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Abstract

A traditional trainer uses an expectation maximization (EM) based supervised training framework to estimate the parameters of a speech recognition system. EM-based parameter estimation for speech recognition is performed using several complicated stages of iterative re-estimation. These stages are prone to human error. This paper describes a new training paradigm that reduces the complexity of the training process, while retaining the robustness of the EM-based supervised training framework. This paper show that the network training paradigm can achieve comparable recognition performance to a traditional trainer while alleviating the need for complicated systems and training recipes for spoken language processing systems.
1. Introduction

This paper describes a network training paradigm that allows for direct training of multi-path models and alleviates the need for complicated systems and training recipes. The network trainer reduces the complexity of the training process, while retaining the robustness of the EM-based supervised training framework. The network trainer achieves comparable recognition performance to a traditional trainer using a hierarchical architecture. This paper is organized as follows. The second section provides an in-depth look at the network training framework. The third section describes the various experiments that were performed to prove our hypothesis. Preliminary results on various speech corpora are also presented. The forth section summarizes the findings of this paper and discusses some promising avenues for future work.
2. Network Training

In the traditional acoustic model training recipe, a single, most likely, pronunciation is selected for each word. It is well known that systems involving soft decisions can provide better performance, though these systems may take longer to converge during training. In this section, we introduce a network training approach that directly trains multi-path models at any level of the speech recognition model hierarchy without the need for complicated systems and training recipes.

2.1. Training Framework

The network training framework employs maximum likelihood estimation (MLE) within the expectation maximization (EM) framework. More specifically, the network training framework uses the Baum-Welch algorithm to re-estimate the parameters of the Gaussian mixture models (GMM’s). A detailed description of the Baum-Welch re-estimation equations used in training can be found in [1]. The above description on the surface appears identical to the training paradigm used in a traditional trainer; however, it must be noted that the key difference here lies in the fact that the Baum-Welch re-estimation procedure is applied to a hierarchical network, as shown in Figure 1. The ability to train a hierarchical network is what differentiates the network trainer from a more traditional left-to-right HMM trainer.
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Figure 1: An example of a hierarchical system that contains embedded knowledge sources at each level.
2.2. Training Recipe
During the training process, we provide the system with examples and have it learn the relationships between the labels and their corresponding observations. The network trainer employs a language model that uses silence as a word during re-estimation, as shown in Figure 2. Using a silence word removes the need for including it in the phonetic pronunciation of each word in the lexicon, as is done with the traditional trainer.
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Figure 2: An example of the language model with silence as a word employed by the network trainer.

2.2.1. Silence Duration Modeling
In the traditional training recipe, a forced-alignment stage is used to determine the duration of the silence model used between words. This is done is because a GMM, which is used to represent the underlying probability distribution, has an exponentially decreasing likelihood of staying in the same state over time [2]. Hence, a short-pause is used to model short durations and a silence is used to model longer durations between words.

In the network training recipe, the forced-alignment stage is eliminated. Hence, the burden of learning the silence duration, used between words, falls on the silence word. The topology of the silence word allows for both a long and a short path through the model, as shown in Figure 3. The multi-path silence word model removes the need for making a hard decision as to the duration of the silence after a word, as is done in the forced-alignment stage in the traditional trainer.
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Figure 3: An example of the multi-path model topology used by the silence word.
2.2.2. Pronunciation Modeling
In the traditional training recipe, a single pronunciation is used for all words in the vocabulary. This works by using a single canonical pronunciation for each word during the initial training stages. The most likely pronunciation or phone sequence for each word is then selected during the forced-alignment stage. Hence, a hard decision is made with regards to the pronunciation of each word based on the training corpus.

In the network training recipe, we employ word networks for modeling the pronunciation variants [3]. A word network consists of a series of unique paths representing variants of the canonical pronunciation, as shown in Figure 4. While the canonical pronunciation is obtained from the dictionary, variants of the canonical pronunciation are obtained from various sources, which include text-to-phone systems and pronunciation dictionaries. Such networks allow us to generalize to pronunciations not encountered in the training corpus. Word networks allow us to skip the forced-alignment stage and avoid making hard decisions as to the phonetic pronunciation of a word.
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Figure 4: An example of a word network for the word “have” used by the network trainer.

3. Experiments and analysis

The primary objective of this paper is to describe a network training recipe that allows for direct training of multi-path models and alleviates the need for complicated systems and training recipes. To prove our hypothesis, experiments were conducted on three corpora representing industry-standard tasks: TIDigits [4], OGI Alphadigits [5] and Resource Management [6].
3.1. TIDigits

This section presents experimental results on the TIDigits corpora using context-independent phone models. The experimental results in Table 1 represent models that were re-estimated using the traditional and network trainer respectively. The recognition experiments use a word insertion penalty of -90 (which was found to be optimal via a development test set). The recognition experiment also uses open beams, i.e., there is no pruning, and the experiments use a loop-grammar language model (any word can follow any other word).
	
	WER
	Insertion Rate
	Deletion Rate
	Substitution Rate

	Traditional Trainer
	7.7%
	0.1%
	2.5%
	5.0%

	Network Trainer
	7.6%
	0.1%
	2.4%
	5.0%


Table 1: A comparison of the recognition results for the TIDigits corpora.
The experimental results in Table 1 show that the network trainer gives comparable performance to the traditional trainer on the TIDigits corpus using context-independent phone models. The experimental results show that the network trainer converges in word error rate to the traditional trainer. Furthermore, the plot in Figure 5 shows that the network trainer converges in likelihood to the traditional trainer.
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Figure 5: The average log likelihood per iteration for both trainers on the TIDigits corpora.
3.2. OGI Alphadigits

This section presents experimental results on the OGI Alphadigits corpora using context-independent phone models. The experimental results in Table 2 represent models that were re-estimated using the traditional trainer and network trainer. The recognition experiments use a word insertion penalty of -90 (which was found to be optimal via a development test set). The recognition experiment also use open beams, i.e., there is no pruning, and the experiments use a loop-grammar language model.
	
	WER
	Insertion Rate
	Deletion Rate
	Substitution Rate

	Traditional Trainer
	38.0%
	0.8%
	3.0%
	34.2.0%

	Network Trainer
	35.3 %
	0.8%
	2.2%
	32.4%


Table 2: A comparison of the recognition results for the OGI Alphadigits corpora.
The experimental results in Table 2 show that the network trainer gives a slight improvement in performance over the traditional trainer on the OGI Alphadigits corpus using context-independent phone models. The experimental results show that the network trainer converges in word error rate (with a 2.7% improvement) to the traditional trainer. The experimental results show that the network trainer converges in word error rate to the traditional trainer. Furthermore, the plot in Figure 6 shows that the network trainer converges in likelihood to the traditional trainer.
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Figure 6: The average log likelihood per iteration for both trainers on the OGI Alphadigits corpora.
3.3. Resource Management

This section presents experimental results on the Resource Management corpus using context-independent phone models. The experimental results in Table 3 represent models that were re-estimated using the traditional trainer. The recognition experiments use a word insertion penalty of -90 (which was found to be optimal via a development test et). The recognition experiments also use a MAPMI pruning threshold of 10,000, a maximum word-end pruning threshold of 150 and word, phone and state level beam pruning thresholds of 250, 250, and 300 respectively. Furthermore, the recognition experiments use a standard bigram language model with a perplexity less than 60. A language model scale factor of 7.0 was used.

	
	WER
	Insertion Rate
	Deletion Rate
	Substitution Rate

	Traditional Trainer
	25.7%
	1.9%
	6.7%
	17.1%

	Network Trainer
	27.5%
	2.6%
	7.1%
	17.9%


Table 3: A comparison of the recognition results for the Resource Management corpora.

The experimental results in Table 3 show that the network trainer gives comparable performance to the traditional trainer on the Resource Management corpus using context-independent phone models. It should be noted that the 0.7% degradation in performance is not significant, and the experimental results in Table 3 were obtained using a much simpler training recipe than the traditional trainer. We use the matched pairs sentence-segment word error (MAPSSWE) test with a 0.1% confidence in order to determine statistical significance. The experimental results show that the network trainer converges in word error rate to the traditional trainer. Furthermore, the plot in Figure 7 shows that the network trainer converges in likelihood to the traditional trainer.
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Figure 7: The average log likelihood per iteration for both trainers on the Resource Management corpora.

4. conclusions and future work

The effectiveness of the training recipe was demonstrated by analyzing the performance of the speech recognizer on three different corpora: TIDigits, OGI Alphadigits and Resource Management. For TIDigits, at a 7.6% WER, the performance of the network trainer was better by 0.1%. Also, for OGI Alphadigits, at a 35.3% WER, the performance of the network trainer was better by approximately 2.7%. Finally, for Resource Management, at a 27.5% WER, the performance of the network trainer degraded slightly by about 0.8%. However, the degradation was shown to be insignificant using the MAPSSWE test.
The results presented in this paper were obtained using single mixture context-independent models. The context-dependent stage is a direct extension of the context-independent stage, which requires no changes in the training recipe. However, a hierarchical lexical tree decoder is needed to decode the cross-word models. A hierarchical lexical tree decoder is currently under development and recognition results using the cross-word models are planned.
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