GRAMMAR CONVERSION
Wesley Holland, Dhruva Duncan, Julie Baca, Joseph Picone
Author Affiliation(s)

Abstract

The abstract should appear at the top of the left-hand column of text, about 0.5 inch (12 mm) below the title area and no more than 3.125 inches (80 mm) in length. Leave a 0.5 inch (12 mm) space between the end of the abstract and the beginning of the main text. The abstract should contain about 100 to 150 words, and should be identical to the abstract text submitted electronically along with the paper cover sheet. All manuscripts must be in English, printed in black ink.

1. Introduction

Language models are used extensively in speech recognition to provide a grammar for accepted utterances. Several industry standard grammar specifications such as the Java Speech Grammar Format (JSGF) [] and the W3C XML Speech Recognition Grammar Specification (XML-SRGS or XML) [] have been created to support development of voice-enabled Internet applications. While these standards allow for the specification of context-free grammars (CFGs), most language models for automatic speech recognition have a regular grammar equivalent and can therefore be modeled as finite state machines (FSMs). To support language model creation using these standards, we developed a suite of software tools that convert between these grammar formats and that used in our public domain speech recognition toolkit []. Collectively known as ISIP Hierarchical Digraph (IHD) [], this format is implemented as set of hierarchically layered FSMs.
Issues of theoretical equivalence and restrictions on conversions between regular and context free grammars have been studied and described in textbooks[]. No algorithm has been proven to perform conversions from arbitrary CFGs generating regular languages to FSMs[,] without assuming certain restrictions on the grammar, i.e. no center-embedded non-terminals[]. However, software tools have been developed for conversions between FSMs and CFGs, which assume such restrictions on the grammars handled []. Nonetheless, our experience has illustrated that the specifics of individual grammar formats present unique challenges that cannot be easily addressed by theoretical solutions or generic conversions. In addition, other attributes of grammar formats should be considered in evaluating and selecting one for use. The remainder of this paper describes the technical issues encountered in our conversion process, our solutions to these issues, and finally offers insight into future development and selection of robust, general purpose language model conversion tools.

2. grammar formats
As mentioned, our internal grammar format, IHD, is implemented as a set of hierarchically layered FSMs. Each FSM layer (a Mealy machine) is a generic directed graph class or DiGraph. IHD binds layers of FSMs together into levels. The top-most level contains a single DiGraph, with the nodes of this DiGraph mapping to complete DiGraphs; the top-most layer can represent the sentence level, the level below that the word level, the level below that the phone level, etc. An example is shown in Figure 1.
 Show digit, then ONE, then states for ONE

Figure 1.
We first embarked on the task of providing conversion tools between IHD and JSGF []. Our goal in that task was to provide a bidirectional conversion tool for our users that could accept JSGF conformant grammars and comprehensively convert them to language models in IHD, i.e., down to the acoustic and phone level, so that recognition experiments could be performed completely in JSGF. While not all recognition systems supporting alternate grammar formats provide this capability, we believed it was an important feature to provide our users to reduce development efforts and experimental setup time. We also required the tool to provide the same level of conversion in reverse, as shown in Figure 2.
 JSGF ((IHD (acoustic/phone)

Once completed, we then undertook the task of providing a similar tool for XML:

 XML ((IHD (acoustic/phone)

The subtle but important distinctions between JSGF and XML-SRGS have proved challenging to the task of developing general purpose conversion tools. However, our deepened understanding of these issues led to the design of more robust conversion tool for these and future grammar formats. The following subsection introduces key theoretical and syntactic attributes of each format, highlighting important similarities as well as differences.
2.1. BNF and EBNF
First, JSGF and XML-SRGS are theoretically equivalent in expressive and computational power, both adhering in principle to Backus-Naur Form (BNF) [], a formal notation for CFGs, more specifically to two variants, Extended BNF (EBNF) and Augmented BNF (ABNF). Many detailed descriptions of BNF and its variants exist [,]. We provide a brief introduction to key features relevant to our discussion.

Stated simply, BNF defines a method for describing production rules in a CFG, including terminal and non-terminal symbols for rules, and a selection of alternatives among rules. Though numerous variants of the syntax exist, an example rule in a BNF grammar might be:
<A> ::= |c

where non-terminals are represented in capital letters, A, B, surrounded by brackets <> and can appear on the lefthand side (LHS) or righthand side (RHS) of the rule demarcated by the := symbol. Terminals are often expressed in lower case (though not required), but more importantly can appear only on the rule RHS. Finally, selection or branching among alternative rule definitions is expressed by the | symbol.
BNF also allows the use of recursive rules in a grammar. Such rules directly or indirectly reference themselves. For example, <A> ::= a <A>. The use of directly or indirectly recursive rules is useful to represent repetitive actions, such as loops or cycles in a graph for a finite state machine. Consider the FSM in Figure 3:

Figure 3. An FSM for the regexp a(bc)+

This FSM recognizes the regular expression, a(bc)+ that could be represented in BNF with the production rules:

<S> ::= <A>
<A>::= aB

 ::= bc|B

The use of the non-terminal B on the RHS in rule 3 is recursive and indicates that subgraph bc is a cycle that can be repeated one or more times. However, for simple regular expressions such as this, the cycle in this FSM could be represented using the + operator, a standard notation for regular expressions which denotes 1 or more repetitions []. EBNF is a modification to BNF that supports the use of these structures, such as the Kleene operator * and + for repetition as well as others [,]. This allows creating a minimal and more intuitive set of production rules for regular expressions, so that rules A and B above can be reduced to:
<A> ::= a (bc)+

2.2. JSGF and XML-SRGS
Again, both JSGF and XML-SRGS provide expressive equivalence to EBNF. They differ, however, in syntax. As an example, the above rule could be represented in JSGF as:

<A> = a(bc)+;

Note that the + operator is supported directly as well as the use of parentheses. Consider the same rule in XML- SRGS:
<rule>
 <item> a </item>

 <item repeat=’1-‘>

 <item> b</item>

 <item> c </item>

 </item>

 </rule>

The <rule> tag marks this as a production rule; no non-terminal symbols are used in this example in XML; the terminal symbols are marked with <item> tags, and “repeat= ‘1-‘” denotes the Kleene + operation (1 or more repetitions) applied to the concatenation of b and c, shown simply by listing each in sequence with surrounding item tags.
Clearly, the JSGF syntax is more to EBNF than XML-SRGS and thus, familiar to designers trained in formal language theory. The differences are due in large part to their origins: XML was designed initially as a markup language for general Internet usage and later modified to provide support for spoken language; JSGF was designed from the outset to support spoken language applications. The W3C SRGS attempted to address these issues first by using JSGF as a theoretical model in defining the XML-SRGS and second, by developing a standard specification for Augmented BNF (ABNF) []. ABNF is an EBNF variant, with origins dating back to Arpanet. Any ABNF can be mapped to XML-SRGS The previous example could be written as shown below, using *1 to + before the item (bc) to be repeated:
<A> = a *1 (bc)
The subtle distinctions among variants and syntax complicated the task of identifying underlying theoretical structures, but a more interesting set of issues arose with respect to the support each standard requires for recursion. While a conformant JSGF grammar processor must provide support for recursive rules [], this support is optional for the XML-SRGS (and ABNF-SRGS) upon which we based our conversion. We chose, however, to support recursion for all our grammar format conversion tools. The rationale for this choice is explained further in the following subsection.
2.3. Recursion in Speech Recognition
The example in Figure 1 illustrates how a lexical construct can be represented more simply with a regular expression than a recursive CFG. However, the converse situation often arises in speech recognition: though a lexical or syntactic construct could be described by a complex regular expression, the recursive form may be simpler to produce algorithmically. Figure 4 shows an example:

Figure 4. FSA for regexp (ab)+e+|a(ba)*cde+
Though still a relatively simple graph, notice the branches, cycles within branches, and self-loops not present in Figure 1. The regular expression for the strings accepted by this FSA can be written as: (ab)+e+|a(ba)*cde+. A rule for this can be written in EBNF, without non-terminals and without recursion, as follows:

S ::= (ab)+e+ | a(ba)*cde+
We can also create production rules for the expression using non-terminals, direct recursion for the self-loop, and indirect recursion for the cycle by creating a non-terminal for each state in the graph, e.g., A for a, as follows:
S-> A
A -> a (B|C)

B -> b (A|E) Over here show Figure with non-terminals
C -> c D
D -> d E
E -> e E | ET
T-> t

While the single rule in the first grammar in Fig. X eases visualizing a legal input string directly from the rules, the second grammar more directly expresses actions to be encoded in an algorithm with limited lookahead, e.g., rule A states that on input ‘a’, branch to either state B or C, the indirectly recursive rule B states on input ‘b’, branch back to A or ahead to E.
The use of recursive rules is an attribute that distinguishes regular and context free grammars. As noted, although XML and JSGF both provide the expressive power of CFGs, only JSGF requires support for recursion. The restrictions on the type of recursion supported should be noted, however. Notice that the recursive grammar for Fig. 4 is right recursive, that is, all recursive references appear on the rightmost side of the RHS. JSGF limits its required support to these type grammars. Several arguments can be made in favor of this restriction. First, any right recursive rule can be rewritten using the Kleene * and + operators where more appropriate. Second, speech recognizers typically use regular grammars, which must be either left or right linear, and thus can contain only left or right recursion. Finally, right recursive grammars can be parsed by top-down LL(1) parsers, which are arguably among the simplest to construct.
A final example of recursion taken from our speech recognition system further explains our decision to implement support for both the EBNF grammar structures, e.g., * and +, in XML-SRGS and ABNF-SRGS, as well as right recursive rules. To restate, we sought to provide conversion tools that would allow use of XML-SRGS and JSGF (and other equivalent grammar formats) to perform complete recognition experiments, i.e., all the way from the sentence level down to the acoustic and phone level. This meant, however, writing and parsing grammars that represented layers of FSMs, with those at the state level containing many self-loops. Consider a sentence level view of the TIDigits grammar [] in Fig. 5:

[image: image1]
Figure 5. FSM for (silen* digit*)+
If we assume silen and digit are terminal symbols, a simple regular expression (silen digit*)+ can describe this FSM. However, silen and digit are actually non-terminals describing inputs that are modeled at lower levels. Digit is represented as:
Figure 6.
The states for only the word model of a single digit, ONE are:

Figure 7.
A fully expanded FSM representing all levels from sentence to acoustic:
Figure 8.
We can write production rules containing regular expressions for each of these levels. Our software, however, treats non-terminals on arcs as subroutines, saving the current location in the graph, processing the non-terminals, and then returning when parsed, behaving effectively as recursive transition networks (RTNs) []. This meant that our conversion tool for IHD->XML could easily generate grammars with either type of structure, e.g., Kleene * for self-loops and cycles, or recursive rules. RTNs are commonly used in spoken language processing to represent language models that are predominantly FSM-based with some recursion. This further reinforced our decision to support both recursive rules and EBNF extensions.
2.4. XML-SRGS Weights and Probabilities
Other specific features of XML complicated the design decision described in the previous section. As shown, the syntax for loops and cycles written EBNF-style differed from that using recursive rules. More importantly, the handling of weights on arcs differed subtly. Since weights are a critical component of ASR systems, this was an important issue. Two methods are available for specifying weights in XML-SRGS: the weight attribute and the repeat-prob attribute. The graph in Figure 7 illustrates both methods.

[image: image2]
An XML-SRGS grammar using both the weight attribute and the repeat-prob attribute is shown below:
<grammar>

<rule>

<item> a </item>

<one-of>

<item weight='4'> b </item>

</one-of>

<item repeat='1-' repeat_prob='.43'> c </item>

</rule>

</grammar>

The first item in this grammar, a, has no weight since its incoming arc has no weight. The second item, b, has a weight on its incoming arc. SRGS dictates that an item may not have a weight unless its immediate enclosing tag is a <one-of>. The reasoning for this is that weights are not needed unless alternatives are present. SRGS does, however, allow for a single item to be enclosed in a <one-of> in order to specify a weight where one would not otherwise be allowed. Since speech recognition systems have weights on most arcs, this limitation on the SRGS weight attribute is significant.

Also important, the repeat-prob attribute can only be used with the the SRGS repeat looping attribute. Recall this implements the EBNF loop extensions for Kleene operations. In this example, “repeat = ‘1-‘” is equivalent to +. An additional limitation is that repeat probability values must be between 0.0 and 1.0. The reasoning for this is that the max probability for a loop to be repeat is 1.0. It is important to note that repeat probability is a different logical entity from a weight. A repeat probability is the probability that a given loop will repeat. A weight can only be transformed into a probability when compared with the other weights leaving a node.

The above grammar would be represented as follows without repeat probabilities and therefore with recursive rules as:
<grammar>

<rule>

<item> a </item>

<one-of>

<item weight='4'> <ruleref uri="#B"/> </item>

</one-of>

</rule>

<rule id="B">

<item> b </item>

<item> <ruleref uri="#C"/> </item>

</rule>

<rule id="C">

<item> c </item>

<one-of>

<item weight='.43'> <ruleref uri="#C"/> </item>

<item> <ruleref special="NULL"> </item>

</one-of>

</rule>

</grammar>
Here, we avoid the use of a repeat probability on node ‘c’ by putting a weight on the recursive rule reference at the end of this grammar. Special care must be taken in converting these ….occurrences.
Once we clearly identified the underlying theoretical structures of each format, it became clear that producing a verifiably robust conversion tool would require another step, and hence conversion module, in our process. This step would create a common EBNF grammar format to which any other format could be converted for verification of correctness. The ABNF-SRGS was an obvious choice as the common EBNF grammar format for reason described in Section 2. We then redesigned our conversion process to include the following steps and corresponding software modules: 1) convert the XML to an equivalent ABNF, 2) convert the ABNF to remove the EBNF extensions and produce a clean BNF with or without recursion, 3) convert the clean BNF to IHD.
XML -> ABNF -> BNF -> IHD

In addition, we created modules to implement the steps shown above in the reverse conversion from IHD -> XML:

IHD -> BNF -> ABNF -> XML.

We are also redesigning our JSGF conversion tools to include these steps and corresponding modules as well.
Summary and Conclusions

References

One final issue arose with respect to support for each in the XML conversion tools.

For the purpose of discussion, we give the following brief introduction to the syntax of the XML variant of the W3C Speech Recognition Grammar Specification (SRGS).

An SRGS grammar consists of a start <grammar> tag, a set of rules, and a close </grammar> tag. Rules are delimited by <rule/> tags, and named by specifying the id attribute in the opening <rule> tag with the syntax id=”r”, where r is the rule name.

Most rules contain character data implicitly tokenized with white-space delimiters, although tokens may also be specified explicitly via quotation marks or <token/> tags. Sequential tokens in a given rule are treated as a temporal sequence of terminals.

Two control tags exist for altering this temporal interpretation: <item/> and <one-of/>. An <item/> allows for the specification of token or expansion attributes; one such token attribute is repeat. This attribute indicates the acceptance of a repeated token, and is of the form repeat=m-n. Repeat attributes allow for an expansion to be repeated n times, m-n times, n or more times, or 0-1 times. This last possibility indicates an optional expansion. The <one-of/> tag is a branching structure. A recognizer will accept any one of the <item/> delimited tokens between the start and end <one-of/> tags.

These control tags introduce the possibility of branching and, consequently, the idea of weights. Two methods exist for attaching a weight to a token. If the token is within a <one-of/> structure, a weight can be applied as an attribute in the starting <item> tag in the form weight=w, where w is the desired weight. To add a weight to a loop, the repeat-prob attribute is used with the syntax repeat-prob=w, where w is the desired weight.

Lastly, SRGS allows for the specification of rules references. With the introduction of multiple rules in a given grammar, the question arises as to which rule the recognizer starts with. Said rule is designated the root rule, and specified by applying the root attribute to the opening <grammar> tag with the syntax root=”r” where r is the name of the root rule. If no root rule is specified, the first rule in the grammar is chosen.

Rules are referenced with the <ruleref/> tag. The name of the rule being referenced is specified in the uri attribute with the syntax uri=”# r” where r is the name of the rule being referenced.

2.3. IHD

3. Page title section

The paper title (on the first page) should begin 1.38 inches (35 mm) from the top edge of the page, centered, completely capitalized, and in Times 14-point, boldface type. The authors’ name(s) and affiliation(s) appear below the title in capital and lower case letters. Papers with multiple authors and affiliations may require two or more lines for this information.

4. Type-style and fonts

To achieve the best rendering both in the proceedings and from the CD-ROM, we strongly encourage you to use Times-Roman font. In addition, this will give the proceedings a more uniform look. Use a font that is no smaller than nine point type throughout the paper, including figure captions.

In nine point type font, capital letters are 2 mm high. If you use the smallest point size, there should be no more than 3.2 lines/cm (8 lines/inch) vertically. This is a minimum spacing; 2.75 lines/cm (7 lines/inch) will make the paper much more readable. Larger type sizes require correspondingly larger vertical spacing. Please do not double-space your paper. True-Type 1 fonts are preferred.

The first paragraph in each section should not be indented, but all following paragraphs within the section should be indented as these paragraphs demonstrate.

5. MAjor headings

Major headings, for example, “1. Introduction”, should appear in all capital letters, bold face if possible, centered in the column, with one blank line before, and one blank line after. Use a period (“.”) after the heading number, not a colon.

5.1. Subheadings

Subheadings should appear in lower case (initial word capitalized) in boldface. They should start at the left margin on a separate line.

5.1.1. Sub-subheadings

Sub-subheadings, as in this paragraph, are discouraged. However, if you must use them, they should appear in lower case (initial word capitalized) and start at the left margin on a separate line, with paragraph text beginning on the following line. They should be in italics.

6. Printing your paper

Print your properly formatted text on high-quality, 8.5 x 11-inch white printer paper. A4 paper is also acceptable, but please leave the extra 0.5 inch (12 mm) empty at the BOTTOM of the page and follow the top and left margins as specified. If the last page of your paper is only partially filled, arrange the columns so that they are evenly balanced if possible, rather than having one long column.

7. Page numbering
Please do not paginate your paper. Page numbers, session numbers, and conference identification will be inserted when the paper is included in the proceedings.

8. Illustrations, graphs, and photographs

Illustrations must appear within the designated margins. They may span the two columns. If possible, position illustrations at the top of columns, rather than in the middle or at the bottom. Caption and number every illustration. All halftone illustrations must be clear black and white prints. Do not use any colors in illustrations.

9. Footnotes

Use footnotes sparingly (or not at all!) and place them at the bottom of the column on the page on which they are referenced. Use Times 9-point type, single-spaced. To help your readers, avoid using footnotes altogether and include necessary peripheral observations in the text (within parentheses, if you prefer, as in this sentence).

A weight may be optionally provided for any number of alternatives in an alternative expansion. Weights are simple positive floating point values without exponentials. Legal formats are "n", "n.", ".n" and "n.n" where "n" is a sequence of one or many digits.

A weight is nominally a multiplying factor in the likelihood domain of a speech recognition search. A weight of 1.0 is equivalent to providing no weight at all. A weight greater than "1.0" positively biases the alternative and a weight less than "1.0" negatively biases the alternative.

[JEL98] and [RAB93] are informative references on the topic of speech recognition technology and the underlying statistical framework within which weights are applied.

Grammar authors and speech recognizer developers should be aware of the following limitations upon the definition and application of weights as outlined above.

· The application of weights to a speech recognition search is under the internal control of the recognizer. There is no normative or informative algorithm for applying weights. Furthermore, speech recognition is a statistical process so consistent behavior cannot be guaranteed.

· Appropriate weights are difficult to determine for any specific grammar and recognizer. Guessing weights does not always improve speech recognition performance.

· Effective weights are best obtained by study of real speech input to a grammar. For example, a reasonable technique for developing portable weights is to use weights that are correlated with the occurrence counts of a set of alternatives.

· Tuning weights for a particular recognizer does not guarantee improved recognition performance on other speech recognizers.

10. Copyright forms

You must include your fully completed, signed IEEE copyright release form when you submit your paper. We must have this form before your paper can be published in the proceedings. The copyright form is available as a Word file, a PDF file, and an HTML file. You can also use the form sent with your author kit.

11. References

List and number all bibliographical references at the end of the paper. The references can be numbered in alphabetic order or in order of appearance in the document. When referring to them in the text, type the corresponding reference number in square brackets as shown at the end of this sentence [1].

[1] A.B. Smith, C.D. Jones, and E.F. Roberts, “Article Title,” Journal, Publisher, Location, pp. 1-10, Date.

[2] Jones, C.D., A.B. Smith, and E.F. Roberts, Book Title, Publisher, Location, Date.

c

b

a

s

t

t

d

c

b

a

s

e

DIGIT

STOP

SILEN

START

.43

4

c

b

STOP

a

START

