
SIGNAL PROCESSING TOOLS FOR SPEECH RECOGNITION1
r
f a

ls.
e

s to
al
ls
ion

ech

m
al
s,
to
of

o
or

rs
ir

o
a
ir

 Hualin Gao, Julie Baca and Joseph Picone

Institute for Signal and Information Processing
Mississippi State University, Mississippi State, MS 39762 USA

{gao, baca, picone}@isip.msstate.edu
ABSTRACT
Signal processing tools used to extract feature vectors from
speech signal were developed by the Institute for Signal and
Information Processing. The tools were designed to process
general-purpose DSP functionalities and to act as parts of
core components of ISIP speech recognition system. The
design goal of the tools is to simplify the software
development for researcher in both academic and industrial
area by simply drawing block diagram to expression design
ideas without any programming. This paper discusses the
issues related to the design and implementation of such
digital signal processing tools.

1. INTRODUCTION
Signal processing tools of a speech recognition system
extract feature vectors from the speech data. It is generally
referred to as a front end tools. There are a lot of signal
processing toolkits available, Matlab is one of the most
popular used tools in the signal processing area. Those
toolkits really provide powerful computation and analysis
ability for users, especially the graphical ability, but the
major problems are: First, all those need more or less
programming if users want to evaluate new ideas using
existing algorithms. Second, if users want to add new
algorithms to existing system, the base code of the existing
system will need to be modified, these will need a lot of
programming and debugging. This will slow down many
research efforts. Third, any change over existing
computation procedure will need to re-debug the existing
procedure. Fourth, there are other two special problems for
speech recognition front end. One is synchronization along
the data flow graph if there exist two or more paths using
different numbers of algorithms to reach a same point. The
other is if the algorithm needs more than one frame data
such as window and calculus, the data preparation for
multiple frames data for those algorithms is a very important
step. In order to overcome all those problems and to provide

users a powerful, flexible and no programming tool fo
signal processing, ISIP has focused on the development o
modular and flexible environment of signal processing too
The key differentiating characteristics of this system includ
[1]:

• competitive technology with maximum flexibility;
• unrestricted access via the Internet;
• well-documented APIs to facilitate new programming;
• an object-oriented software design.

This paper discusses GUI-based tools that enable user
implement front ends by drawing block diagrams of sign
processing functions without any programming. The too
are parts of core components of the ISIP speech recognit
system. A brief description of low-level programming
interfaces between signal processing tools and spe
system is also introduced later.

2. GUI-BASED SIGNAL PROCESSING
TOOLS

Signal processing tools of the extract feature vectors fro
the speech data. The goal of developing new sign
processing tools is to allow a wide selection of algorithm
to vary every parameter of each algorithm easily and
provide users an efficient environment for the evaluation
new research ideas.

The design requirements for these tools included:

• a library of standard DSP algorithms to provide basic
DSP functions;

• a block diagram approach to describing algorithms to
realize the rapid prototyping without programming;

• an ability to plug in new algorithm classes and func-
tions.

The first requirement will provide a basic DSP tool t
directly realize a single algorithm such as windows, filters
energy, with simple programming by building a algorithm
object and calling its functions. This will also enable use
to employ these fully tested standard DSP algorithm in the
own software.

The second requirement will provide a powerful tool t
directly realize a rapid prototyping of new ideas by using
single algorithm or combining existing algorithms and the

1.This material is based upon work supported by the National Sci-
ence Foundation under Grant No. EIA-9809300. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.



c

d
in

ts,
s is
t-

is
a
e

and
to

nd
al

d.
e,

w

e

le.

l.

s

c

le
re

ian,

uch
to
for

ol
ck

ava
de
data flow through block diagram without programming.

The third requirement will provide the ability to enhance the
system capability according to the new requirement of users
and to extend to new DSP areas.

Meeting the requirements above will allow users complete
control over all aspects of the signal modeling process, such
as algorithm selections, their sequence and internal
parameters for each algorithm.

To meet the requirements mentioned above, four
components were designed and implemented specifically,
algorithm library, signal processing library, signal
processing control tool and signal processing configuration
tool.

The procedure of the tools was to designed to work in this
way: First, users use the signal processing configuration tool
to specify the sequence of algorithms and their configuration
using a block diagram and save them to a file called a recipe
file. Second, the signal processing control tool takes the
speech data file and recipe file as input, parses the recipe file
using functions provided by signal processing library to get
the necessary information for each algorithm, applies the
corresponding algorithm functions of each algorithm to
processing input speech data by calling the correct method
in the algorithm library.

All these four components involved are introduced
individually in the following three sub-sections.

2.1 Algorithm library

The algorithm library is the lowest level component of the
four components of the signal processing tools. It is a
collection of algorithms implemented as C++ classes. There
are two types of algorithms in this library. One includes
basic DSP algorithms and the other includes support
algorithms for high level manipulate data flow through block
diagrams.

Basic DSP algorithm library includes the most commonly
used algorithms, such as windows, filter, filter bank and
energy. These algorithms are designed to provide general-
purpose functionalities and users can use these fully tested
algorithms in their own software or as a tool to learn basic
DSP course. The algorithms which have been implemented
to date in this category include: energy, filter, filterBank,
window, cepstrum, fourier transform, spectrum, correlation,
covariance, prediction, reflection, log area ratio, calculus.
All those basic algorithms are the most widely used
algorithms and provide basic modules for building complex
front ends such as mel cepstra, perceptual linear prediction,
filterbank amplitudes and delta features [2].

Support algorithms are mainly designed to be used in ISIP
environment and help to increase the signal processing

ability in the tools. They are put into algorithm library
mainly because they work in a similar way with basi
algorithms such as processing data stream.

Support algorithms provide primitive debugging tools an
the ability to manipulate feature streams. The algorithms
this category which have been implemented include:

Constant: allows a mechanism for applying global constan
such as the mean value of a signal, to a signal. This clas
used extensively to implement algorithms requiring mul
pass processing.

Math: provides an ability to form weighted linear
combinations of functions of feature vectors. This class
designed to provide maximum flexibility by supporting
mini-scripting language for functional analysis. It gives th
front end a Matlab-like capability.

Statistics: used to compute means, variances, min, max,
other global measures of the inputs. This class is used
implement concepts such a mean normalization a
variance-weighting. Since this class accumulates glob
values of its inputs, its interface is a little more complicate
Most statistical computations are inherently non-real-tim
and require at least one complete pass over the data.

Connection: allows feature streams to be merged.

DisplayData: can be inserted anywhere in a signal flo
block diagram to display feature values to the console.

Mask: allows individual features, or groups of features, to b
selected from a stream.

Output: can be embedded in a recipe to output data to a fi

Generator: can be used to produce various types of signa

CoefficientLabel: allows coefficient type of feature stream
to be renamed.

AlgorithmContainer: used to hide details of specifi
components from the recipe processing software.

Each algorithm mentioned above provides multip
implementation options, such as in window class there a
rectangular, blackman, bartlett, dolph_chebyshev, gauss
hamming, hanning, kaiser, lifter and custom window
options. Users can choose any one. At the same time, s
structures of implementation options were also designed
expand easily and users can add new implementation
each algorithm.

2.2 Signal processing configuration tool

A Java GUI tool called signal processing configuration to
as shown in Figure 1 was developed to provide users a blo
diagram approach to designing acoustic front ends. The J
language was used to allow the tool to run across a wi
range of platforms (including Microsoft Windows), and to



ata
g
es

ng,
s
al

o
sed
ds
w
he

ow
a

e
e
l,
l-

al
g,
g
sily
re

nd
nd
ct

ect
ut

the
k
he
ck
a

trol

ly

ng
it

he
of
m

ng

er
re
give the tool an industry-standard look and feel.

The signal processing configuration tool was designed in
such a way that users can draw block diagrams and connect
each block using directed arc and configure each block in
the diagram and save all the block diagrams into a file called
recipe file. Each block represents one algorithm which the
user can specify to process data; each arc represents a data
flow from one algorithm to another algorithm. The format of
a recipe file can be recognized and used by the signal
processing control tool. The signal processing configuration
tool also organizes the element in the components menu
using a resource file. All algorithms appearing in the
component menu (as shown in Figure 1) of signal
processing configuration tool come from the resource file.
This feature makes any new algorithm easy to plug in to the
signal processing configuration tool by simply adding the
description of the new algorithm into the resource file
according to some predefined format. Users do not need to
modify the source code of the signal processing control tool
itself.

2.3 Signal processing library and control tool

The signal processing library was designed to manage the
signal process. It is a collection of special designed
components implemented as C++ classes to build a bridge
between block diagram and computation algorithms. Its
functions include: parsing the recipe file specified by users
through the signal processing configuration tool; keeping
sychronization for different paths along the recipe file;
preparing input/output data buffer for each algorithm,
especially when the multiple frames data are needed such as
windows, calculus algorithm; scheduling the sequences of

required signal processing operations and processing d
through data flow defined by recipe file; managin
conversational data. Signal processing control tool provid
some basic functionalities such as commandline parsi
multiple recipe files and multiple speech source file
managing in one run. In this procedure, the work of sign
processing library is hidden to most users.

All algorithms used in the recipe file are wrapped int
component classes. The components can be proces
uniformly. Such uniform structures and processing metho
will make sure the extensible for new algorithm and the ne
algorithm can be plugged in easily. The base code of t
system does not need to modify.

3. EXPERIMENTAL RESULTS
The tests for the tools include two aspects: one is to sh
how easy it is to construct block diagrams and save to
recipe file. The other is to verify the correctness of th
computation results using the recipe file. We hav
successfully built several complex front ends with this too
including an industry standard front end based on Me
frequency cepstrum coefficients (MFCCs) [3]. The sign
processing control tool supports multi-pass processin
which allows non-real-time research ideas involvin
complex normalization and adaptation schemes to be ea
implemented. The block diagrams as shown in Figure 2 a
constructed for MFCC with cepstral mean substraction a
energy normalization after getting cepstral mean a
maximum energy by using another recipe file. To constru
such block diagram is very easy. First, the user simply sel
algorithms from submenu of components menu and p
them on the main panel. Then he connect them using
submenu functions of edit menu. Third, the user right-clic
the mouse and configure each algorithm according to t
predefined specification. Last step is to save these blo
diagram to a recipe file. That’s all need to do to create
recipe file. The user is ready to use signal speech con
tool and the recipe file to process signal data.

The verification of computation is also perform extensive
to make sure the correctness of the algorithms.

For each single algorithm implemented for signal processi
it was fully tested using Matlab or manually to make sure
works correctly.

The feature vector results by using the recipe files are t
same as the those from output from prototype system [4]
ISIP using the same specification. The prototype syste
have been used to many application successfully includi
Switchboard (SWB) [5], CALL Home [5], Resource
Management (RM) [6] and Wall Street Journal (WSJ) [7].

The signal processing tools also combined with the decod
of ISIP production system. The TIDIGITS experiments we

 Figure 1: Signal processing configuration tool



ht
y

ils

op
e
nd

ay
er

ures.

nal
P

e-
e

to
e
he
ls

as
r

a
ker.
g
e a
nt

is
rd

g-
-
,

d
ni-
p.

n
g
te,
performed and got 100% correct result.

4. PROGRAMMING INTERFACES
All the libraries presented above were developed to fit the
requirements of the ISIP foundation classes (IFCs), which
are a set of C++ classes organized as libraries in a
hierarchical structure. Algorithm and signal processing
libraries are two important components for IFCs. IFCs are

targeted for the needs of rapid prototyping and lightweig
programming without sacrificing efficiency. Some ke
features include:

• unicode support for multilingual applications;
• math classes that provide basic linear algebra and

efficient matrix manipulations;
• memory management and tracking;
• system and I/O libraries that abstract users from deta

of the operating systems.

The IFCs environment provides support for users to devel
new approaches without rewriting common functions. Th
software interfaces are carefully designed to be generic a
extensible.

The signal processing library is also designed in such a w
that both the signal processing (front end) and recogniz
share the exact same code base and have the same feat

5. CONCLUSIONS
In this paper, we have presented an introduction to the sig
processing tools which provide general-purpose DS
functions and serve critical roles in developing state-of-th
art public domain speech recognition systems. Th
motivation for the development of such an environment is
provide the community with a toolkit that can accelerate th
process of developing new ideas and applications. T
signal processing tools provide users powerful visual too
describing algorithms and rapid prototyping any new ide
without any programming. It also fits to the ISIP recognize
well and provide simple front end for recognizer.

6. ACKNOWLEDGEMENTS
The original design of signal processing tools grew out of
series of discussions between R. Duncan and J. Hama
Significant improvements to the signal processin
configuration tool have been made by J. Wang. There ar
number of students and staff who have made significa
contributions to the design and implementation of th
software. We are deeply indebted to them for their ha
work to make this system a reality.

7. REFERENCES
[1] K. Huang and J. Picone, "Internet-Accessible Speech Reco

nition Technology," presented at the IEEE Midwest Sympo
sium on Circuits and Systems, Tulsa, Oklahoma, USA
August 2002.

[2] V. Mantha, R. Duncan, Y. Wu, J. Zhao, A. Ganapathiraju an
J. Picone, "Implementation and Analysis of Speech Recog
tion Front-Ends," Proceedings of the IEEE Southeastcon, p
32-35, Lexington, Kentucky, USA, March 1999.

[3] N. Parihar and J. Picone, “DSR Front End LVCSR Evaluatio
- Baseline Recognition System Description,” Aurora Workin
Group, European Telecommunications Standards Institu
July 21, 2001.

 Figure 2: MFCC front end block diagram



[4] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical
Search for Large Vocabulary Conversational Speech Recogni-
tion,” IEEE Signal Processing Magazine, vol. 16, no. 5, pp.
84-107, September 1999.

[5] R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The
ISIP 2001 Conversational Speech Evaluation System,” pre-
sented at the Speech Transcription Workshop, Linthicum
Heights, Maryland, USA, May 2001.

[6] F. Zheng and J. Picone, “Robust Low Perplexity Voice Inter-
faces,” http://www.isip.msstate.edu/publications/reports/
index.html, MITRE Corporation, May 15, 2001.

[7] S. Davis and P. Mermelstein, “Comparison of Parametric
Representations for Monosyllable Word Recognition in Con-
tinuously Spoken Sentences,”IEEE Trans. on Acoustics,
Speech and Signal Processing, vol. 28, no. 4, pp. 357-366,
Aug. 1980.


	Hualin Gao, Julie Baca and Joseph Picone
	Institute for Signal and Information Processing
	Mississippi State University, Mississippi State, MS 39762 USA
	{gao, baca, picone}@isip.msstate.edu
	Figure 1: Signal processing configuration tool
	Figure 2: MFCC front end block diagram

	Signal Processing Tools for speech recognition
	Abstract
	1.�� Introduction
	2.�� GUI-BASED signal processing TOOLs
	2.1�� Algorithm library
	2.2�� Signal processing configuration tool
	2.3�� Signal processing library and control tool

	3.�� experimental results
	4.�� programming interfaces
	5.�� conclusions
	6.�� AcknowledgeMENTS
	7.�� references
	[1] K. Huang and J. Picone, "Internet-Accessible Speech Recognition Technology," presented at the...
	[2] V. Mantha, R. Duncan, Y. Wu, J. Zhao, A. Ganapathiraju and J. Picone, "Implementation and Ana...
	[3] N. Parihar and J. Picone, “DSR Front End LVCSR Evaluation - Baseline Recognition System Descr...
	[4] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conver...
	[5] R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The ISIP 2001 Conversational Speech Evaluat...
	[6] F. Zheng and J. Picone, “Robust Low Perplexity Voice Interfaces,” http://www.isip.msstate.edu...
	[7] S. Davis and P. Mermelstein, “Comparison of Parametric Representations for Monosyllable Word ...



