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ABSTRACT
State of the art design tools in automotive engineering still lack the power, sophistication, and automation of design tools that are used in the electronics industry. Widely accepted automotive powertrain design tools such as PSAT still rely on manual manipulation of the design parameters for optimization. In this paper, we present a new methodology that merges model-based design, knowledge-based engineering, and physics-based modeling to realize large-scale design optimization. Our extensible domain-specific design environment is capable of rapidly assimilating new knowledge as additional designs become available. Further, it can be used to automate the management of design knowledge in a customizable manner. Introducing a design process that can handle the complexity of millions of competing constraints in an automated way will allow automotive manufacturers to reduce design time considerably. 
Categories and Subject Descriptors
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided design (CAD).
General Terms
Algorithms, Performance, Design, Languages.
Keywords

Domain-specific modeling environment, Model integrated computing, Physics-based modeling, Powertrain, Machine learning, Optimization.
1. INTRODUCTION
Modern automotive systems are experiencing a phenomenal growth in the deployment of embedded software, new hybrid powertrain configurations, and other associated technologies for disparate applications: from prototype design to final product manufacturing. With computing power and performance taking gigantic strides time and again, it is imperative for automotive software engineering to remain connected with the innovations of new technologies and increasing needs for better design tools. Nowadays, automotive software engineering is seen as a driving force for innovation of new capabilities, coupled with cheaper technical solutions [1, 2].

The complexity of new designs and dependence on embedded software is proving to be a cause of concern to automotive manufacturers. This results in an increasing difficulty in predicting interactions among various vehicle components and systems. Effective diagnosis also becomes problematic. As an example, the well-known worldwide recall in Spring 2002 of the BMW 745i was a direct result of the software failures associated with the “iDrive” control system, which controls over 700 onboard functions through embedded software. This ‘Achilles heel’ syndrome is also being experienced in contemporary design tools for automotive engineering. A face-off with modeling and simulation tools in the electronics industry has demonstrated that similar tools in the automotive domain still lack the power, sophistication and automation available to electronics designers [1]. Advances in electronic design tools have validated Moore’s law (as applied to the complexity of integrated circuits) and have helped achieve amazing standards in computing power while simultaneously decreasing costs. For designers of automotive systems to duplicate and manage similar levels of complexity, design tools that automate the low-level details of the design process need to be developed [1].

In this paper, a new design methodology is proposed that merges concepts of model-based design, physics-based modeling, knowledge-based engineering, and large-scale design optimization. The rest of the paper is organized as follows: Section 2 provides an overview of our proposed design methodology. Section 3 elaborates upon domain-specific modeling and its application in our proposed approach. Section 4 applies physics-based modeling techniques to automotive engineering design, while Section 4 and Section 5 delve into specifics of powertrain design and optimization.
2. ARCHITECTURE OVERVIEW
We endeavor to create a generic design platform, as shown in Figure 1, that incorporates physics-based modeling, optimization functions, human design knowledge, and design databases. This platform can be applied to a wide range of automotive design problems and can be integrated with a wide variety of industry-standard tools. One of our key objectives is to parameterize the design expertise of experienced automotive engineers and to embed this knowledge within the loop of the optimization process. Our initial proposal aims to use powertrain design as a testbed to develop and refine this methodology. 

The key ingredients of our proposal are:

· methodologies for knowledge representation of design experience via domain-specific modeling languages (DSML) and automated capture of this information using machine learning techniques;

· knowledge-based optimization algorithms to maximize efficiency and fuel economy and minimize emissions, which are critical to the acceptance of these tools in the automotive design community;

· physics-based modeling techniques that will enable high-fidelity simulation and design.
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Figure 1. Design framework.
We anticipate that the high-degree of design automation achievable in this proposed methodology will help reduce both cost and design time. Due to the large volume of production in the automotive industry, even small savings per vehicle translate into tremendous revenue for the industry. Our proposed methodology will also advance the fundamental understanding of how expert designers accumulate their experience and make design decisions. Our extensible design environment will be able to assimilate additional knowledge rapidly as new designs become available. Further, it can be used to automate the management of design knowledge and can serve as a training facility for new engineers.

In the following sections we briefly elaborate upon our key technology components.
3. DOMAIN SPECIFIC MODELING ENVIRONMENTS
The automotive sector was one of the first to adopt model-based design technology on a broad scale. Model-based design provides a good basis for addressing system complexity and other problems, primarily because they are based on a separation of the problem-solving algorithm from the model and the compositionality of the model [1]. An example of the type of productivity that can be achieved from modeling, as applied to manufacturing in the automotive domain, is provided in [3].
The analysis and design techniques in traditional model-driven development (MDD) describe the architecture and the relationships that must exist in software. Additionally, MDD also provides the capability of modeling the external interfaces to the system’s environment. However, models in such systems are loosely coupled to the actual development cycle, thereby affecting the functionality, performance and reliability of the systems. Model Integrated Computing (MIC) [4-6] is a well-suited approach for the rapid design and implementation of systems where the software, the environment, and the integration constraints are all modeled. The resulting integrated, multiple-view models are used to configure and generate the necessary software components of the actual system and to capture the information relevant to the system under design [7, 8]. MIC tools provide the capability to model characteristics of any domain by providing customization of a modeling environment through metamodels, which described the essential entities and connections among each entity. Metamodels are the key specification that defines the domain-specific modeling environment (DSME). The DSME can be used by domain experts to construct representations of systems in that domain. The models are typically graphical and domain-specific and are stored in a model database.

Unfortunately, the development of DSME is very expensive and time consuming. Also, the relatively few commercially available DSMEs are all targeting domains with large markets where the large initial investment is offset by high volume [7]. One way of dealing with this problem is by employing the idea of a Configurable Domain-Specific Modeling Environment (CDSME). A CDSME is configurable over a wide range of domains and provides a set of generic concepts that are common to most DSMEs, which are then customized to every new domain. Even though the development of the CDSME is also expensive, it needs to be done only once, but is used for modeling in various domains [7].
The Generic Modeling Environment (GME) provides a solution to the longstanding requirement in software engineering, particularly in the automotive sector, for the development of systems that can be easily modified and extended. The GME is a meta-configurable tool for creating and evolving domain-specific, multi-view models of large-scale engineering systems [8]. The GME is configurable, giving it the ability to work in different domains according to the principles of MIC.

Our initial work has adopted the GME as a key technology to support our vision of improved powertrain design. A domain-specific modeling language is being constructed to address the special features needed for powertrain design and integration with other toolsuites, such as optimization tools, physics-based modeling techniques, and machine-learning techniques.
Modern modeling tools, such as the GME, are characterized by a greater flexibility of reuse and flexibility to support the modeling of physical entities in software. In powertrain design, the GME allows the exploitation of a range of possibilities offered by the hybridization of powertrains, unlike a majority of simulation packages that are based on fixed powertrain layouts. This forms the crux of our attempt to develop a set of robust, multi-configurable tools for “Intelligent Powertrain Design” of hybrid vehicles.

The following sections outline key characteristics of powertrain design that can be improved through a configurable modeling tool like the GME.

4. PHYSICS-BASED MODELING

Existing powertrain design tools [19] are based on experiential models, such as look-up tables, which use idealized assumptions and limited experimental data. The accuracy of these tools may not be good enough for vehicles operating under extreme conditions. On the other hand, the designs may lead to components or systems beyond physical limitations. To make design optimization effective, models must be tied closely to the underlying physics through a link such as a lumped-coefficient differential equation or some digital equivalent computer model. Only then can it be assured that the subset of physically-realizable models will be searched and that real-world constraints will guide the design to a meaningful optimum. In physics-based modeling, the state variables of a component or subsystem are modeled according to the physical laws representing the underlying principles. The system is a function of device parameters, physical constants, and variables. Such models can facilitate high fidelity simulations because they can model behavior from the nanoscale level to the macroscale system level.

Physics-based modeling technique has been used successfully in a number of industry-standard electronic design tools such as SPICE and Saber. Recently, it has also been applied in the Virtual Test Bed [21], which is being recognized as the leading software for prototyping of large-scale, multi-technical dynamic systems, such as those found in electric ships. Using the Resistive Companion Form (RCF) modeling technique [21], we can obtain high-fidelity physics-based models of each component in modular format. These models can be seamlessly integrated to build a system simulation model suitable for design. Just as a physical device is connected to other devices to form a system, the device can be modeled as a block with a number of terminals through which it can be interconnected to other component models, as shown in Figure 2.
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Each terminal has an associated across and through variable. If the terminal is electrical, these variables are the terminal voltage with respect to a common reference and the electrical current flowing into the terminal, respectively. Such a component can be modeled with a set of algebraic-integral-differential equations of the following general form [21]:
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 are vector functions that represent the underlying physical laws for the operation of the component; 
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 is a vector of independent controls. Note that the functions 
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 define two sets of equations named external and internal equations. The through variables appear only in the external equations. Similarly, the device states are classified as external states v(t) (i.e. the across variables) and internal states 
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. The above equation set is consistent in the sense that the total number of states is equal to the total number of equations. The component RCF model can be obtained by using numerical integration methods. 
5. POWERTRAIN DESIGN

Hybrid powertrain design depends on the mission and performance requirements of a vehicle and its application. Design flexibility for hybrid powertrains requires evaluation of a large number of options and complex non-linearities that exist among various components. It is difficult for designers to reach an optimum tradeoff among various design criteria (e.g., size, efficiency, cost, weight, and volume) using a manual tool. Current powertrain design tools are not suitable for such optimal design and facilitation of the reuse of expert knowledge. These factors, along with the large design space, necessitates the use of new automated search techniques for achieving the near optimal design. To address these challenges in powertrain design, domain knowledge extracted from experienced designers along with the standard optimization techniques have to be integrated into an extensible computer-aided design platform. 

This combination of large-scale design optimization and knowledge–based engineering will result in a unique powerful intelligent design software package for hybrid electric vehicle powertrains. The immediate benefits are the improvement of the design in terms of cost and performance and the reduction of the number of design iterations. The desired goal can be achieved by employing methodologies for knowledge representation of design experience using a domain-specific modeling language (DSML) and automated capture of knowledge using machine-learning techniques. This can be achieved by resorting to knowledge-based optimization to maximize efficiency and fuel economy, and by using physics-based modeling techniques to enable high fidelity simulation and design. 

The key areas in defining design methodologies are physical design, simulation/verification, synthesis, and testing. The main reason for the success of automated digital design is that a higher-level of abstraction can be established so that all the device-level and process-level details can be shielded from the higher-level design. The electronic design automation (EDA) employed in the design of analog and digital circuit design is an example for such a design methodology. The achievements of EDA can serve as a model for developing design tools for analog based complex engineering systems like automotive powertrains. However, unlike digital design, analog design is less systematic, more heuristic and knowledge-intensive in nature. This makes the powertrain design difficult when compared to digital circuit design.

6. DESIGN OPTIMIZATION

Optimization is an area receiving much attention in automotive design [9, 10]. The availability of many configurations, control strategies, and design variables necessitates the use of mathematical modeling and design optimization to find the best overall design. Thus, the optimization process becomes a problem of large-scale multi-objectives (e.g., maximum fuel economy, minimum emissions, minimum cost). There are two types of optimization methods that can be applied to automotive design: equation-based and simulation-based. Although classical numerical optimization techniques can be used, statistical methods (e.g., simulated annealing and genetic algorithms) seem more effective in avoiding local minima in the search-space. On the other hand, simulation-based optimization has recently been made practical by improved computation power and advanced numerical algorithms. 
Specifically, optimization techniques have been applied in the design of power converters, which are critical functional components of any hybrid powertrain. Various optimization tools have been developed for meeting certain requirements. For example, a design optimization tool that minimizes materials cost for a boost converter was developed based on a genetic algorithm [11]. This tool takes into account the design specification, physical limitations, and operational safety of the device. Another optimization tool based on CAD is used for the design of automotive DC/DC converters [12]. In this tool, the objective function is a weighted sum of component volume, weight, and cost. A Monte Carlo search method and expert system are used in the selection process of the components. A large number of iterations are necessary before an optimum design is reached. Unfortunately, this tool is very time-consuming and there is no guarantee that an optimum solution will be found.
Nonlinear optimization theory has also been applied to the design of power converters. An expert system with a design knowledge base and automated computer-aided optimization were implemented in a CAD-Tool for the design of switched mode power supplies [13]. The expert system shell CLIPS was used. A knowledge base is used to select the best power supply topology according to the given design specification. A sub-knowledge base is used to select components based on the target volume, cost, and efficiency of the design. The knowledge base can also assist in the selection of the appropriate control scheme. In addition, an optimization function is available for magnetic component design.

A classification of the optimization algorithms (gradient-based and non-gradient/derivative-free) used in hybrid powertrain design environment is given in [14]. The gradient-based algorithms (e.g., Sequential Quadratic Programming [15]) works well for smooth, continuous functions, but often fail miserably for noisy, discontinuous functions because of the wrongly calculated gradients. Derivative-free algorithms (e.g., DIRECT [16] and COMPLEX [17]) can be used to avoid the gradient calculation problem. DIRECT (Dividing RECTangles) is an optimization algorithm designed to search aggressively for global minima of a real valued objective function over a bound-constrained domain using no derivative information [18]. Many toolboxes using the above mentioned routines are applied to analyze the hybrid electric vehicle optimization process in [19]. Algorithms based on the Expectation–Maximization algorithm are developed and shown in [20], which can significantly improve the convergence criteria compared to other algorithms.
Based on our initial investigation, DIRECT and Expectation–Maximization algorithm are to be used in our powertrain design tool because these algorithms facilitate a knowledge-based search and simulation-based optimization.
7. CONCLUSIONS

This paper addresses the issues facing contemporary automotive engineering design tools. It proposes a new methodology for design automation by integrating model-based design, physics-based modeling, knowledge-based engineering, and large-scale design optimization in a domain-specific modeling environment. It is anticipated that such a design tool will bring in significant cost savings, performance enhancement, and design time reduction for hybrid powertrains.
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Figure 2. Physics-based Resistive Companion Form modeling technique.
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