
Signal Processing Tools for Speech Recognition1

Hualin Gao, Richard Duncan, Julie A. Baca, Joseph Picone

Institute for Signal and Information Processing
Mississippi State University

{gao, duncan, baca, picone}@isip.msstate.edu

1. This material is based upon work supported by the National
Science Foundation under Grant No. EIA-9809300. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

Abstract

This paper describes the design and development of a set of
signal processing software tools for speech recognition. The
tools were developed for inclusion in a comprehensive public
domain speech recognition toolkit. We describe the design
philosophy underlying the development of the tools as well as
the key features that enable realization of our design goals of
modularity, extensibility, and usability. A GUI-based
configuration tool is presented that allows complicated, multi-
pass front end algorithms to be created using a graphical editor
and a library of fundamental algorithm components. We also
discuss results of tests to verify the correctness and usability of
the tool set, including benchmarks on SWITCHBOARD,
WSJ0 and the Aurora Large Vocabulary tasks.

1. Introduction

The Institute for Signal and Information Processing (ISIP) at
Mississippi State University provides a comprehensive public
domain toolkit [1] for performing large vocabulary speech
recognition research. Several differentiating features of this
toolkit are its ease of use, extensibility, and educational
components. In this paper we describe the design and
implementation of its signal processing components, which
represent an excellent example of how we have provided a
powerful GUI-based environment to perform signal processing
research and education.

An overview of a speech recognition system is shown in
Figure 1. The tool described in this paper deals with the block
known as the Acoustic Front End which encapsulates most of
the signal processing portions of a speech recognition system.
Signal processing tools extract feature vectors from speech
data, and thus play a critical role in the development of speech
recognition systems. Also referred to as front end tools, many
signal processing toolkits are currently available. MATLAB is
an example of one of the more popular commercial
products [2]. Such toolkits provide powerful computation and
analysis capabilities, and sophisticated graphical interfaces.
Nonetheless, they also contain serious deficiencies that limit
their usefulness in a research environment.

The first deficiency concerns the need for programming
when researchers wish to evaluate new ideas using existing
algorithms. Second, adding new algorithms to such toolkits
requires modifying the base code of the existing system, a
potentially time-consuming and costly undertaking that can
significantly impede many research efforts. Third, special
problems for speech recognition front ends exist, such as

synchronization and buffering of data along the data flow
graph. Of even greater importance and difficulty, data
preparation for algorithms that require multiple frames of data,
such as windows and differentiation, can be problematic.

To address these issues and to provide users with a
powerful signal processing tool that requires no programming,
we have developed a modular, flexible environment for signal
processing. The key differentiating characteristics of our
system include[1]:

• Competitive technology with maximum flexibility;
• Well-documented APIs to facilitate new programming;
• An object-oriented software design in C++;
• Unrestricted access via the Internet.

This paper first presents our software design rationale and
approach for achieving maximum system modularity and
usability. It then describes the details of an environment of
GUI-based tools we developed following this rationale. This
environment enables users to implement front ends by drawing
block diagrams of signal processing functions without any
programming. Finally, we present results of experiments
conducted to test and verify the correctness of the tools.

2. Signal Processing Software Design

Research in the area of speech recognition requires the
development of large applications in a relatively short period
of time. Unfortunately, however, many ideas remain
unexplored due to the effort such development requires,
including rewriting common functions or debugging low-level
issues such as file I/O. To address these needs, we designed a
large, hierarchical software environment to support advanced
research in all areas of speech recognition, including signal

Figure 1: An overview of a speech recognition system.

processing. This environment contains ISIP foundation classes
(IFCs) that provide features ranging from complex data
structures to an abstract file I/O interface. IFCs are
implemented as a set of C++ classes, organized as libraries in a
hierarchical structure. They are targeted for the needs of rapid
prototyping and lightweight programming without sacrificing
efficiency. Some key features include:

• Unicode support for multilingual applications;
• memory management and tracking;
• system and I/O libraries that abstract users from details of

the operating system;
• math classes that provide basic linear algebra and

efficient matrix manipulations;
• data structures that include generic implementations of

hash tables, lists, and other things essential for
developing flexible and simple speech recognition code.

The IFCs provide support for users to develop new
approaches without rewriting common functions. The software
interfaces are carefully designed to be generic and extensible.
This design approach facilitates overall system development
that is modular and flexible, yielding a high level of usability.

We developed our signal processing toolkit to stringently
adhere to the IFC design philosophy and framework. The
software described in this paper involves primarily the
Algorithm library [3] in the IFC class hierarchy. At the outset,
it was clear that the tools must not only allow a wide selection
of algorithms, but also the ability to vary every parameter of
each algorithm easily and finally, provide users an efficient
environment for evaluating new research ideas. Thus, the
design requirements for these tools included:

• a library of standard algorithms to provide basic digital
signal processing (DSP) functions;

• an ability to easily add new algorithm classes and
functions without modifying existing algorithm classes;

• a block diagram approach to describing algorithms to
realize rapid prototyping without programming.

Fulfilling the first requirement enabled users to directly
realize a single algorithm such as a window with simple
programming by building an algorithm object, and calling its
functions. Meeting the second requirement allowed users to
enhance system capabilities according to new requirements
and to extend to new DSP areas. We designed and
implemented an algorithm library and a signal processing
library. The object-oriented design of the algorithm library,
using inheritance with an abstract base class, greatly enhanced
the extensibility of the software. To create new classes, users
simply supply definitions of the public interface contract
methods for the AlgorithmBase class. Further details of the
interface contract are given in Section 2.1.

To meet the third requirement, we developed a signal
processing control tool and a signal processing configuration
tool. The procedure by which users employ the tools and
libraries can be described as follows: First, the signal
processing configuration tool is used to graphically specify the
sequence of algorithms and their configuration using a block
diagram. This is saved to a file containing a description of the
block diagram. This description uses a graph data structure
containing components, each of which has its own
configuration. Second, a control tool accepts the speech data
file and the recipe files produced in the first step as input. It

then parses the recipe file using functions provided by the
signal processing library to obtain the necessary information
for each algorithm. Finally, it applies the corresponding
algorithm functions to process the input speech data by calling
the correct method in the algorithm library. Because the
algorithm library is fundamental to all other libraries and tools,
it is described first in the following section.

2.1. Algorithm Library

The algorithm library contains a collection of signal
processing and support algorithms implemented as a hierarchy
of C++ classes. The implementation of this hierarchy using an
abstract base class, AlgorithmBase, and virtual functions or
methods that comprise the interface contract, is perhaps the
single most important feature, since it makes the library easily
extensible. All algorithm classes are derived from this base
class. However, since it is an abstract class, no objects are ever
directly instantiated from it. Instead, it defines the interface
contract, specifying virtual functions that all Algorithm classes
must provide, and centralizes useful protected data common to
all algorithms, such as sample frequency and frame duration.
The interface contract is summarized in Table 1:

Note that the key computational steps of any algorithm
are limited to two functions: init and apply. The remaining
functions simply facilitate configuration and debugging. The
configuration functions deal with retrieving information from
the specific algorithm that is needed to coordinate I/O
processing. For example, getLeadingPad and getTrailingPad
are used to determine the amount of delay a specific algorithm
introduces so buffers can be adjusted accordingly. The
debugging methods were introduced to allow users to insert
debugging statements within the signal flow graph, and to see
intermediate output as the data is being processed.

Expanding the collection of algorithms supported in our
Algorithm library is the subject of on-going research. Our
current offerings can be sorting into two categories: basic DSP
and support. The basic DSP components include commonly
used algorithms, such as windows, filter, and energy. Support
components allow high-level manipulation of data flow
through block diagrams. Together, they provide a unique and
powerful set of signal processing capabilities, some of which
include: multi-pass processing of a signal; automatic handling
of arbitrary amounts of prior and future data when a recipe is

Processing:
virtual boolean init();
virtual boolean apply();

Configuration:

virtual const String& className() const;
virtual long getLeadingPad() const;
virtual long getTrailingPad() const;
virtual CMODE getOutputMode() const;
virtual float getOutputSampleFrequency() const;
virtual boolean setParser();

Debugging:

boolean displayStart();
boolean displayFinish();
boolean displayChannel();
boolean display();

Table 1: An overview of the interface contract for the
Algorithm classes.

created; processing of a signal, saving a constant derived from
that signal to a file, and reloading the constant.

The basic DSP components include most commonly used
algorithms, such as correlation (e.g., autocorrelation and
covariance), spectral transformations (e.g., Fourier transform
and Cepstrum), and linear prediction. There are also
lower-level classes that provide building blocks for more
complicated algorithms. These include components such as
windows, filters, and energy. Each algorithm contains
numerous algorithm and implementation choices, as well as
parameter configuration options. Most popular algorithms that
have been used in the past 20 years in speech recognition are
included in this inventory.

The support components provide primitive debugging
tools as well as the ability to manipulate feature streams.
Combined with the basic DSP algorithms, they yield a
powerful set of signal processing capabilities. Some important
components in this category include:

• Constant: provides a mechanism for applying global
constants, such as the mean value of a signal, to a
signal. This class is used extensively to implement
algorithms requiring multi-pass processing, such as
cepstral mean subtraction and variance normalization.

• Math: provides a mini-scripting language that is used
to form weighted linear combinations of functions of
vectors (a MATLAB-like capability).

• Statistics: provides the ability to perform elementary
statistical computations, such as average values,
minimum and maximum values, and variance.

To summarize, the algorithm library serves as the
foundation for all other signal processing tools and libraries.
Its object-oriented design and implementation make it
extensible and flexible. The signal processing configuration
tool allows users easy access to these algorithms and is
described in the following section.

2.2. Signal Processing Configuration Tool

We developed a Java GUI tool, shown in Figure 2, to provide
users a block diagram approach to designing front ends. We
chose the Java language to allow the tool to run across a wide
range of platforms, including Microsoft Windows, and to give
the tool an industry-standard look and feel. This tool allows
users to select algorithms from an inventory of predefined
components, and to connect and configure these components
using standard graph drawing tools. Each component
represents one algorithm for which the user can specify how to
process data; each arc represents a data flow from one
algorithm to another. To create a block diagram, the user
selects the desired algorithm from the component menu,
connects each component using directed arcs, configures each
component in the diagram, and saves the configuration or
“recipe” into a file. The control tool, described in Section 2.3,
uses this file to complete the signal transformation process.

The example block diagram shown in Figure 2 illustrates
many unique capabilities of the configuration tool. This
example accepts one signal input and applies two sequences of
algorithms or data flows in parallel to process the signal. The
leftmost sequence (data flow) computes a vector of linear
prediction coefficients from a window of data extracted from
the signal. The rightmost sequence (data flow) applies a filter
to the signal and computes energy using a different window of

data, producing a single energy value. The results of each data
flow are concatenated via the connection (Conn) component to
produce a single vector. The statistics (Stat) component then
computes an average from this vector, and finally the constant
(Cons) component stores this constant to a file.

This example illustrates several important features of the
tool. First, all synchronization and buffering of data between
components within a single data flow and across data flows is
automatically handled by these tools. The user need only draw
the block diagram to indicate how the signal should be
processed, without concern for data synchronization or
buffering. In addition, the example illustrates the support
provided for multi-pass processing. The constant saved to a
file can be easily reloaded as input to the same data flow
diagram or differing diagrams. All of these capabilities
empower researchers to explore ideas freely without the heavy
programming burden that might otherwise be incurred.

Finally, to increase the extensibility of the tool,
algorithms are presented in the interface through the
components menu, populated from a resource file. All
algorithms appearing in this menu are read from the resource
file. Adding a new algorithm requires simply including a
description into the resource file according to its format. No
modifications to the source code of the signal processing
control tool itself are required.

2.3 Signal Processing Library and Control Tool

The signal processing library is a collection of specially
designed modules, implemented as C++ classes, which serve
as an interface between the block diagrams, created by the
GUI configuration tool, and the computation algorithms,
described in Section 2.1. It should be noted that the work of
the signal processing library is hidden from the user by
default. Its functions include: parsing the file containing the
recipe created by the user with the configuration tool;
synchronizing different paths along the block flow diagram
contained in this file; preparing input/output data buffers for
each algorithm, particularly for those requiring multiple
frames of data, such as windows or calculus; scheduling the

Figure 2: A screenshot of a configuration tool that allows
users to create new front ends by drawing signal flow graphs.

sequences of required signal processing operations; processing
data through the flow defined by the recipe; and finally,
managing conversational data.

An important attribute of the signal processing control
tool concerns its compatibility with other components of our
software. The control functions are embedded in the
recognizer so that both tools use exactly the same code base.
This further enhances the usability of the toolkit, enabling
researchers to more easily achieve consistency in experimental
results by using the same data in recognition as that used in
feature extraction. Also, the fact that the front end is
embedded in the recognizer allows live input demos to be
easily created, again by supporting use of the same data from
feature extraction in recognition.

3. Experimental Results

We tested the quality of our toolkit along two dimensions,
correctness and usability. To verify the correctness of the
computation results, we have successfully built several
complex front ends, including an industry standard front end
based on Mel-frequency cepstrum coefficients (MFCCs) [4].
Our testing procedure entailed first comparing the data
generated from the general purpose tools described in this
paper to similar data generated from a prior version of our
software that has been publicly available for several years, but
contained less general implementations of many algorithms.
Since there are subtle differences in the way the components
are implemented, byte by byte comparisons of the data are not
always possible or desirable.

Hence, in addition to directly comparing values in the
feature vector streams, we also ran several recognition
experiments, including Switchboard (SWB) [5] and Wall
Street Journal (WSJ) [6]. As one example, we compared the
correctness of our results against comparable baseline systems
used in the Aurora evaluations on the 5K WSJ0 task [7].
Front ends created using our general purpose tools matched
performance on these tasks achieved using the older versions
of the software. For example, we achieved an 8.3% WER
using our MFCC front end recipe, and this matches the results
reported in [4].

Next, we assessed and enhanced the usability of our tools
through extensive user testing conducted over the course of
many workshops [7]. As part of this testing, we administered
a user survey derived from the Questionnaire for User
Interaction Satisfaction (QUIS), a measurement tool designed
for assessing user subjective satisfaction with the human-
computer interface [8]. Several features of the interface were
modified or enhanced as a result of these tests. General
examples include reductions in the number of menus, number
of menu options, changes in wording of menu options, and
modifications to the behavior of the drawing tool itself.

As a more specific example, the original GUI design
contained a Configuration menu, containing Input and Output
components to be configured, and an Algorithms menu,
containing algorithm components. While this set of menu
choices seemed intuitive in the design phase, tests indicated
users found this confusing. Hence, based on user comments,
input and output were included with the algorithms, under one
menu, called Components, which allowed configuration of all
block components in the diagram. An example of an
enhancement to the drawing tool includes the capability to
create complex subgraphs and save them for reuse in the

current block diagram or one created separately in a different
session.

4. Conclusions

This paper has presented the signal processing component of
our public domain speech recognition toolkit. This component
was designed and developed in adherence to our philosophy of
providing a flexible, extensible software environment for
speech recognition researchers. Our goal was to enable
researchers to explore ideas freely, unencumbered by low-
level programming issues. To achieve this goal, we
implemented several critical features in our signal processing
software tools, including a library of standard algorithms for
basic DSP functions, the ability to add new algorithms to this
library easily, and a GUI-based configuration tool for creating
block diagrams to describe algorithms, allowing rapid
prototyping without programming. We have tested and
verified this tool for both correctness and usability. It
empowers researchers to easily build state-of-the-art front end
systems for speech recognition. We continue to monitor
feedback from our user community in order to maintain the
highest quality of the tool.

5. References

1. K. Huang and J. Picone, “Internet-Accessible Speech
Recognition Technology,” presented at the IEEE
Midwest Symposium on Circuits and Systems, Tulsa,
Oklahoma, USA, August 2002 (see http://www.isip.
msstate.edu/projects/speech).

2. The MathWorks, Inc., Natick, MA, USA (see
http://www.matlab.com/).

3. R. Duncan, H. Gao, J. Baca and J. Picone, “The
Algorithm Classes,” ISIP, Mississippi State University,
MS State, MS, USA, March 2003 (see http://www.
isip.msstate.edu/projects/speech/software/documentation/
class/algo/).

4. N. Parihar, et al., “Performance Analysis of the Aurora
Large Vocabulary Baseline System,” submitted to
Eurospeech ’03, Geneva, Switzerland, September 2003.

5. R. Sundaram, J. Hamaker, and J. Picone, “TWISTER:
The ISIP 2001 Conversational Speech Evaluation
System,” Proceedings of the Speech Transcription
Workshop, Linthicum Heights, Maryland, USA, May
2001.

6. D. Paul and J. Baker, “The Design of Wall Street Journal-
Based CSR Corpus,” Proceedings of ICSLP, pp. 899-
902, Banff, Alberta, Canada, October 1992.

7. J. Picone, et al., “Speech Recognition System Training
Workshop,” ISIP, Mississippi State University, MS State,
MS, USA, May 2002 (see http://www.isip.msstate.edu/
conferences/srstw/).

8. J.P. Chin, V.A. Diehl, and K.L. Norman, “Development
of an Instrument Measuring User Satisfaction of the
Human-Computer Interface,” Proceedings of SIGCHI’88,
pp. 213-218, New York, New York, USA, October 1988
(see http://lap.umd.edu/q7/quis.html).

