regular expression 
than a recursive CFG. However, the converse situation often 
re 2: FSM for regexp a(bc)+ 



arises in speech recognition: though a lexical or syntactic 
construct could be described by a complex regular 
expression, the recursive form may be simpler to produce 
algorithmically.  Figure 3  shows such an example. 

Though still a relatively simple graph, notice the 
branches, cycles within branches, and self-loops not present 
in Figure 2. The regular expression for the strings accepted 
by this FSA can be written as: (ab)+e+|a(ba)*cde+. A rule 
for this can be written in EBNF as follows: 

S ::= (ab)+e+ | a(ba)*cde+ 

Production rules can also be written for the expression 
using non-terminals, direct recursion for the self-loop, and 
indirect recursion for the cycle by creating a non-terminal 
for each state in the graph, e.g., A for a, as follows: 

S::= A 
A ::= a (B|C) 
B ::= b (A|E)      
 

C ::= c D 
D ::= d E 
E ::= e E | ET 
T::= t 

While the single rule in the first grammar eases 
visualizing a legal input string directly from the rules, the 
second grammar more directly expresses actions to be 
encoded in an algorithm with limited lookahead, e.g., rule A 
states that on input ‘a’, branch to either state B or C, while 
the indirectly recursive rule B states on input ‘b’, branch 
back to A or ahead to E. 

The use of recursive rules is an attribute that 
distinguishes regular grammars and CFGs. Although XML 
and JSGF both provide the expressive power of CFGs, only 
JSGF requires support for recursion.  There are restrictions 
on the type of recursion supported, however. Notice that the 
recursive grammar for Figure 3 is right recursive, that is, all 
recursive references appear on the rightmost side of the 
RHS. JSGF limits its required support to this type grammar. 
Several arguments can be made in favor of this restriction. 
First, any right recursive rule can be rewritten using the 
Kleene * and + operators where more appropriate. Second, 
speech recognizers typically use regular grammars, which 
must be either left or right linear, and thus can contain only 
left or right recursion. Finally, right recursive grammars can 
be parsed by top-down parsers with limited lookahead 

which are arguably among the simplest to construct. 
A final example of recursion taken from our speech 

recognition system further explains our decision to 
implement support for both the EBNF grammar structures, 
e.g., * and +, as well as right recursive rules. To provide 
conversion tools that allow use of XML-SRGS and JSGF 
from the sentence level down to the acoustic level, we 
would need to support writing and parsing grammars that 
represent layers of FSMs.  

Consider a sentence level view of a simple digits 
grammar in Figure 4. Assuming SILEN and DIGIT are 
terminal symbols, a simple regular expression (SILEN 
DIGIT*)+ can describe this FSM. However, SILEN and DIGIT 
are actually non-terminals describing inputs that are 
modeled at lower levels. It is possible to write production 
rules containing regular expressions for each of the 
sentence, word and state levels. Our system, however, treats 
non-terminals on arcs as subroutines, saving the current 
location in the graph, processing the non-terminals, and then 
returning when parsed. This meant that our conversion tool 
for IHD->XML could easily generate grammars with either 
type of structure, e.g., *, + for self-loops and cycles, or 
recursive rules. This further reinforced our decision to 
support both recursive rules and EBNF extensions.  

3. CONVERSION REDESIGN 

Other specific features of XML complicated the design 
decisions described in the previous section.  

3.1 XML-SRGS Weights and Probabilities 

Two methods are available for specifying weights in XML-
SRGS: the weight attribute and the repeat-prob attribute.  It 
is important to note that a repeat probability is a different 
logical entity from a weight. It is the probability that a given 
loop will repeat, while a weight can only be transformed 
into a probability when compared with the other weights 
leaving a node. The FSM in Figure 5 is used to illustrate 
both methods.  An XML-SRGS grammar using both the 
weight attribute and the repeat-prob attribute is shown 
below: 

<grammar> 
 <rule> 

 
Figure 3: FSM (ab)+e+|a(ba)*cde+ 

  <item> a </item> 
  <one-of> 
   <item weight='4'> b </item> 
  </one-of> 
  <item repeat='1-' repeat_prob='.43'> c </item> 
 </rule> 
</grammar> 

The first item in this grammar, a, has no weight since 
its incoming arc has no weight. The second item, b, has a 
weight on its incoming arc. SRGS dictates that an item may 
not have a weight unless its immediate enclosing tag is a 
<one-of>. SRGS does, however, allow for a single item to 
be enclosed in a <one-of> in order to specify a weight 

 
Figur
e 4: FSM for Digits Grammar 



entail processing the EBNF to remove extensions and thus 
standardize representation of weights and probabilities.  We 
redesigned our conversion process to include the following 
steps and corresponding software modules: 1) convert the 
XML to an equivalent ABNF, 2) convert the ABNF to 
remove the EBNF extensions and produce a clean BNF with 
or without recursion, 3) convert the clean BNF to IHD. We 
also created modules to implement the steps shown above in 
the reverse conversion from IHD -> XML. The redesigned 
conversion process is shown in Figure 6. 

 
 

Figure 5: FSM for XML Weights and Probabilities 
 
Figure 6: Conversion Redesign 
where one would not otherwise be allowed. Since speech 
recognition systems typically have weights on all arcs, this 
limitation on the SRGS weight attribute is significant. 

Also important, the repeat-prob attribute can only be 
used with the SRGS repeat looping attribute. Recall this 
attribute implements the EBNF loop extensions for Kleene 
operations. In this example, “repeat = ‘1-‘” is equivalent to 
+. An additional limitation is that repeat probability values 
must lie between 0.0 and 1.0.  

The above grammar would be represented as shown 
below without repeat probabilities, but with recursive rules: 

<grammar> 
     <rule> 
 <item> a </item> 
  <one-of> 
       <item weight='4'> <ruleref uri="#B"/> </item> 
  </one-of> 
        </rule> 
        <rule id="B"> 
 <item> b </item> 
                 <item> <ruleref uri="#C"/> </item> 
        </rule> 
        <rule id="C"> 
  <item> c </item> 
  <one-of> 
       <item weight='.43'> <ruleref uri="#C"/> </item> 
       <item> <ruleref special="NULL"> </item> 
 </one-of> 
        </rule> 
</grammar> 

This avoids the use of a repeat probability on node ‘c’ by 
putting a weight on the recursive rule reference at the end of 
this grammar. However, special care must be taken in 
converting weight and repeat-prob attributes consistently. 

3.2 ABNF and BNF Conversion Modules 

Once the underlying theoretical structures of each format 
were understood in detail, producing a verifiably robust 
conversion tool would require additional stages of 
conversion in our process. The first stage would create a 
common EBNF grammar format to which any other format 
could be converted. The ABNF-SRGS was an obvious 
choice as the common EBNF format. The next stage would 

4. SUMMARY AND CONCLUSIONS 

Supporting popular CFG-based language model formats has 
been an important priority in our research.  The important 
nuances of each CFG format implementation have presented 
equal challenges to producing robust conversion tools. 
Further, assignment of weights and probabilities for these 
styles must be carefully considered in converting to any 
other formats, including CFG or regular grammars.  We 
have addressed these issues by incorporating additional 
stages and corresponding software modules in our process 
which perform generic conversions to and from common 
EBNF and BNF grammar formats. These enhancements 
have advanced an important goal for the speech research 
community — producing verifiably robust conversion tools 
to support popular CFG-based language model standards.  

5. REFERENCES 

[1] Java Speech Grammar Format Specification, Version 1, 
Sun Microsystems Developer Network, October 26, 1998 
(see http://java.sun.com/products/java-media/speech/forDev 
elopers/ JSGF/JSGF). 

[2] Hunt, A. and McGlashan. S., Eds., W3C Speech 
Recognition Grammar Specification Version 1.0, March 16, 
2004 (see http://www.w3.org/TR/speech-grammar/). 

[3] Picone, J., et al., “A Public Domain C++ Speech 
Recognition Toolkit,”, ISIP, Mississippi State University, 
Mississippi State, MS, USA, March 2003. 

[4]  Chomsky, N., “On Certain Formal Properties of 
Grammars,” Info. and Control,, Vol. 2, 1959, pp. 137-167. 

[5] Mohri, M, “Weighted Grammar Tools: The GRM 
Library,” in J.C. Junqua and G. van Noord (eds), 
Robustness in Language and Speech Technology, .Kluwer 
Academic Publishers, 2000. 

[6] Naur, P. “Revised Report on the Algorithmic Language 
Algol 60,” Com. of the ACM, Vol. 7,  No. 12, pp. 735–736, 
1963. 

[7] Wirth, N. “What Can We Do About the Unnecessary 
Diversity of Notation for Syntactic Definitions,” Com. of 
the ACM, Vol. 20,  No. 11, pp. 822–823, 1977. 


