1. Introduction

Language models are used extensively in speech recognition to provide a grammar for accepted utterances. Several industry standard grammar specifications such as the Java Speech Grammar Format (JSGF) [] and the XML Speech Recognition Grammar Specification (XML-SRGS or XML) [] have been developed to support development of voice-enabled Internet applications. While these standards allow for the specification of context-free grammars (CFGs), most language models have a regular grammar equivalent and can therefore be modeled as finite state machines (FSMs), which are widely used in automatic speech recognition. To support a capability for voice-enabled web applications, we have developed a set of software tools to convert two popular standard CFG-based language models for web applications, JSGF and XML, to and from our internal grammar format for our public domain speech recognition toolkit []. This grammar format consists of a set of hierarchical or nested finite state machines, collectively known as ISIP Hierarchical Digraph (IHD) format [] and as such can recognize any regular grammar.
Issues of theoretical equivalence and conversions between regular and context free grammars formats have been studied and described in textbooks[]. No algorithm has been proven to perform conversions from arbitrary CFG’s generating regular languages to FSMs[,] without assuming certain restrictions on the grammar. However, software tools have been developed for conversions between FSMs and CFGs, which assume certain restrictions on the grammars handled []. Nonetheless, our experience has illustrated that the specifics of each individual grammar format present unique challenges that cannot be easily addressed by theoretical solutions or generic conversions. In addition, other attributes of the formats should be considered in evaluating and selecting one for use. The remainder of this paper describes the technical issues encountered our conversion process, our solutions to these issues, and finally offers insight into future development of robust, general purpose language model conversion tools.
 2. Two Popular CFG-Based Language Models: Comparison of JSGF and XML
JSGF and XML are theoretically equivalent in expressive and computational power, both adhering in principle to Extended Backus Naur Form (EBNF), a specific type of CFG. BNF defines a syntax for creating production rules in a CFG, including terminals, non-terminals, …(), the | symbol, etc. []. Example. … BNF also allows the use of recursive rules in the definition of a grammar. This is valuable because…loops… Example…Sometimes however, it is more intuitive to represent a loop using +, *,… EBNF is a modification to BNF that supports this, +, *, …. Again, both JSGF and XML adhere to EBNF. They differ in the syntax in which this is provided, however, due most likely to their origins: XML was designed for general Internet usage and then modified to support speech; JSGF was designed to support spoken language. Additionally, a conformant JSGF grammar must provide support for recursive rules. This is optional for the XML variant of the W3C Speech Recognition Grammar Specification (SRGS) on which we based our conversion.

t popular specification for XML…..
2.1. Java Speech Grammar Format (JSGF)

The JSGF began development in…. It is based in Java and …designed to support voice-enabled Internet applications.

2.1. XML-SRGS
For the purpose of discussion, we give the following brief introduction to the syntax of the XML variant of the W3C Speech Recognition Grammar Specification (SRGS).

An SRGS grammar consists of a start <grammar> tag, a set of rules, and a close </grammar> tag. Rules are delimited by <rule/> tags, and named by specifying the id attribute in the opening <rule> tag with the syntax id=”r”, where r is the rule name.

Most rules contain character data implicitly tokenized with white-space delimiters, although tokens may also be specified explicitly via quotation marks or <token/> tags. Sequential tokens in a given rule are treated as a temporal sequence of terminals.

Two control tags exist for altering this temporal interpretation: <item/> and <one-of/>. An <item/> allows for the specification of token or expansion attributes; one such token attribute is repeat. This attribute indicates the acceptance of a repeated token, and is of the form repeat=m-n. Repeat attributes allow for an expansion to be repeated n times, m-n times, n or more times, or 0-1 times. This last possibility indicates an optional expansion. The <one-of/> tag is a branching structure. A recognizer will accept any one of the <item/> delimited tokens between the start and end <one-of/> tags.
These control tags introduce the possibility of branching and, consequently, the idea of weights. Two methods exist for attaching a weight to a token. If the token is within a <one-of/> structure, a weight can be applied as an attribute in the starting <item> tag in the form weight=w, where w is the desired weight. To add a weight to a loop, the repeat-prob attribute is used with the syntax repeat-prob=w, where w is the desired weight.
Lastly, SRGS allows for the specification of rules references. With the introduction of multiple rules in a given grammar, the question arises as to which rule the recognizer starts with. Said rule is designated the root rule, and specified by applying the root attribute to the opening <grammar> tag with the syntax root=”r” where r is the name of the root rule. If no root rule is specified, the first rule in the grammar is chosen.

Rules are referenced with the <ruleref/> tag. The name of the rule being referenced is specified in the uri attribute with the syntax uri=”# r” where r is the name of the rule being referenced.
2.2 JSGF

2.3. IHD
Our internal specification for a finite state machine (FSM) (specifically a Mealy machine) is a generic directed graph class called DiGraph. While DiGraph sufficed for single FSM’s, we desired a format for binding layers of FSM’s together into a single recursive transition network (RTN) for the purpose of speech recognition. This desire led to the development of the ISIP Hierarchical DiGraph (IHD) format.
An IHD is organized into levels. The top-most level contains a single DiGraph, with the nodes of this DiGraph mapping to complete DiGraphs in the level below. This integrates perfectly with our speech-recognition applications; the top-most layer represents the sentence level, the level below that the word level, the level below that the phone level, etc.

In general, the problem of conversion between IHD and XML is truly the problem of conversion between XML and an RTN.

3. Converting from XML to IHD
Began with the W3C SRGS test set. Enumerate the test cases we chose to address:

4. IHD -> XML

To see where problems can arise in converting from IHD to XML, let us look at all of the ways that XML can express an arc.

First, there is an implied branch between two sequential XML items. Here is an example:

<grammar>

<rule>

<item> a </item>

<item> b </item>

</rule>

</grammar>

“a” and “b” are nodes, and there is an implied branch between them as follows (“s” and “t” are the start and terminal nodes):

[image: image1]
Next, to specify multiple branches, one uses the <one-of> structure, as follows:

<grammar>

<rule>

<item> a </item>

<one-of>

<item> a </item>

<item> c </item>

</one-of>

</rule>

</grammar>

This translates to the following directed graph:

[image: image2]
Thus far, all arcs have been forward facing. There is no way either of the above arc methods can result in arcs that return backward in the grammar (corresponding to upward in the XML code). In this way, XML makes an implicit distinction between forward facing arcs and backward facing arcs. A directed graph has no such distinction.

It is only via the third and final branching situation that model traversal can be repeated (corresponding to a recognizer returning to a previous point on the tape). This third situation occurs when the XML “repeat” attribute is used on an item to indicate a loop. An example of its use follows:

<grammar>

<rule>

<item> a </item>

<item repeat=’1-‘>

<item> b </item>

<item> c </item>

</item>

</rule>

</grammar>

This translates to the following directed graph

[image: image3]
Here lies the first problem. There is an implicit limitation placed on all XML grammars: each node must have at least one forward facing arc. There is no such limitation on a directed graph. To further illustrate this problem, consider the following directed graph:

[image: image4]
While this is a perfectly legitimate IHD language model, there is no straightforward way to express the “b” node in XML. This is because of the inherent weakness in the backward-branching capabilities of XML; namely, that a node can not have exclusively backward branches.

Notice that I said that there is no straightforward way to express “b”. There is a way to do this, but it is far from intuitive. We can express the above directed graph in XML as follows:

<grammar>

<rule>

<item> a </item>

<item repeat=’0-‘>

<item> b </item>

<item> a </item>

</item>

<item> c </item>

</rule>

</grammar>

Above, we make use of XML’s ability to repeat an item zero or more times, effectively setting the “b” node loop as optional. This is a feasible solution for this small scale FSM.

However, the implementation of this requires that it be known ahead of time which sub-graphs terminate in this loop-back fashion. Otherwise, the arcs leading from a given node to these sub-graphs can not be dealt with correctly.

While this is simple in theory, the implementation proved difficult.

The second problem relates to the nesting restrictions imposed on any XML format grammar. This stems from an implicit requirement in the XML <one-of> structure: all branches of a <one-of> must converge at the same node (specifically the node immediately following the closing </one-of> tag). The following XML segment illustrates this point:

<grammar>

<rule>

<item> a </item>

<one-of>

<item> b </item>

<item>

<item> c </item>

<item> d </item>

</item>

</one-of>

<item> e </item>

</rule>

</grammar>

This corresponds to the following directed graph:

[image: image5]
As is evident, all of the nodes included in the above <one-of> structure are forced to converge at the node immediately following the closing </one-of> tag, node “e”. While finding this convergence in an IHD to be converted is a problem (it requires limited look-ahead), it is not nearly as big a problem as what happens when some of the branches converge before others.

The following graph, for example, is perfectly legal in IHD:

[image: image6]
However, this graph is not legal in XML (at least not as it is). The reason for this is that parts of the two branches leaving “a” converge at different times. Specifically, the sub-graphs converge at both “f” and “t”. This cannot be handled, as the <one-of> structure requires that all branches converge at the single node following

One option for handling this case is to flatten the portion of the graph from “a” to “t” so that all branches leaving “a” converge at “t”, resulting in the following XML:

<grammar>

<rule>

<item> a </item>

<one-of>

<item>

<item> b </item>

<item> f </item>

</item>

<item>

<item> c </item>

<item> d </item>

<item> f </item>

</item>

<item>

<item> c </item>

<item> e </item>

</item>

</one-of>

</rule>

</grammar>

The equivalent directed graph would look like this:

[image: image7]
Of course, this increases the size of the resulting language model as some nodes must be duplicated. Additionally, there is always the possibility that this method will end up enumerating every possible valid string. Finally, this method also requires extensive forward searching to determine which arcs leaving a given node converge at multiple points. Otherwise, these branches can not be handled accordingly.

On a side note, the first problem mentioned (that of a node having no forward facing arcs) could also be remedied by the flattening method proposed above.

This method could be optimized through the use of “0-1” looping, but the general idea remains the same: the graph must be reformed to conform to the single convergence requirement of XML.

Once again, while this sounds simple in theory, the implementation of this method proved difficult.

In the end, the added complexity of dealing with these issues led us to implement a more trivial (and systematic) solution. This solution relies on rule references.

The essence of this method is to use XML to express production rules, where each rule is of one of the following forms:

R -> a (B | C)

R -> a

Each production rule can have one terminal symbol optionally followed by a choice of non-terminals, one of which may be NULL.

Instead of utilizing the XML control structures (<one-of> and “repeat”) to their full potential, we treat each arc as a rule reference. This introduces the possibility (in the event of a loop) for a recursive call.

Consider the following directed graph:

[image: image8]
With our current implementation, this would be translated as follows:

<grammar root=”node0”>

<rule id=”node0”>

<item> a </item>

<one-of>

<item> <ruleref uri=”#node1”/> <item>

<item> <ruleref uri=”#node2”/> <item>

<one-of/>

</rule>

<rule id=”node1”>

<item> b </item>

<one-of>

<item> <ruleref uri=”#node0”/> <item>

<item> <ruleref uri=”#node4”/> <item>

<one-of/>

</rule>

<rule id=”node2”>

<item> c </item>

<ruleref uri=”#node3”/>

</rule>

<rule id=”node3”>

<item> d </item>

<ruleref uri=”#node4”/>

</rule>

<rule id=”node4”>

<item> e </item>

<one-of>

<item> <ruleref uri=”#node4”/> <item>

<item> <ruleref uri=”NULL”/> <item>

<one-of/>

</rule>

</grammar>

This grammar works by drawing arcs with rule references. As this grammar contains loops, the XML form contains recursive calls.

The production rules for this grammar are as follows:

S -> RULE0
RULE0 -> a (RULE1 | RULE2)

RULE1 -> b (RULE0 | RULE4)

RULE2 -> c RULE3
RULE3 -> d RULE4
RULE4 -> e (RULE4 | NULL)
The similarity between the corresponding XML and these production rules should be apparent.
The advantages to this method are:

1. An IHD can be reproduced exactly from such an XML grammar.

2. The IHD->XML conversion does not require reforming of the directed graph.

3. The implementation for this method is much easier.

The disadvantages are:

1. The resulting XML grammar is less readable.

2. Our typical XML->IHD conversion process handles rule references by expanding them in-line. With the possibility of recursive rule references, such in-line expansion could result in an infinite loop. Thus, we do not support recursive XML grammars in our XML->IHD conversion process and must handle grammars created by our network conversion utilities as a special case.

IV.
__

Although the ISIP software natively processes only IHD format language models, it offers transparent conversion both from JSGF and XML to IHD and vice-versa in the form of the isip_network_converter and isip_network_builder utilities. Consequently, one may use XML language models with ISIP software without knowing the details of IHD. The construction and use of such XML language models is the focus of this tutorial. This tutorial assumes a basic understanding of the ISIP environment and of speech recognition principles.

�

s

a

b

t

t

s

a

b

c

t

s

a

b

c

t

s

a

b

c

e

s

a

b

c

d

t

f

s

a

b

c

d

t

e

f

s

a

b

c

d

t

e

f

c

e

s

a

b

c

d

t

[image: image9.emf]

S

