
THE DEVELOPMENT OF GENERAL-PURPOSE SIGNAL PROCESSING TOOLS 1

Hualin Gao, Richard Duncan, Julie A. Baca, Joseph Picone

Center of Advanced Vehicular System, Mississippi State University
{gao, duncan, baca, picone}@isip.msstate.edu

ABSTRACT

This paper describes the design and development of a set
of general-purpose signal processing software tools. A
GUI-based configuration tool is presented that allows
block diagrams to be created to represent the procedures
of the signal data flow. A front-end tool is used to realize
the signal processing by using the diagrams and raw
speech data files without user’s programming. We
describe the design philosophy underlying the
development of the tools as well as the key features that
enable realization of our design goals of extensibility and
easy usability. We also discuss results of tests to verify
the correctness and usability of the tool set.

1. INTRODUCTION

Signal processing tools extract feature vectors from raw
data, and play an important role in the development of
pattern recognition systems. For example, a typical speech
recognition system is shown in Figure 1. The block named
as the Acoustic Front-end in Figure 1 encapsulates most of
the signal processing portions of a recognition system. In
this paper we describe the design and implementation of
the general-purpose signal processing components in
such a system, which provide a GUI-based environment to
perform signal processing research and education.

Many signal processing toolkits are currently available
including popular commercial products such as MATLAB
[1]. These toolkits provide powerful computation and
analysis capabilities, and sophisticated graphical
interfaces. Nonetheless, users need to write some code or
scripts to realize their design for the complex data flow
procedures. Debugging those code and scripts is not a
trivial task. Some other toolkits such as the popular speech

recognition tool HTK[2], the front ends of them also
provide signal processing abilities; users can change
parameters of the algorithms in the data flow, but not the
data flow itself. Adding new algorithms to those toolkits
requires modifying the base code of the existing system, a
potentially time -consuming and costly undertaking that
can significantly impede many research efforts.

To address these problems, we developed a signal
processing tool set, which allows users to design the
procedure of the signal processing at their wills without
any programming. In addition, users can easily create new
algorithms and fit into this tool framework.

The feature for our software is to separate the design
and processing of signal processing procedure. A graphic
user interface (GUI) is used in design stage to draw data
flow graph and configure each algorithm in the data flow
graph freely by users. The GUI consists of roughly 18000
lines of Java code. The backend processing tool is
designed in processing stage to process the data flow
diagram designed by users using the GUI tool. It includes
about 70000 lines of C++ code.

In this paper, we present our software design rationale
and approach for maximizing extensibility and usability.

Figure 1: A typical speech recognition system.

1. This material is based upon work supported by the National
Science Foundation under Grant No. EIA-9809300. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

2. CONFIGURATION TOOL

The magic ability of this signal process tool is to allow the
users to realize their rapid prototyping design without any
programming. Let’s see how we use it and how it works
through a simple example. Suppose we want to calculate
the energy of a signal. The specification is the signal goes
through a filter and window first, and then the energy is
calculated. Let’s see how easy it is to realize these by
using our new tool. We can first start our general-purpose
signal processing tool called transform_buider, which is
developed using Java, and draw a block diagram as shown
in Figure 2. There are four menus for this tool: file, edit,
components and help menus. The file menu provides the
abilities of saving and loading files. The edit menu
provides editing ability for graph, such as adding,
copying, cutting, deleting arc and removing blocks. The
components include all the algorithms we support right
now. Our current offerings in components can be sorted
into two categories: basic DSP and support. The basic DSP
components include commonly used algorithms, such as
windows, filter, energy, cepstrum, Fourier transform and
spectrogram etc. Support components allow high-level
manipulation of data flow through block diagrams.
Together, they provide a unique and powerful set of signal
processing capabilities. The help menu gives users the
help information. We can select algorithms from an
inventory of predefined components menu, put them on
the design working area and connect them by using the
submenus in edit menu. Each block represents one
algorithm for which the user can specify how to process
data; each arc represents a data flow from one algorithm to
another. Figure 2 shows the final data flow for our simple
example. We can configure each component in the diagram
by using a pop-up window as shown in Figure 3 after
right-clicking the component. Users can configure

parameters for each algorithm such as window type,
window duration for window algorithm etc. The help
button in Figure 3 provides help support for users. The
configure button in Figure 3 directs users to next level
configuration if it is necessary for this component. After
the configuration, we can save all these to a file, which can
be called recipe.sof here. This file records all the
parameters for each algorithm and how the data flow goes.
Finally we use the command line by starting our signal
processing front-end tool isip_transform.exe (we will
discuss it in section 3):

isip_transform.exe –p recipe.sof input.raw
The input.raw here is an input data file. The final result will
be saved in a file specified in the output block.

The signal flow graphs are represented by a graph of
component objects in the recipe file. Each component is a
block in the graph, which wrappers one algorithm and its
parameters. The design of this structure meets the
requirements of the signal processing tool which will be
discussed in next section.

The configuration tool can reload the recipe files and
make modifications to them, and then save back to the
same recipe files. This feature is very useful when the
project is in the development stage which needs a lot of
modifications or users want only make a small modification
for an existing recipe file. This tool can also create a group
of blocks and cluster them into a super block. The super
block can be called just as a regular block with the same
semantics. This feature can be used to build a large
complex data flow graph.

Finally, to increase the extensibility of the tool,
algorithms are presented in the interface through the
components menu, populated from a resource file. All
algorithms appearing in this menu are read from the
resource file. Adding a new algorithm requires simply
including a description into the resource file according to
its format, such as algorithm name, algorithm parameters.
No modifications to the source code of the signal

Figure 3: A pop-up window to configure each component.

Figure 2: A configuration tool that allows users to create
new front ends by drawing signal flow graphs.

configuration and signal processing control tool itself are
required. This has allowed users easily create new
application specific algorithms, add them into this tool and
take the advantage of this tool.

3. SIGNAL PROCESSING CONTROL TOOL

The signal processing control tool is a driver program and
is called isip_transform.exe in our environment. It uses the
signal processing library and algorithm libraries and output
recipe files from signal configuration tool to fulfill the
whole procedure of signal processing.

The signal processing library is a collection of specially
designed modules, implemented as C++ classes, which
serve as an interface between the block diagrams, created
by the GUI configuration tool, and the computation
algorithms, which will be described later. The components
class in signal processing library wrapped all the
algorithms inside it. All the algorithms look the same and
work in the same way. The signal is processed according
to the data flow graph in the recipe file. The algorithm
object is created dynamically during the running time
using the name and specification of each component. This
process makes sure all the algorithms are looked the same
in the signal configuration transform builder and can be
configured in the same way. They signal processing library
also using the graph theory to process the data flow
graphs such as synchronization from different paths. It
should be noted that the work of the signal processing
library is hidden from the user by default. Its functions
include: parsing the file containing the recipe created by
the user with the configuration tool; synchronizing
different paths along the block flow diagram contained in
this file; preparing input/output data buffers for each
algorithm, particularly for those requiring multiple frames
of data, such as windows or calculus; scheduling the
sequences of required signal processing operations;
processing data through the flow defined by the recipe;
and finally, managing conversational data. When users
create their own new algorithms, it is necessary to register
in the components class for the new algorithm, and no
other modification is needed.

The algorithm library contains a collection of signal
processing algorithms implemented as a hierarchy of C++
classes. The implementation of this hierarchy using an
abstract base class, AlgorithmBase, and virtual functions
or methods that comprise the interface contract, is the
single most important feature, since it makes the library
extensible. All algorithm classes are derived from this base
class.

Because the design for algorithm class has the
consideration of the extensible for the new algorithms, any

new algorithm is easy to implement by just following our
interface contract defined in AlgorithmBase class.

Expanding the collection of algorithms supported in our
Algorithm library is the subject of on-going research.

It should be noted that the software described in this
paper involves primarily the Algorithm and Signal
Processing libraries [4] in the ISIP foundation classes
(IFCs) hierarchy, which is part of a comprehensive public
domain toolkit[3] for performing speech and signal
processing research developed by the Institute for Signal
and Information Processing (ISIP). The signal processing
tools also take the advantage of the complex data structure
and an abstract file I/O interface of the IFCs. They also
inherited from the IFC some differentiating key features:

• Unicode support for multilingual applications;
• Memory management and tracking;
• System and I/O libraries that abstract users from

details of the operating system;
• Math classes that provide basic linear algebra and

efficient matrix manipulations;
• Data structures that include generic

implementations of essential tools for speech
recognition code.

4. EXPERIMENTAL RESULTS

We tested the quality of our toolkit along two dimensions,
correctness and usability. The implementation of each
algorithm is verified manually or by using other tools such
as MATLAB. We have successfully built several complex
front ends, including an industry standard front end based
on Mel-frequency cepstrum coefficients (MFCCs) [5] as
shown in Figure 4. The MFCC includes absolute energy,
12 MFCC's (often referred to as absolute MFCC's), and the
first and second order derivatives of these absolute
MFCC's. The cepstrum mean subtraction and maximum
energy normalization are used in Figure 4. It is interesting
to notice that the data path is very different from the left
and right sides of the graph. Out software correctly
process them. The processing results are checked
manually step by step and prove they are correct.

We also assessed and enhanced the usability of our
tools through extensive user testing conducted over the
course of many workshops[6]. As part of this testing, we
administered a user survey derived from the Questionnaire
for User Interaction Satisfaction (QUIS), a measurement
tool des igned for assessing user subjective satisfaction
with the human-computer interface[7]. Several features of
the interface were modified or enhanced as a result of
these tests. General examples include reductions in the
number of menus, number of menu options, changes in
wording of menu options, and modifications to the
behavior of the drawing tool itself.

5. CONCLUSIONS

This paper has presented the general-purpose signal
processing components. These components were
designed and developed in adherence to our philosophy
of providing a flexible, extensible software environment for
researchers. Our goal was to enable researchers to explore
ideas freely, unencumbered by low-level programming
issues. To achieve this goal, we implemented several
critical features in our signal processing software tools,
including a library of standard algorithms for basic DSP
functions, the ability to add new algorithms to this library

easily, and a GUI-based configuration tool for creating
block diagrams to describe algorithms, allowing rapid
prototyping without programming.

We have tested and verified these tools for both
correctness and usability. We continue to monitor
feedback from our user community in order to maintain the
highest quality of the tools. These tools have been one of
the most popular components of our toolkit, and are
suitable for teaching basic concepts in digital signal
processing. We also feel that visualization of the output
results is very important and it is our future work.

6. REFERENCES

[1]. The MathWorks, Inc., Natick, MA, USA (see
http://www.matlab.com/).

[2]. Hidden Markov Model Toolkit (HTK):
http://htk.eng.cam.ac.uk/.

[3]. K. Huang and J. Picone, “Internet-Accessible Speech
Recognition Technology,” presented at the IEEE Midwest
Symposium on Circuits and Systems, Tulsa, Oklahoma, USA,
August 2002. (see http://www.isip.msstate.edu/
projects/speech).

[4]. R. Duncan, H. Gao, J. Baca and J. Picone, “The Algorithm
Classes,” ISIP, Miss. State Univ., MS State, MS, USA,
March 2003 (see http://www.isip.msstate.edu/
projects/speech/software/documentation/ class/algo/).

[5]. N. Parihar, J. Picone, “Performance Analysis of the Aurora
Large Vocabulary Baseline System,” Proc. of Eurospeech ’03,
Geneva, Switzerland, September 2003, 337-340.

[6]. J. Picone, Jon Hamaker, “Speech Recognition System
Training Workshop,” ISIP, Mississippi State University, MS
State, MS, USA, May 2002 (see http://www.isip.msstate.edu/
conferences/srstw/).

[7]. Chin, J. P., Diehl, V. A. and Norman, K. L.,
“Development of an Instrument Measuring User Satisfaction of
the Human-Computer Interface,” Proceedings of SIGCHI’88,
New York, New York, USA, October 1988, 213-218. (see
http://lap.umd.edu/q7/quis.html).

Figure 4: A MFCC block graph including cepstrum mean
normalization and maximum energy subtraction.

