
THE DEVELOPMENT OF GENERAL-PURPOSE SIGNAL PROCESSING TOOLS 1

Hualin Gao, Richard Duncan, Julie A. Baca, Joseph Picone

Center of Advanced Vehicular System, Mississippi State University
{gao, duncan, baca, picone}@isip.msstate.edu

ABSTRACT

This paper describes the design and development of a
set of general-purpose signal processing software tools.
The tools were developed for inclusion in a
comprehensive public domain speech recognition toolkit.
We describe the design philosophy underlying the
development of the tools as well as the key features that
enable realization of our design goals of modularity,
extensibility, and usability. A GUI-based configuration
tool is presented that allows simple block diagrams to be
created to represent the procedures of the signal data
flow. A front-end tool is used to realize the signal
processing by using the diagrams and raw speech data
files without programming. We also discuss results of
tests to verify the correctness and usability of the tool
set.

1. INTRODUCTION

The Institute for Signal and Information

Processing (ISIP) provides a comprehensive public
domain toolkit [1] for performing speech and signal
processing research. Several differentiating features are
its ease of use, extensibility, and educational
components. In this paper we describe the design and
implementation of its signal processing components,
which provide a GUI-based environment to perform
signal processing research and education.

A typical speech recognition system is shown in
Figure 1. The tool described here deals with the block
known as the Acoustic Front-end, which encapsulates
most of the signal processing portions of a recognition
system. Although the tools is dedicated to the speech
recognition tool kit, our design goal is to make it as

general as possible to be used in any other signal
processing area. Signal processing tools extract feature
vectors from raw data, and play a critical role in the
development of pattern recognition systems. Many
signal processing toolkits are currently available
including popular commercial products such as
MATLAB [2]. Such toolkits provide powerful
computation and analysis capabilities, and sophisticated
graphical interfaces. Nonetheless, they also contain
serious deficiencies that limit their usefulness in a
research environment. For example, run-time efficiency
and file I/O are two common issues with such high-level
tools.

Adding new algorithms to such toolkits requires
modifying the base code of the existing system, a
potentially time-consuming and costly undertaking that
can significantly impede many research efforts. Special
problems for speech recognition front ends, such as
synchronization and buffering of data along a data flow
graph, are difficult to handle in a simple and easy to
understand framework. Of even greater importance and
difficulty, data preparation for algorithms that require
multiple frames of data, such as windows and

Figure 1: A typical speech recognition system.

1. This material is based upon work supported by the National
Science Foundation under Grant No. EIA-9809300. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

differentiation, can be problematic.
To address these issues, we have developed a

modular, flexible environment for signal processing. The
key differentiating characteristics of our system include:

• Competitive technology with maximum
flexibility;

• Well-documented and simple APIs;
• An object-oriented software design in C++.

In this paper, we present our software design
rationale and approach for maximizing modularity and
usability.

2. SOFTWARE DESIGN

Research in the area of speech recognition requires
the development of large applications in a relatively short
period of time. To address these needs, we designed a
large, hierarchical software environment to support
advanced research in all areas of speech recognition,
including signal processing. This environment contains
ISIP foundation classes (IFCs) that provide features
ranging from complex data structures to an abstract file
I/O interface. IFCs are implemented as a set of C++
classes, organized as libraries in a hierarchical structure.
Some key features include:

• Unicode support for multilingual applications;
• memory management and tracking;
• System and I/O libraries that abstract users from

details of the operating system;
• Math classes that provide basic linear algebra

and efficient matrix manipulations;
• Data structures that include generic

implementations of essential tools for speech
recognition code.

We developed our signal processing toolkit to
stringently adhere to the IFC design philosophy and
framework. We also pay a lot of attention to our design
and make it can be used in the general purpose signal
processing. The software described in this paper
involves primarily the Algorithm and Signal Processing
libraries [3] in the IFC class hierarchy. At the outset, it
was clear that the tools must not only allow a wide
selection of algorithms, but also have the ability to vary
every parameter of each algorithm easily and finally,
provide users an efficient environment for evaluating
new research ideas. Thus, the design requirements for
these tools included:

• a library of standard algorithms to provide basic
digital signal processing (DSP) functions;

• an ability to easily add new algorithm classes and
functions without modifying existing classes;

• a block diagram approach to describing
algorithms to realize rapid prototyping without
programming.

Fulfilling the first requirement enabled users to
directly realize a single algorithm such as a window with
simple programming by building an algorithm object, and
calling its functions. Meeting the second requirement
allowed users to enhance system capabilities according
to new requirements. This is described in Section 2.1. To
meet the third requirement, we developed a signal
processing control tool and a signal processing
configuration tool. These are described in Section 2.2.

 Our current offerings can be sorted into two
categories: basic DSP and support. The basic DSP
components include commonly used algorithms, such as
windows, filter, energy, cepstrum, Fourier transform and
spectrugram etc. Support components allow high-level
manipulation of data flow through block diagrams.
Together, they provide a unique and powerful set of
signal processing capabilities, some of which include:
multi-pass processing of a signal; automatic handling of
arbitrary amounts of prior and future data when a recipe
is created; processing of a signal, saving a constant
derived from that signal to a file, and reloading the
constant.

2.1 Algorithm Library

The algorithm library contains a collection of signal
processing algorithms implemented as a hierarchy of C++
classes. The implementation of this hierarchy using an
abstract base class, AlgorithmBase, and virtual functions
or methods that comprise the interface contract, is the
single most important feature, since it makes the library
extensible. All algorithm classes are derived from this
base class. Users can directly use any of this algorithm in
their application as shown in table 1 as long as users link
their code with our library.

 // define the filter properties
 VectorFloat ma_coef(L"-0.97, 1.0");
 VectorLong ma_lag(L"-1, 0");
 // set the ma coefficients for filter
 filter.setMACoeffs(ma_coef, ma_lag);
 // filter the signal
 filter.compute(filter_out, temp_window);
 // take the hamming window for the signal
 window.compute(out_data_window, filter_out);
 // calculate the energy
 energy.compute(out_data, out_data_window);

Table 1: An example for calculating energy by taking
filter and window first for a signal.

Because the design for algorithm class consider the

extensible for the new algorithms, any new algorithm is
easy to implement by just following our interface
contract defined in AlgorithmBase class.

Expanding the collection of algorithms supported in
our Algorithm library is the subject of on-going research.

2.2 Signal Processing Configuration Tool

The magic ability of this signal process tool is to allow the
user realize their rapid prototyping design without any
programming. Let’s first see a simple example, which is the
similar procedure described in Table 1. Suppose a user
want to calculate the energy for a signal. He wants the
signal first go through a certain filter, next a certain type of
window, finally the energy is calculated. By using our new
tool, it is very easy to realize these. Users first need to
open our tool called transform_buider and draw a block
diagram as shown in Figure 2. Next he can right click each
component to configure each block’s property according
to what his requirement as shown in Figure 3. Then he
saves all these to a file, we can call it recipe.sof. Finally he
uses the command line by calling our frontend tools
is ip_transform.exe, “isip_transform.exe –p recipe.sof
input.raw –output output.sof”. The final result will be
saved in a file called output.sof. The procedure can be
summarized as follows: First, the signal processing
configuration tool is used to graphically specify the
sequence of algorithms and their configuration using a
block diagram. This is saved to a file containing a
description of the block diagram. This description uses a
graph data structure containing components, each of
which has its own configuration. Second, a control tool
accepts the speech data file and the recipe files produced
in the first step as input. It then parses the recipe file using

functions provided by the signal processing library to
obtain the necessary information for each algorithm.
Finally, the control tool applies the corresponding
algorithm functions to process the input speech data by
calling the correct method in the algorithm library.

The tools can reload the recipe files and make
modifications, then save back to recipe files. This feature is
very useful when the project is in the development stage.

The transform_builder is developed by Java, shown in
Figure 2 and 3, to provide users a block diagram approach
to design front ends, and saves the configuration or
“recipe” into a file. Finally, to increase the extensibility of
the tool, algorithms are presented in the interface through
the components menu, populated from a resource file. All
algorithms appearing in this menu are read from the
resource file. Adding a new algorithm requires simply
including a description into the resource file according to
its format. No modifications to the source code of the
signal processing control tool itself are required. This has
allowed this tool to be used to create interfaces for a
number of related applications provided in our toolkit.

2.3 Signal Processing Library and Control Tool

The signal processing library is a collection of specially
designed modules, implemented as C++ classes, which
serve as an interface between the block diagrams, created
by the GUI configuration tool, and the computation
algorithms, described in Section 2.1. It should be noted
that the work of the signal processing library is hidden
from the user by default. Its functions include: parsing the
file containing the recipe created by the user with the
configuration tool; synchronizing different paths along the
block flow diagram contained in this file; preparing
input/output data buffers for each algorithm, particularly
for those requiring multiple frames of data, such as
windows or calculus; scheduling the sequences of
required signal processing operations; processing data
through the flow defined by the recipe; and finally,
managing conversational data.

Figure 2: A configuration tool that allows users to create
new front ends by drawing signal flow graphs.

Figure 3: A configuration tool that allows users to create
new front ends by drawing signal flow graphs.

Figure 2: A configuration tool that allows users to create
new front ends by drawing signal flow graphs.

3. EXPERIMENTAL RESULTS

We tested the quality of our toolkit along two dimensions,
correctness and usability. The implementation of each
algorithm is verified manually or by using other tools such
as Matlab. To verify the correctness of the computation

results for large recipes, we have successfully built several
complex front ends, including an industry standard front
end based on Mel-frequency cepstrum coefficients
(MFCCs) [4] as shown in Figure 4.

Next, we assessed and enhanced the usability of our
tools through extensive user testing conducted over the
course of many workshops [5]. As part of this testing, we
administered a user survey derived from the Questionnaire
for User Interaction Satisfaction (QUIS), a measurement
tool designed for assessing user subjective satisfaction
with the human-computer interface [6]. Several features of
the interface were modified or enhanced as a result of
these tests. General examples include reductions in the
number of menus, number of menu options, changes in
wording of menu options, and modifications to the
behavior of the drawing tool itself.

4. CONCLUSIONS

This paper has presented the general-purpose signal
processing components of our public domain speech
recognition toolkit. These components were designed and
developed in adherence to our philosophy of providing a
flexible, extensible software environment for speech
recognition researchers. Our goal was to enable
researchers to explore ideas freely, unencumbered by low-
level programming issues. To achieve this goal, we
implemented several critical features in our signal
processing software tools, including a library of standard
algorithms for basic DSP functions, the ability to add new
algorithms to this library easily, and a GUI-based
configuration tool for creating block diagrams to describe
algorithms, allowing rapid prototyping without
programming.

We have tested and verified this tool for both
correctness and usability. It empowers researchers to
easily build state-of-the-art front end systems for signal
process. We continue to monitor feedback from our user
community in order to maintain the highest quality of the
tool. This tool has been one of the most popular
components of our toolkit, and is suitable for teaching
basic concepts in digital signal processing.

5. REFERENCES

[1]. K. Huang and J. Picone, “Internet-Accessible Speech
Recognition Technology,” presented at the IEEE Midwest
Symposium on Circuits and Systems, Tulsa, Oklahoma, USA,
August 2002. (see http://www.isip.msstate.edu/
projects/speech).

[2]. The MathWorks, Inc., Natick, MA, USA (see
http://www.matlab.com/).

Figure 4: A configuration tool that allows users to create
new front ends by drawing signal flow graphs.

[3]. R. Duncan, H. Gao, J. Baca and J. Picone, “The Algorithm
Classes,” ISIP, Miss. State Univ., MS State, MS, USA,
March 2003 (see http://www.isip.msstate.edu/
projects/speech/software/documentation/ class/algo/).

[4]. N. Parihar, et al., “Performance Analysis of the Aurora
Large Vocabulary Baseline System,” Proc. of Eurospeech ’03,
Geneva, Switzerland, September 2003, 337-340.

[5]. R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The
ISIP 2001 Conversational Speech Evaluation System,”
Proceedings of the Speech Transcription Workshop, Linthicum
Heights, Maryland, USA, May 2001.

[6]. J. Picone, et al., “Speech Recognition System Training
Workshop,” ISIP, Mississippi State University, MS State, MS,
USA, May 2002 (see http://www.isip.msstate.edu/
conferences/srstw/).

[7]. Chin, J. P., Diehl, V. A. and Norman, K. L.,
“Development of an Instrument Measuring User Satisfaction of
the Human-Computer Interface,” Proceedings of SIGCHI’88,
New York, New York, USA, October 1988, 213-218. (see
http://lap.umd.edu/q7/quis.html).

