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ABSTRACT 
Given a one dimensional time series, attractor behavior of 
an underlying dynamical system can be analyzed by 
unfolding the time series to a higher dimensional phase 
space by employing Taken’s theorem of embedding. 
Conventional assumptions include the fact that only one 
observable of the system is available for attractor 
reconstruction and characterization. In this paper, we 
present a technique to perform meaningful reconstruction in 
the phase space using multivariate data. We demonstrate the 
efficacy of this approach by embedding a vector time series 
(comprised of the three variables of a Lorentz system) and 
show that the Lyapunov spectra (one of the dynamical 
invariants) of an attractor reconstructed from such a time 
series is comparable to the spectra estimated using 
conventional embedding. We also demonstrate that this 
method can be used to reliably estimate the Lyapunov 
spectra from a system of uncorrelated state variables.  

1. INTRODUCTION 

The attractor characteristics of a dynamical system that 
generates a scalar time series can be estimated by unfolding 
the observed time series to a higher dimensional, 
reconstructed phase space [1] and measuring dynamical 
invariants in this higher dimensional space. This property has 
been exploited in studies involving non-linear dynamical 
systems by a technique called embedding. Topologically, an 
embedding problem is posed as finding a one-to-one map 
between points on the original system attractor and the 
attractor in the reconstructed phase space. In other words, 
embedding refers to finding the optimal mapping which 
when applied to the observed time series will map it to a 
higher dimensional space, revealing information about the 
original attractor. Since the underlying properties of a 
nonlinear system are best studied by analyzing the attractor, 
our intuitions guide us to believe that signal classification 
and prediction for signals generated by a nonlinear system 
will be most effective in a higher dimensional reconstructed 
attractor space.  

Nonlinear systems which exhibit sensitivity to initial 
conditions are called chaotic systems. For observables from 
these systems, linear analysis tools may fail to provide a full 
description of the system behavior. It is hence desired to 
characterize chaotic signals using tools that capture the 
topological information of the system’s attractor. Lyapunov 
exponents are one such measure. Apart from being able to 
distinguish between fixed points, periodic, quasi-periodic and 
chaotic motions, these exponents also quantify the extent of 
chaos in an observed time series.  

In this paper, we show that conventional reconstruction 
techniques can be extended to vector observables of the 
system being studied. We demonstrate this by showing that 
Lyapunov exponents of a system’s attractor are preserved 
when we use more than a single state space variable for 
reconstruction. In fact, results indicate that embedding a 
vector time series can provide a more accurate representation 
of the underlying system behaviour. We also show that a 
vector time series comprised of uncorrelated variables (e.g., 
derived from a system described by a set of loosely coupled 
differential equations) can provide reliable estimates of 
dynamical invariants.  

The paper is organized as follows. In Section 2, we 
explain the extension of the conventional phase space 
reconstruction technique to a vector time series. In Section 3, 
for completeness, we describe Lyapunov exponents as an 
invariant measure of the dynamical system. We present an 
outline of the algorithm employed for estimating these 
exponents from scalar and vector time series. In Section 4, 
we describe the experimental setup used in this work. In 
Section 5, we provide a summary and explanation of the 
results. We conclude the paper by discussing some potential 
applications of employing the concept of vector embedding. 

2. RECONSTRUCTING THE PHASE SPACE 

Computation of dynamical invariants (e.g., Lyapunov 
exponents) assumes knowledge of the dynamics of a system. 
Typically, to reconstruct these dynamics from an observed 
scalar time series, we project the time series onto a pseudo 
phase space (equivalent to the original phase space in terms 
of the system invariants). This pseudo phase space [1], [2], 
[3] is called the Reconstructed Phase Space (RPS). For 
projecting the time series in this space, we need to know the 
inherent system dimension, d. Given an estimate of the 
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system dimension, an upper bound on the dimension of the 
RPS is provided by Taken’s theorem [2]. A time series 
generated by a nonlinear system can typically be embedded 
in low-dimensional spaces. 

In time delay embedding, evolution of the system’s 
states in the original state-space is approximated by a phase 
space comprising of time-delayed coordinates. Equation 1 
illustrates the RPS matrix, X , obtained from embedding a 
scalar time series. 
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Hereτ is the time delay and is the embedding dimension. 
In a conventional nonlinear analysis, the time series being 
embedded is a single observable of the system.  In this work, 
we extend the embedding technique to a system with more 
than one observable, resulting in a vector time series

m

x
r . 

Given a vector time series, a reconstructed phase space of the 
system’s attractor can be created by stacking time delayed 
versions of vectors from the data vector stream. The 
corresponding embedding is defined by equation 2.  
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Here, ix
r

represents a row vector of the i’th sample of the 
vector-time series. In other words, we study the dynamics in 
a pseudo state space comprised of time delayed vectors as 
coordinates. We can extend this to a more general 
formulation, where the embedding dimension and time delay 
is different for each component of the vector observable. 
 
2.1.  Singular Value Decomposition-based Embedding 

A method of embedding that has been successfully applied 
for various nonlinear analyses of scalar time series is 
Singular Value Decomposition (SVD) based embedding [4]. 
It works in two stages. In the first stage, the original time 
series is embedded into a higher dimensional space using 
time delay embedding with a delay of one sample. The 
dimensionality of this space is referred to as the SVD 
window size. In the next stage the embedded matrix is 
reduced to a lower dimensional space by a linear 
transformation (the singular vectors matrix).  

In this paper, we extend this method to a vector 
observable of the system. This is achieved by first time delay 
embedding the vectors to form a matrix in a higher 
dimensional space. The second stage is similar to that of 
SVD-based scalar embedding. Experimental results are 
provided that demonstrate the efficacy of this technique, 

measured by the Lyapunov exponents of the unfolded 
attractor. 

3. LYAPUNOV EXPONENTS 

The analysis of separation in time of two trajectories with 
infinitely close initial points is very important in quantifying 
chaos in nonlinear dynamical systems [1]. For a system 
whose states evolve over the function , we analyze the 
following equation: 

f

)0()()0()( xf
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dxtx N∆≈∆ . (3) 

To quantify the average rate of separation, we assume 
that the rate of growth (or decay) is exponential in time. 
Hence we can define a set of exponents, iλ , as described by 
equation 4: 
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where is the Jacobian of the system as the point moves 
around the attractor. These set of exponents are one of the 
characteristic invariants of the system and are called 
Lyapunov exponents (LEs). There are as many LEs as the 
dimension of the system. For a dynamical system with a 
bounded attractor, the sum of all LEs should be less than or 
equal to zero. Zero exponents indicate that the system is a 
flow, while the positive ones indicate that the system is 
chaotic. Negative exponents characterize a system’s tendency 
to pull an evolving trajectory towards the basin of attraction. 

J p

The algorithm employed to estimate these exponents 
from a time series [4], [5], [7] can be summarized in six 
steps. First, we embed the input time series to generate the 
RPS matrix. Each row of this matrix represents a point on the 
attractor. Second, using the first point as a center, we form a 
neighborhood matrix, each row of which is obtained by 
subtracting a neighbor from the center. Third, we find the 
evolution of each neighbor and form an evolved 
neighborhood matrix. Fourth, a trajectory matrix is obtained 
by multiplying the pseudo-inverse of neighborhood matrix 
with the evolved neighborhood matrix. Fifth, the LEs are 
calculated from the eigenvalues of the trajectory matrix. 
Finally, these exponents are averaged by evolving the center 
point through the trajectory. Since direct averaging has 
numerical problems, an iterative QR decomposition method 
(Treppen iteration) is preferred. 

4. EXPERIMENTAL SETUP  

To demonstrate the efficacy of the procedure for vector 
embedding, we consider the accuracy of Lyapunov 
exponents on a well known chaotic system, the Lorentz 
system of differential equations. The parameters for which 
the system was tested are 0.16=σ , , and 0.40=r

0.4=b . The dimensionality of this system is three and 
hence there are three LEs for this system. These can be 
calculated numerically from the set of differential 
equations [6] and are given by (+1.37, 0.0, -22.37). 



We performed experiments on both SVD-based scalar 
and vector embedding. For scalar embedding experiments, 
we considered the evolution of one variable of the attractor’s 
state space as the scalar observable of the system. For vector 
embedding experiments, we used all the three variables of 
the state space as a vector observable of the system.  

The final embedding dimension of the attractor was set 
to three for all experiments. We studied the accuracy of 
Lyapunov exponent estimates as a function of various 
parameters, i.e., SVD window size, number of neighbors and 
the evolve step size.  

As discussed previously, SVD window size refers to the 
dimension of the initial RPS matrix which is then reduced 
(by ignoring dimensions corresponding to small singular 
values) to a lower dimensional space using SVD. This 
technique of embedding has an additional benefit in that it 
reduces the effects of noise in the system’s analysis. Setting a 
very low value for SVD window size neutralizes the noise 
reduction property of SVD while at very high values of this 
parameter we lose the high frequency information since SVD 
based dimensionality reduction of the RPS matrix acts like a 
low pass filter.  

The second parameter, number of neighbors refers to the 
number of neighboring points used to analyze the local 
dynamics of the attractor’s trajectory. A small number of 
neighbors implies that we may not have sufficient number of 
data points to capture the local dynamics of the attractor. On 
the other hand, too many neighbors may not allow for an 
accurate description of the local behavior.  

The “evolution step” is another parameter, referring to 
the number of points to jump on the attractor for studying the 
evolution of the neighborhood. At very small values, the 
effects of noise may dominate the analysis while at very large 
values the local evolution analysis may no longer be valid.  

We analyzed the performance of Lyapunov spectra 
estimation for scalar and vector embedding as a function of 
the size of the data-set. For all other experiments reported in 
this paper, we used 30,000 data points from the Lorentz 
attractor which were generated by solving the Lorentz system 
of differential equations using Runge-Kutta numerical 
integration. An integration time step of 0.001 sec was used 
and the sampling rate was set to 100 Hz, as described in [6]. 

The Lorentz system of equations is a tightly coupled 
system, i.e., there is a high degree of correlation between the 
three variables of the system. On the other hand, many 
practical systems that produce vector time series do not 
exhibit this property. As an example, consider a vector stream 
comprised of cepstral features of a speech signal. In this 
vector stream, each component represents spectral 
information from a different frequency band. 

Further, various transformations employed in the 
generation of cepstral features are designed to produce 
uncorrelated components. To see how vector embedding 
compares for coupled and decoupled systems, we also 
experiment on uncorrelated Lorentz time series. This is 
achieved using the method of Principal Component Analysis 
(PCA). We estimate the covariance matrix of the three 
variables in the Lorentz system and compute the 

transformation matrix that decorrelates the vector series 
using an eigen decomposition of the covariance matrix. After 
transformation, we have a set of three uncorrelated variables. 
Since this is a smooth transformation, we expect all 
characteristic invariants including Lyapunov exponents to 
remain unaltered under the transformation. We compare the 
accuracy of Lyapunov spectra estimates from this 
uncorrelated vector time series with that of a conventional 
vector time series of the Lorentz system. 

5. RESULTS 

The estimates of Lyapunov spectra obtained from both scalar 
and vector embedding of a Lorentz time series as a function 
of the length of the series are shown in Figure 1. From this 
figure, it is clear that vector embedding provides reliable 
estimates (i.e., close to their theoretically expected value) 
even when the size of the data-set is approximately 2,000 
samples. On the other hand, scalar embedding needs at least 
8,000 samples for an accurate estimate of the Lyapunov 
spectra. This indicates that vector embedding provides 
accurate reconstruction of the system’s attractor from a short 
time series.  

Figures 2 through 4 depict the variation in accuracy of 
Lyapunov spectra estimates of a clean Lorentz series with 
various parameters. It can be seen that in clean conditions, 
both scalar and vector embedding provide reliable estimates 
of the Lyapunov exponents at low values of the algorithm 
parameters, and the accuracy of the estimates does not vary 
much with variation in these parameters. With the SVD 
window size set to 15 and number of neighbors set to 20, we 
obtain accurate estimates of the Lyapunov spectra.  

Figures 5 through 6 illustrate similar results at an SNR 
of 10 dB. With the SVD window size set to 50 and number 
of neighbors set to 50, we obtain accurate estimates of the 
Lyapunov spectra. This follows from the intuition that to 
estimate dynamical invariants from a noisy trajectory, it 
becomes necessary to use a larger neighborhood to measure 
the local dynamics accurately. A larger SVD window size is 
also required to remove the effects of noise.  
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igure 1 – Lyapunov Exponents from a scalar and a vector 
clean) time series as a function of the data-size length 



Figure 5 – Lyapunov Exponents from a scalar and a vector time 
series as a function of the SVD window size, SNR = 10 dB 
Figure 2 – Lyapunov Exponents from a scalar and a vector 

(clean) time series as a function of the SVD window length 
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igure 6 – Lyapunov Exponents from a scalar and a vector time 
eries as a function of the number of neighbors, SNR = 10 dB 
 

igure 7 – Lyapunov Exponents from a scalar and a vector time 
eries as a function of the number of neighbors after PCA, SNR =
0 dB 
Figure 3 – Lyapunov Exponents from a scalar and a vector 
(clean) time series as a function of number of neighbors 
Figure 4 – Lyapunov Exponents from a scalar and a vector time 
(clean) series as a function of the Evolve Step Size 



Also note that even at a low SNR, the results from 
vector embedding closely follow those obtained from scalar 
embedding. Figures 7 and 8 illustrate the Lyapunov spectra 
estimates of the Lorenz vector time series before and after 
removing linear correlations among the components of the 
vector stream. It is clear that de-correlating the stream does 
not affect the Lyapunov spectra estimates of the system. 
Although we embedded the vector time series to a final 
embedding dimension of three, we only report the first two 
exponents of the spectra (the third exponent is a negative 
quantity, irrelevant to the analysis of exponential divergence 
of nearby trajectories). 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we have shown that extending the concept of 
phase space reconstruction of a scalar time series to a vector 
time series comprising of more than one observable of the 
system provides a reliable reconstruction of the system’s 
attractor. This is illustrated by Lyapunov spectra estimates of 
a Lorentz system using scalar and vector observables 
respectively. We demonstrated an important consequence of 
vector embedding – the data size requirements for accurate 
estimation of dynamical invariants of an attractor are much 
less when the attractor is reconstructed from a vector time 
series, as opposed to a scalar time series.  

This implies that we can perform meaningful attractor 
reconstruction using a short time series when vector 
observables are available.  

Figure 8 – Lyapunov Exponents from a scalar and a vector time 
series as a function of the SVD window size after PCA, SNR = 
10 dB 

We also illustrate the efficacy of vector embedding on a 
data-stream from which all linear correlations have been 
removed. The fact that we are able to reproduce Lyapunov 
exponents from an uncorrelated vector stream provides 
assurance that we can employ the vector embedding 
technique in many practical situations, where certain pre-
processing removes linear correlations from the vector 
stream (e.g., the Mel Frequency Cepstral stream).  

In future work, we plan to use the vector embedding 
technique on cepstral features for reconstructing attractor 
trajectories using short data lengths. 

REFERENCES 

[1] E. Ott, T. Sauer, J. A. Yorke, Coping with chaos, Wiley 
Interscience, New York, New York, USA, 1994. 

 
[2] J. P. Eckmann and D. Ruelle, “Ergodic Theory of Chaos 
and Strange Attractors,” Reviews of Modern Physics, 
vol. 57, pp. 617-656, July 1985. 

 
[3] H. Kantz and T. Schreiber, Nonlinear Time Series 
Analysis, Cambridge University Press, Cambridge, UK, 
2004. 

 
[4] M. Banbrook, “Nonlinear analysis of speech from a 
synthesis perspective,” PhD Thesis, The University of 
Edinburgh, Edinburgh, UK, 1996. 
 
[5] S. Srinivasan, S. Prasad, S. Patil, G. Lazarou and J. 
Picone, "Estimation of Lyapunov Spectra From a Time 
Series," Proc. of IEEE SoutheastCon, Memphis, Tennessee, 
USA, March 2006. 
 
[6] M. Sano and Y. Sawada, “Measurement of the Lyapunov 
Spectrum from a Chaotic Time Series,” Physical Review 
Letters, vol. 55, pp. 1082-1085, 1985. 
 
[7] G. Ushaw, “Sigma delta modulation of a chaotic signal,” 
PhD Thesis, The University of Edinburgh, Edinburgh, UK, 
1996. 


	RECONSTRUCTED PHASE SPACE OF A VECTOR TIME SERIES1
	ABSTRACT
	INTRODUCTION
	RECONSTRUCTING THE PHASE SPACE
	LYAPUNOV EXPONENTS
	EXPERIMENTAL SETUP
	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES



