USING ASR to detect fatigue from voice
Author(s) Name(s)

Author Affiliation(s)

Abstract

Military and civilian experience has shown that long-duration assignments present increased risk of performance failures as the mission progresses. This is due to interruption of normal sleep cycles and to the psychological pressures of the living and working environment. There continues to be a need for a non-obtrusive fatigue assessment system to successfully monitor the level of alertness of all personnel during critical missions or dangerous activities. Our experimental data shows that specific phones have a predictable dependence on fatigue and, as such, precise phonetic identification and alignment is important to voice-based fatigue detection. This paper describes the development of an ASR system which provides the phonetic alignment accuracy necessary for the practical application of a voice-based fatigue prediction system. Significant improvement was observed on unseen data when word-posteriors were used as confidence measures to filter out less probable words.
1. Introduction
The unique characteristics of the military and aviation environment make war fighters and civilian pilots particularly susceptible to fatigue. Environmental factors such as movement restriction, poor air flow, low light levels, background noise, and vibration are known to cause fatigue [1]. In addition, the introduction of advanced automation has changed the nature of the job for these individuals and hence people find it tiring if tasks are performed for long periods of time.
Sleep is often the prescribed remedy for fatigue and its related problems. The benefits of sleep are presently considered to be logarithmic in nature, with initial hours showing significantly greater benefits that diminish as one approaches his or her optimum sleep level. This accounts for how one can sleep less and still appear to function normally. However, the Reserve Capacity of Brain Function (RCBF), the brain’s ability to handle situations beyond that of normal and for longer periods, is restored only after a totally recuperative sleep cycle [7]. Thus, an individual with low RCBF may be able to perform routine duties without a problem, but be unable to successfully deal with emergency situations. Also, as mentioned above, this individual is more likely to employ shortcuts in an effort to reduce workload, thus making accidents more likely.
Personnel operating at unacceptable levels of cognitive performance present a danger to their mission, to themselves, and to their work team. Military planners recognize that if engagements are necessary, then the weakest link will likely be human and not hardware. Being able to quickly and non-obtrusively monitor an airman’s or soldier’s level of alertness prior to and during the undertaking of a critical mission activity would provide commanders with critical information regarding personnel assignments and certainly save lives and increase the likelihood of mission success. Unfortunately, there are no cognitive assessment tests that have been proven to be effective in the field under conditions of high stress and limited testing time per subject. This paper details our approach to the development of a voice-based fatigue prediction system.

Changes in the articulation of voiced sounds due to fatigue could be considered to be representative of changes in performance related to the control of the body’s voice production mechanisms. It was observed that with fatigue the fundamental frequency decreases and the word duration increases.
2. using voice to detect fatigue
Voice has been shown to be sensitive to fatigue. While analyzing changes in the voice patterns of B-1B bomber aircrew men during sustained operations, Whitmore and Fisher [9] have shown that speech data follow the same trend as the data from cognitive tests and subjective measures of alertness. These results were obtained by having the test subjects voice two scripted sentences every three hours and then determining fundamental word frequencies and speech duration. With fatigue, they demonstrated that the fundamental frequency decreases and the word duration increases. They also note a strong circadian trend in that, overall, the best voice performances (higher frequency, lower duration) occur during normal waking hours and the worst performances occur during normal sleeping hours. This is also consistent with numerous measures of alertness vs. time cited in the literature [10][11][12]. Playback of recorded voice tapes, “after-the-fact,” has been used to demonstrate that voice analysis could be used to determine the cognitive and physiological state of operators prior to accidents. Brenner and Cash [13] used recorded messages over a period of 42 hours from the Exxon Valdez master to identify four effects associated with alcohol consumption just prior to the accident: slowed speech, speech errors, misarticulation of different sounds, and changes in the Speech Quality. They performed a detailed phonetic spectrum analysis and demonstrated misarticulation of “r” and “l” in words such as “northerly,” “little,” “drizzle,” and “visibility.” Changes of the sound [iz] to the sound [is] (in Valdez) and the sound [s] to the sound [sh] (in EXXON) were observed. Satio et al.[14] reported changes in the appearance of sound spectrograms from analysis of specific, repeated utterances (“ro” and “ger” in “roger” for example) as a pilot experienced hypoxia prior to a fatal F-104 accident.

These results support the contention that voice characteristics are directly related to the speaker’s level of performance which, in turn, is affected by his or her level of fatigue. Indeed, changes in the articulation of voiced sounds due to fatigue could be considered to be representative of changes in performance related to the control of the body’s voice production mechanisms (tongue, lips etc.). As Dinges [15] states “across the literature the tasks that most often show sleep loss effects early and profoundly are simple sustained attention reaction time tasks.” Since assuring high levels of performance in team members is the goal of supervisory personnel, this parameter is more important than an SLT score as a monitoring tool.

Introduction to the correlation approach: Mathematically, the speech signal consists of a convolution of the excitation waveform with the filter description in the time domain or by a multiplication of the transfer functions of the two regions in the frequency domain. There is reason to believe that fatigue is principally reflected in changes in the filter characteristics. In fact, our Phase I analysis confirmed a dependence between metrics related to the filter (formants) and fatigue. It therefore becomes necessary to process the recorded speech signal S(t) in a manner that will reveal filtering effects from the excitation signal. Fig. 1 illustrates how this is accomplished using cepstrum analysis techniques.

[image: image1.emf]F1

F2

F3

F4

F0

e(t)

f(t)

F1

F2

F3

F4

Time Domain

Voice Signal

DFT LOG Cepstrum Filter DFT DFT

Fs = 16kHz

Nasal

Resonance

Nasal

Resonance

Figure 1: Cepstrum analysis of a speech signal. Using two discrete Fourier transform processes, the voice signal is representated by a set of cepstrum coefficients. Using this managable number of coeffieicents, the excitation (e(t)) and filter (f(t)) portions of the human speech production system may be analyzed. Here formants F1 through F4 and fundamental frequency, or voice pitch (F0) are indicated.

In this process, the spectral characteristics of the speech signal are obtained and the logarithm of the resulting amplitudes is calculated. This provides a measure from which excitation and filter components may be separated.

[image: image2.wmf]))

(

(

))

(

(

))

(

(

w

w

w

F

Log

E

Log

S

Log

+

=

 (1)
The log magnitude spectrum is then transformed back to the time domain using a discrete Fourier transform. This process results in the calculation of a discrete (and manageable) number of coefficients (called cepstrum coefficients) that represents separate filter and excitation signals in the time domain. It is important to point out that, the entire speech production process is now characterized by these few cepstrum coefficients. Isolation of the spectral coefficients of either the excitation or filter sections is accomplished by the removal of the irrelevant cepstrum coefficients followed by another conversion to the frequency domain.

From this discussion, it was seen that the entire human speech production process may be described by a manageable number of coefficients. Therefore, instead of tracking changes in specific vocal metrics, such as formants, with fatigue, changes can be tracked in the entire speech production system using an analysis of these coefficients. The software for the frontend calculates 36 mel-frequency cepstrum coefficients (MFCCs). This “Voice Vector” is comprised 12 cepstral coefficients (MFCC 1—MFCC 12), along with their first and second time derivatives. Fig.2. is an illustrative example of how the MFCC vector changed over the four-day period of the sleep restriction.
[image: image3.emf]MFCC Component

10 20 30

Component Amplitude

-6

-4

-2

0

2

4

6

Trial 1 (CC = 1.0)

Trial 10 (CC = 0.82)

Trial 21 (CC = 0.19)

MFCC 1 -12

MFCC 1 -12

1st Derivative

MFCC 1 -12

2 and Derivative

Figure 2: Changes in the MFCC Vector During four days of sleep restriction. Here we illustrate the MFCC vector (36 MFCC components) generated by a single subject‘s utterance of the sound “t”. As quantified in the legend, the vector during Trials 1 and 10 match better than the vector at Trial 21.

Here an illustration is given of the Voice vector (36 MFCC components) generated by a single subject‘s utterance of the sound “t”. The legend of Fig.2 presents the correlation of the Voice vector at each trial with the Voice vector at the onset of testing (Trial 1). This metric, which we call the Voice Correlation metric, is used as a means to quantify the subject’s voice at each trial.
2.1 Prelimnary Fatigue experiments
As part of a larger FAA study[16] that involved a 34-hour period of sleep deprivation, six non-medicated subjects were asked to recite a list of 31 words at six testing times (10:00 am, 4:00 pm, 10:00 pm, 4:00 am, 10:00 am, and 4:00 pm). These testing times were selected to represent circadian high and low points in performance. Also measured during these testing times was sleep onset latency (SOL) which is the individual measurement component of the gold standard for sleepiness testing (the mean sleep latency test or MSLT). Briefly, this test involves having the test subject lie on a bed in a quiet, darkened room and telling them to fall asleep. The time, in minutes, that it takes them to fall asleep, as measured by an electroencephalogram (EEG), is the sleep onset latency (SOL). Between tests subjects were allowed low arousal activities such as reading, watching TV and schoolwork.
Figure 3 shows the group average change in both SOL and our Voice Correlation metric for the sounds ‘p’ (as in pea) and ‘t’ (as in tea) over the 34 hour testing period. It can be seen from this figure that change in the voiced ‘p’ sound tracks in a manner similar to sleepiness while ‘t’ does not. The correlation coefficient (R) between SOL and time awake is -0.825, between Vc(p) and time is -0.89, and between Vc(t) and time is -0.67. From these numbers we estimate (using the value R2) that time awake accounts for 68%, 79 %, and 45 % of the variation of SOL, Vc(p) and Vc(t) respectively.
[image: image4.wmf]FAA Group Average

Time Awake (Hours)

0

5

10

15

20

25

30

35

SOL (minutes)

6

7

8

9

10

11

12

13

14

Voice Correlation

0.75

0.80

0.85

0.90

0.95

1.00

1.05

SOL

Sound 'p'

Sound 't'

Figure 3: Change in the voice vector Vs change in Sleepiness. SOL, sleep onset latency (to stage 2 sleep) trends downward over time for the FAA group average with circadian bumps at 16 and 28 hours awake (10 p.m. and 10 a.m.). Voice correlation (Vc), is the change in the voice vector, as quantified by the correlation with the vector at trial #1. For the sound ‘p’ we observe a trending similar to SOL. The sound ‘t’ does not appear to be as sensitive to sleepiness and the sound ‘p’.
All three metrics show a circadian peak at 16 hours into the test, however, the SOL peak is significantly greater than the voice peaks. This difference in circadian sensitivity tends to reduce a correlation coefficient-based quantitative comparison however, for purposes of comparison there is a correlation of -0.79 between SOL and Vc(p) and -0.54 between SOL and Vc(t).

2.2 The Need to Adapt Speech Recognizer
Our fatigue analysis is done by studying the spectral and temporal characteristics of specific phones extracted from human speech. Specifically, the 36 component MFCC vector (which we call the Voice Vector) for key phones, is monitored over time. As the speaker becomes fatigued, this vector becomes increasingly dissimilar to the voice vector recorded during the speaker’s rested (non-fatigued) state. A statistical analysis of these changes provides us with a prediction of the speaker’s level of fatigue. Because this statistical fatigue analysis requires a lot of data, an Automated Speech Recognizer (ASR) plays a very vital role in the process.

An ASR provides output with hypothesized words or phones along with their time marks. Matching the phones to the sounds of interest, the corresponding MFCC vectors are written to a ‘feature file’. The general architecture of the fatigue detection system integrated with the automatic speech recognition system is shown in Fig.4.

[image: image5.png]Audio
input

Frontend

—* Speech recoghition —— Hypothesis

——— Fatigue detection system «———

v

final predicted fatigue value

Figure 4: Integration of the fatigue detection system with an automatic speech recognition system.
Because the prediction software relies upon the ASR to provide MFCC vectors sorted according to specific phones, it is critical that the correct phones are identified from the input stream of audio data. Depending upon that nature of the application, achievement of this requirement has different degrees of difficulty. For a scenario in which the speakers recite from a fixed list of phrases or words, the ASR has a limited list of words to identify, also, in the case of fixed phrases, the system know the order of word utterances. These conditions result in a high confidence level concerning the correctness of the phone and voice vector identification.

While this scenario is useful for fatigue research and some operational applications, we believe that our system will find significantly more application if can monitor speakers as they go about their jobs, speaking in normal conversation. This significantly increases the load on the ASR in that any word, in any order, can be part of the audio input. Confidence in the resulting phone outputs, and as such the fatigue prediction, will be reduced. This problem is somewhat reduced in the sense that personnel at many operational sites will use key words over and over again. For instance, military aircraft controllers will use the ‘alpha-zulu’ alphabet to identify aircraft or landing sites. As such only a relative few words need to be recognized while the, more frequent, non-key words in the audio input need to be ignored.

As a result, we of these factors, we have developed a “word-spotting” ASR that provides a level of confidence metric with each identified word. Using this feature, our fatigue prediction can ignore any voice vector data associated with a low confidence metric.
Automated server management became critical with the addition of multiple applications. Though the Galaxy process monitor provides an excellent interface to start and terminate servers, it requires manual monitoring. To address this issue, we designed the Process Manager module that automatically starts and controls all server processes in the prototype system architecture. Figure 2 shows an overview of the multi user architecture for multiple applications.

 [image: image6.jpg]Client side

Server side

Figure 2: The process manager managing multiple users.

When a user starts a new application, the client program requests the Process Manager to start the respective servers and the hub. The Process Manager performs this startup task by invoking a Java Process Object. This Java Process Object enables the Process Manager module to control all server processes and obtain information from them, such as…. The Process Manager can wait on a process, perform input/output on the process and even check the exit status of the process. If one of the servers fails for any reason, the Process Manager detects the failure and sends a message to the client side forcing the user to restart the demo. In a multi-user environment, port allocation also needs special attention. The Process Manager allocates port numbers and ensures no two servers are assigned the same port.

2.3 Common Application Interface

Support for multiple applications required providing a common interface from which users could choose an application of interest. We designed our demo selector module to provide the desired interface and coordinate with the Process Manager module to start the required servers.

[image: image7.jpg]‘Configration

» Speech Analysis: Learn about basic digital voice
speech processing by recording and visualizing
your voice patterns

tion: Enroll and verify your
R e e
system that minimizes enroliment time

recogn}

using d

Center for Advanced |

Figure 3: The demo selector and the speech analysis user interface.
Figure 3 shows our demo selector interface. Once the user chooses an application, the demo selector loads the user interface needed for that specific application. (Show an example screen shot from one.) The client program sends a message to the Process Manager containing information about the chosen application. (Give an example.) Upon receiving the message, the Process Manager starts the required servers. The demo selector has a configuration menu that allows the user to set the IP address of the server machine and manage port allocation. Give examples.. (Show this configuration menu.)

2.4 Improvements on system robustness
Improving system robustness to failure was a primary focus of our enhancements to handle multiple applications. As the foundation of our redesign strategy, we targeted a simple single application to be used by all others, Speech Analysis. Our approach entailed using the implicit capabilities of the Communicator to enhance reliability of inter-process communication between clients and servers. This section describes how we implemented a state machine architecture to support a basic handshaking protocol between the client and servers, using Communicator frames. Figure 4 shows an overall view of the client-server modules for Speech Analysis. Note that even this simple application requires two servers, Audio Record and Signal Detector.
[image: image8.jpg]I

Client side

w
o
S
<
o
=
@
o
o

Figure 4: The speech analysis application.

Figure 5 shows the state machine architecture and basic handshaking supported between the Speech Analysis client and the Signal Detector server. We used a simple handshaking protocol with signals and acknowledgements, each implemented as Communicator frames sent via the hub. The states and handshaking protocol support three major interaction phases between client and server, 1) preparing for data transfer, 2) data transfer itself, and 3) end of data transfer. For phase 1, the client begins in the Initialization state, during which it establishes connection with the hub. It then transitions to the Audio_Ready state and sends an audio_ready signal to the Signal Detector server to prepare it for audio data transfer. The client then waits for an acknowledgement of the audio_ready signal from the Signal Detector server, and once received, it transitions to the Audio_Ready_Ack state. Phase 2, data transfer, begins when the client then transitions to the Data_Transfer state and sends packets of audio data in Communicator frames to the server. For each frame of data sent, the client waits for an acknowledgement from the server, which checks each for validity. If the received frame was not expected by the server at a current state, an error message is generated. Finally, once the signal detector server detects endpoints, it ??? passes the endpointed data to the client???. The client then sends an end_of_utterance signal to the Signal Detector server and waits for an acknowledgement. On receiving the end-of-utterance signal, the Signal Detector server sends an acknowledgement signal to the client and resets itself to the initial state.
[image: image9.jpg]Speech Analysis Client

Initialization state

Audio_Ready state

{ﬂdio_ﬁReady signgﬂ

Signal Detector Server

Initialization state

Wait_Audio_Ready

Audio_Ready_Ack
state

state

Data_Transfer state

End_Points

Data_Transfer state

le

End_Of_Utterance signal

End_Of_Utterance
state

<

»f

End_Of_Utterance
state

p ;
1 End_Of_Utterance_Ack sig

nal|

Figure 5: Handshaking between Speech Analysis client and Signal Detector server.

The handshaking protocol described in this example is implemented for all applications and has significantly reduced server crashes due to communication errors. Section 3 describes measurements of these improvements in performance in more detail.

2.5 Improved Debugging Capabilities

 The redesign of the client and the server architecture as state machines has also significantly improved the ease with which the system can be debugged. When a server errors, information on its current state and the communicator frame received at that state is available and can be used to determine a message-state mismatch. When a acknowledgement signal is not received, the handshaking prevents the communication from proceeding further and resulting in a system crash. This can be debugged by viewing the log files and tracing the communication.

The debug window feature was added to our user interface and logs all communication between the servers. Figure 6 shows the debug window in our dialog systems application. This helps the user in debugging the system locally on the client without requiring direct access to the server.
[image: image10.png]Dialog Navigation System
Fie Monitor Confiuration Help
Didog Navigation System

Debug Window
Debug Log
imerged_slot "[Arrive_Loc] . [Place Neme] :ALIART; "
tauery_params ":%:®iUALMART: %:7:%:%i:msnivsnien
iquery_result (c result
:column_nemes (address"
"distance”)
infound 1
ivalues (("1010 Highvay 12 W"
"alliart”
3507 3
:access_veb 1)

FROM PACKED FRANE: —————atabase Fesponse
smner ot olements founds 1
first elemenc: type is:[oML_LkT)
value 1o:[[1010 Highvay 12 ¥, Valliars, 3.5011

]
e

Response to user:[VWALMART IS AT 1010 HIGHWAY [hrrive Loel.
[Place_Neme] .
[Supermarket_Name] .
WALHRRT
END_PARSE

Record]| pmbek | st (e Jax |

Figure 6: The dialog system application with the debug window.

3. conclusion

Our human language technology system consists of four major applications. They are the speech analysis, speech recognition, speaker verification and the dialog systems. We have redesigned and implemented the above mentioned enhancements for all these applications. We have achieved good improvements in the robustness of all the four applications. In future we may come up with some evaluations regarding the improvement in overall robustness of our system.

4. References

1. J. Baca, F. Zheng, H. Gao, and J. Picone, "Dialog Systems for Automotive Environments," European Conference on Speech Communication and Technology, pp. 1929-1932, Geneva, Switzerland, September 2003.

2. Kadri Hacioglu, Bryan Pellom, "A Distributed Architecture for Robust Automatic Speech Recognition", in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hong Kong, April, 2003.

3.“Galaxy Communicator”, SourceForge site, 2003 http://communicator.sourceforge.net/

_1182682934.unknown

