SIGNAL PROCESSING TOOLS FOR SPEECH RECOGNITION?

Hualin Gao, Julie Baca and Joseph Picone

Institute for Signal and Information Processing
Mississippi State University, Mississippi State, MS 39762 USA
{gao, baca, picone}@isip.msstate.edu

ABSTRACT » competitive technology with maximum flexibility;
 unrestricted access via the Internet;

» well-documented APIs to facilitate new programming;
 an object-oriented software design.

Speech recognition systems generally include a number of
components such as digitizing speech, feature extraction and
transformation, acoustic matching, and language model-
based search. The development of such a system is a time- This paper discusses GUI-based tools that enable users to
consuming and infrastructure-intensive task. As part of an implement front ends by drawing block diagrams of signal
effort to build a fully-functional public domain speech processing functions. The tools are parts of core components
recognition system, signal processing tools used to extract of the production system. A brief description of low-level
feature vectors were developed by the Institute for Signal programming interfaces is also introduced later.
and Information Processing (ISIP). The_: tool_s_ were designed 2. GUI-BASED SIGNAL PROCESSING
to process general-purpose DSP functionalities and to act as TOOLS
one core part of ISIP speech recognition system. The design
goal of signal processing tools is to simplify the software Signal processing tools of the production system extract
development for researcher in both academic and industrial feature vectors from the speech data. Developing of
area. This paper discusses the design and implementation ofcompletely new signal processing tools is programming-
digital signal processing tools that generate feature vectors intensive task. The re-implementation of existing algorithms
from the speech signal. The tools are parts of the major from scratch has significantly delayed many researchers’
components of ISIP recognition system. efforts. The goal of the signal processing tools is to provide
1. INTRODUCTION users an efficient environment for the evaluation of new

research ideas.
A speech recognition system is a combination of knowledge
over several research areas such as digital signal processing,
natural language processing and machine learning[1]. With

The design requirements for these tools include:
« a library of standard DSP algorithms to provide basic

the evolution of technology, and the ever- increasing

complexity of speech recognition tasks, the development of
modern speech recognition systems becomes a time-
consuming and infrastructure-intensive task[2].

DSP functions;

 a block diagram approach to describing algorithms to
realize the rapid prototyping without programming;

« an ability to plug in new algorithm classes and func-

tions.
ISIP has focused on the development of a modular and

flexible recognition research environment which is referred The first requirement will provide a basic DSP tool to
to as a production system. The system contains many directly realize asingle algorithm such as windows, filters or
common features found in modern speech to text (STT) €nergy, with simple programming by building a algorithm
systems: signal processing tools that convert the signal to a object and calling its functions. This will also enable users
sequence of feature vectors, an HMM-based acoustic model to employ these fully tested standard DSP algorithm in their

trainer, and a time-synchronous hierarchical Viterbi decoder.

The key differentiating characteristics of this system
include[3]:

1.This material is based upon work supported by the National Sci-
ence Foundation under Grant No. EIA-9809300. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

own software.

The second requirement will provide a powerful tool to
directly realize a rapid prototyping of new ideas by using a
single algorithm or combining existing algorithms and their
data flow through block diagram without programming.

The third requirement will provide the ability to enhance the
system capability according to the new requirement of users
and to extend to new DSP areas.

Meeting the requirements above will allow users complete

control over all aspects of the signal modeling process, such
as algorithm selections, their sequence and internal
parameters for each algorithm.

To meet the requirements mentioned above, four
components were designed and implemented specifically,
algorithm library, signal processing library, signal

processing control tool and signal processing configuration
tool.

The procedure of the tools was to designed to work in this
way: First, users use the signal processing configuration tool
to specify the sequence of algorithms and their configuration
using a block diagram and save them to a file called a recipe
file. Second, the signal processing control tool takes the
speech data file and recipe file as input, parses the recipe file
using functions provided by signal processing library to get
the necessary information for each algorithm, applies the
corresponding algorithm functions of each algorithm to
processing input speech data by calling the correct method
in the algorithm library.

All these four components involved are
individually in the following three sub-sections.

introduced

2.1 Algorithm library

The algorithm library is the lowest level component of the

four components of the signal processing tools. It is a
collection of algorithms implemented as C++ classes. There
are two types of algorithms in this library. One includes

basic DSP algorithms and the other includes support
algorithms for high level manipulate data flow through block

diagrams.

Basic DSP algorithm library includes the most commonly
used algorithms, such as windows, filter, filter bank and
energy. These algorithms are designed to provide general-
purpose functionalities and users can use these fully tested
algorithms in their own software or as a tool to learn basic
DSP course. The algorithms which have been implemented
to date in this category include: energy, filter, filterBank,
window, cepstrum, fourier transform, spectrum, correlation,
covariance, prediction, reflection, log area ratio, calculus.
All those basic algorithms are the most widely used
algorithms and provide basic modules for building complex
front ends such as mel cepstra, perceptual linear prediction,
filterbank amplitudes and delta features[4].

Support algorithms are mainly designed to be used in ISIP
environment and help to increase the signal processing
ability in the tools. They are put into algorithm library
mainly because they are work in a similar way with basic
algorithms such as processing data stream.

Support algorithms provide primitive debugging tools and
the ability to manipulate feature streams. The algorithms in

this category which have been implemented include:

Constant: allows a mechanism for applying global constants,
such as the mean value of a signal, to a signal. This class is
used extensively to implement algorithms requiring mult-
pass processing.

Math: provides an ability to form weighted linear
combinations of functions of feature vectors. This class is
designed to provide maximum flexibility by supporting a
mini-scripting language for functional analysis. It gives the
front end a Matlab-like capability.

Statistics: used to compute means, variances, min, max, and
other global measures of the inputs. This class is used to
implement concepts such a mean normalization and
variance-weighting. Since this class accumulates global
values of its inputs, its interface is a little more complicated.
Most statistical computations are inherently non-real-time,
and require at least one complete pass over the data.

Connection: allows feature streams to be merged.

DisplayData: can be inserted anywhere in a signal flow
block diagram to display feature values to the console.

Mask: allows individual features, or groups of features, to be
selected from a stream.

Output: can be embedded in a recipe to output data to a file.
Generator: can be used to produce various types of signal.

CoefficientLabel: allows coefficient type of feature streams
to be renamed.

AlgorithmContainer: used to hide details of specific
components from the recipe processing software.

Each algorithm mentioned above provides multiple
implementation options, such as in window class there are
rectangular, blackman, bartlett, dolph_chebyshev, gaussian,
hamming, hanning, kaiser, lifter and custom window
options. Users can choose any one. At the same time, such
structures of implementation options were also designed to
expand easily and users can add new implementation for
each algorithm.

2.2 Signal processing configuration tool

A Java GUI tool called signal processing configuration tool
as shown in Figure 1 was developed to provide users a block
diagram approach to designing acoustic front ends. The Java
language was used to allow the tool to run across a wide
range of platforms (including Microsoft Windows), and to
give the tool an industry-standard look and feel.

The signal processing configuration tool was designed in
such a way that users can draw block diagrams and connect
each block using directed arc and configure each block in
the diagram and save all the block diagrams into a file called

=] Untitled

File Edit | Components

Input
Qutput
Calculus
Cepstrum |
Correlation
Constant
Covariance
DisplayData
Energy

Filter

FilterBank
FourierTransform
Generator
LogAreaRatio

il ask

r ath

Frediction
Reflection
Spectrurn
Statistics
Wi i oo

np

(

nd

5.

m
=

av

CoefficientLabel
Connection

Container

]

|
ion tool

>

Figure 1: Signal processing configurat

recipe file. Each block represents one algorithm which the

component classes. The components can be processed
uniformly. Such uniform structures and processing methods
will make sure the extensible for new algorithm and the new
algorithm can be plugged in easily.

3. EXPERIMENTAL RESULTS

The tests for the tools include two aspects: one is to show
how easy it is to construct block diagrams and save to a
recipe file. The other is to verify the correctness of the
computation results using the recipe file. We have
successfully built several complex front ends with this tool,
including an industry standard front end based on Mel-
frequency cepstrum coefficients (MFCCs) [5]. The signal
processing control tool supports multi-pass processing,
which allows non-real-time research ideas involving
complex normalization and adaptation schemes to be easily
implemented. The block diagrams as shown in Figure 2 are
constructed for MFCC with cepstral mean substraction and
energy normalization after getting cepstral mean and
maximum energy by using another recipe file. To construct
such block diagram is very easy. First, the user simply select
algorithms from submenu of components menu and put

user can specify to process data; each arc represents a datahem on the main panel. Then he connect them using the

flow from one algorithm to another algorithm. The format of
a recipe file can be recognized and used by the signal
processing control tool. The signal processing configuration
tool also organizes the element in the components menu
using a resource file. All algorithms appearing in the
component menu (as shown in Figure 1) of signal
processing configuration tool come from the resource file.
This feature makes any new algorithm easy to plug in to the
signal processing configuration tool by simply adding the
description of the new algorithm into the resource file
according to some predefined format. Users do not need to
modify the source code of the signal processing control tool
itself.

2.3 Signal processing library and control tool

The signal processing library was designed to manage the
signal process. It includes: parsing the recipe file specified
by users through the signal processing configuration tool;
keeping sychronization for different paths along the recipe
file; preparing input/output data buffer for each algorithm,
especially when the multiple frames data are needed such as
windows, calculus algorithm; scheduling the sequences of
required signal processing operations and processing data
through data flow defined by recipe file; managing
conversational data. Signhal processing control tool provides
some basic functionalities such as commandline parsing,
multiple recipe files and multiple speech source files
managing in one run. In this procedure, the work of signal
processing library is hidden to most users.

All algorithms used in the recipe file are wrapped into

submenu functions of edit menu. Third, the user right-click

the mouse and configure each algorithm according to the
predefined specification. Last step is to save these block
diagram to a recipe file. That's all need to do to create a
recipe file. The user is ready to use signal speech control
tool and the recipe file to process signal data.

The verification of computation is also perform extensively
to make sure the correctness of the algorithms.

For each single algorithm implemented for signal processing
it was fully tested using Matlab or manually to make sure it
works correctly.

The feature vector results by using the recipe files are the
same as the those from output from prototype system[6] of
ISIP using the same specification. The prototype system
have been used to many application successfully including
Switchboard (SWB)[7], CALL Home[7], Resource
Management (RM) [8] and Wall Street Journal (WSJ) [9].

The signal processing tools also combined with the decoder
of ISIP production system. The TIDIGITS experiments were
performed and got 100% correct result.

4. PROGRAMMING INTERFACES

All the libraries presented above were developed to fit the
requirements of the ISIP foundation classes (IFCs), which
are a set of C++ classes organized as libraries in a
hierarchical structure. Algorithm and signal processing
libraries are two important components for IFCs. IFCs are
targeted for the needs of rapid prototyping and lightweight
programming without sacrificing efficiency. Some key

[®] Untitled

File Edit Components

Inp
Wind —_—
Stat
tl ath

Filt Engy cons
wind —,
Spec
L——Ji——— Conn
Filg
Stat
Math
—ﬂ_ﬂﬂ_—

Zonn

sk [Cons

g

=
=
=

Cale

Ao
Conn

ot

4]

4 [EE

[»]

Figure 2: MFCC front end block diagral

features include:

 unicode support for multilingual applications;

* math classes that provide basic linear algebra and

efficient matrix manipulations;

e memory management and tracking;
» system and I/O libraries that abstract users from details
of the operating systems.

The IFCs environment provides support for users to develop
new approaches without rewriting common functions. The
software interfaces are carefully designed to be generic and
extensible.

The signal processing library is also designed in such a way
that both the signal processing (front end) and recognizer
share the exact same code base and have the same features.

5. CONCLUSIONS

In this paper, we have presented an introduction to the signal
processing tools which provide general-purpose DSP
functions and serve critical roles in developing state-of-the-
art public domain speech recognition systems. The
motivation for the development of such an environment is to

provide the community with a toolkit that can accelerate the

process of developing new ideas and applications. The
signal processing tools provide users powerful visual tools
describing algorithms and rapid prototyping any new ideas
without any programming. It also fits to the ISIP recognizer

well and provide simple front end for recognizer.

6. ACKNOWLEDGEMENTS

The original design of signal processing tools grew out of a
series of discussions between R. Duncan and J. Hamaker.
Significant improvements to the signal processing
configuration tool have been made by J. Wang. There are a
number of students and staff who have made significant
contributions to the design and implementation of this
software. We are deeply indebted to them for their hard
work to make this system a reality.

7. REFERENCES

[1] X. Huang, A. Acero, and H.W. Hon, Spoken Language Pro-
cessing - A Guide to Theory, Algorithm, and System Develop-
ment, Upper Saddle River, New Jersey, USA, 2001.

[2] M. Ordowski and N. Deshmukh, A. Ganapathiraju, J.
Hamaker, J. Picone, "A Public Domain Speech-to-Text Sys-
tem," Proceedings of the 6th European Conference on Speech
Communication and Technology, vol. 5, pp. 2127-2130,
Budapest, Hungary, September 1999.

[3] K. Huang and J. Picone, "Internet-Accessible Speech Recog-
nition Technology,” presented at the IEEE Midwest Sympo-
sium on Circuits and Systems, Tulsa, Oklahoma, USA,
August 2002.

[4] V. Mantha, R. Duncan, Y. Wu, J. Zhao, A. Ganapathiraju and
J. Picone, "Implementation and Analysis of Speech Recogni-
tion Front-Ends," Proceedings of the IEEE Southeastcon, pp.
32-35, Lexington, Kentucky, USA, March 1999.

[5] N. Parihar and J. Picone, “DSR Front End LVCSR Evaluation
- Baseline Recognition System Description,” Aurora Working
Group, European Telecommunications Standards Institute,

(6]

(7]

(8]

(9]

July 21, 2001.

N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical
Search for Large Vocabulary Conversational Speech Recogni-
tion,” IEEE Signal Processing Magazine, vol. 16, no. 5, pp.
84-107, September 1999.

R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The
ISIP 2001 Conversational Speech Evaluation System,” pre-
sented at the Speech Transcription Workshop, Linthicum
Heights, Maryland, USA, May 2001.

F. Zheng and J. Picone, “Robust Low Perplexity Voice Inter-
faces,” http://www.isip.msstate.edu/publications/reports/
index.htm| MITRE Corporation, May 15, 2001.

S. Davis and P. Mermelstein, “Comparison of Parametric
Representations for Monosyllable Word Recognition in Con-
tinuously Spoken SentenceslEEE Trans. on Acoustics,
Speech and Signal Processingpl. 28, no. 4, pp. 357-366,
Aug. 1980.

	Hualin Gao, Julie Baca and Joseph Picone
	Institute for Signal and Information Processing
	Mississippi State University, Mississippi State, MS 39762 USA
	{gao, baca, picone}@isip.msstate.edu
	Figure 1: Signal processing configuration tool
	Figure 2: MFCC front end block diagram

	Signal Processing Tools for speech recognition
	Abstract
	1.�� Introduction
	2.�� GUI-BASED signal processing TOOLs
	2.1�� Algorithm library
	2.2�� Signal processing configuration tool
	2.3�� Signal processing library and control tool

	3.�� experimental results
	4.�� programming interfaces
	5.�� conclusions
	6.�� AcknowledgeMENTS
	7.�� references
	[1] X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to Theory, Algorithm, ...
	[2] M. Ordowski and N. Deshmukh, A. Ganapathiraju, J. Hamaker, J. Picone, "A Public Domain Speech...
	[3] K. Huang and J. Picone, "Internet-Accessible Speech Recognition Technology," presented at the...
	[4] V. Mantha, R. Duncan, Y. Wu, J. Zhao, A. Ganapathiraju and J. Picone, "Implementation and Ana...
	[5] N. Parihar and J. Picone, “DSR Front End LVCSR Evaluation - Baseline Recognition System Descr...
	[6] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for Large Vocabulary Conver...
	[7] R. Sundaram, J. Hamaker, and J. Picone, “TWISTER: The ISIP 2001 Conversational Speech Evaluat...
	[8] F. Zheng and J. Picone, “Robust Low Perplexity Voice Interfaces,” http://www.isip.msstate.edu...
	[9] S. Davis and P. Mermelstein, “Comparison of Parametric Representations for Monosyllable Word ...

