
AN INTEROPERABILITY STUDY OF SPEECH ENHANCEMENT
AND SPEECH RECOGNITION SYSTEMS

Burhan Necioglu, Bryan George, George Shuttic Ram Sundaram and Joe Picone

??Lab Affiliation?? Institute for Signal and Information Processing
The MITRE Corporation Mississippi State University

McLean, VA 22102-3481 USA Mississippi State, MS 39762 USA
email: {necioglu, bgeorge, gshuttic}@mitre.org email: {sundaram, picone}@isip.mstate.edu
io
e
w
l
g
rg
al

y
ill
h

ly
ch
tia
nt
)
e

y,
n

th
ss
n
or
is
m
r a
ch
a

al
ort
h

le
er
d

hat
a

ce
by
e
ion

s
hm
ise
in
-
ed
r
d
f
D

ms
an
e
er
nd

HENPP BLock Diagram
ABSTRACT

Speaker-independent automatic speech recognit
(ASR) systems using Hidden Markov Modeling hav
evolved to the point where their performance is no
considered useful for military applications in tactica
environments. At the same time, signal processin
based speech enhancement techniques have eme
that have clearly demonstrated their ability to de
wi th no ise cond i t i ons in tac t i ca l m i l i t a ry
communications environments. In remote militar
information access applications, ASR systems w
have to be in teroperab le wi th such speec
enhancement techniques, thus it is crit ical
important to study the effects of tandeming spee
enhancement and ASR. This paper presents an ini
study of these effects in the context of the rece
DARPA SPeech In Noisy Environments (SPINE
evaluation, and suggests ways to improve th
performance of integrated speech enhancement.

1. INTRODUCTION

To achieve advantage from information superiorit
modern military forces are replacing manual, “huma
in the loop” approaches to information access wi
automated and highly distributed information acce
systems. In addition to automated access, a
solution that can operate “hands free” is desirable; f
this reason, information access using ASR
attractive. However, supporting a distributed syste
of speech recognition processors is not practical fo
large number of small units. “Server-based” spee
recognition, whereby speech is transmitted to
central location for processing, avoids the logistic
issues associated with fielding equipment to supp
ASR, but introduces the issues of bandwidt
consumption and security.
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Secure, narrowband voice communication is possib
using speech coding techniques operating und
16 kbps. However, to varying degrees narrowban
speech coders are subject to the assumption t
source signals are speech from a single talker. As
result, speech coders often exhibit poor performan
when presented with speech signals corrupted
noise in tactical environments. Historically, thes
problems have rendered remote speech recognit
for tactical military applications unrealistic.

Under DoD sponsorship, AT&T Research ha
recently designed a new noise preprocessor algorit
to enhance speech in the presence of tactical no
backgrounds. An overview of the system is given
Figure 1. The Harsh Environment Noise Pre
Processor (HENPP) algorithm [1] has been integrat
with the Federal Standard Mixed Excitation Linea
Prediction (MELP) 2.4 kbps speech coder [2], an
has been demonstrated to boost intelligibility o
coded speech spoken in the presence of Do
background noise conditions [3].

Speech enhancement and speech coding algorith
are designed to optimize the goal of human-to-hum
communication, rather than human-machin
communication. Before integrated human comput
interface systems using speech enhancement a
Figure 1: An overview of the noise preprocessor.
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coding can be successfully deployed, it will b
critically important to study and improve thes
components for interoperability with ASR system
This paper presents the results of our participation
the recent DARPA SPeech In Noisy Environmen
(SPINE) evaluation. In our system, the HENP
serves as a front-end signal processor. The AS
system is trained and tested using noisy speech a
baseline, then with speech processed with t
HENPP. We analyze the resulting changes
recognition performance.

2. SYSTEM OVERVIEW

The ISIP-ASR system used for the SPIN
evaluations is a public domain cross-word conte
dependent HMM-based system. It consists of thr
primary components: the acoustic front-end, HMM
parameter estimation module and a hierarchic
single- pass Viterbi decoder.

2.1. Acoustic Modeling

The decoder [4] is based on a hierarchica
implementation of the standard time-synchrono
Viterbi search paradigm. The system uses a comm
front-end that transforms the input speech signal in
mel-spaced cepstral coefficients appended with th
first and second derivatives. The evaluation syste
used the front-end to generate 12 FFT-derive
cepstral coefficients and log-energy. These featur
were computed using a 10 ms analysis frame an
25 ms Hamming window. First and second derivativ
coefficients of the base features are appended
produce a thirty-nine dimensional feature vector. Th
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features are made more robust to channel variatio
and noise by using side-based cepstral me
subtraction on the 12 base cepstral features

Training for the SPINE evaluations was performe
using an Expectation-Maximization based acous
optimizer that used Baum-Welch algorithm for robu
parameter estimation. The training algorithm
supports continuous-density Gaussian mixtu
models with diagonal covariances. To overcome t
problem of lack of t ra in ing data for al l the
context-dependent models, the system uses
maximum likelihood phonetic decision tree-base
state-tying. The states of models with simila
phonetic contexts are allowed to share data by tyi
them together.

2.2. Evaluation System

The evaluation system [5] for SPINE was trained o
side-based cms features from 10 hours of SPIN
training data. Initially training was performed on
context-independent models that were iterative
trained from a single mixture to 32 mixtures. Thes
were then used to generate phone level alignmen
Context-dependent models were seeded from sin
mixture monophones and further training was don
with state-tying. Mixture splitting was done using
iterative splitting and training scheme to generate 1
mixture word-internal models.

The SPINE lex icon and t r ig ram languag
model (LM) were provided by CMU. A bigram LM
was obtained by pruning all trigrams from the trigram
LM. The lexicon used by the system had a vocabula
    4 Mixture
     Splitting

xture

Tying
2-Mixture
Splitting

ls
Figure 2: In the SPINE evaluation.
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of 5226 words derived from the SPINE training dat
The bigram LM had 5226 unigrams and 1251
bigrams. Recognition was performed in single sta
by doing a bigram decoding of the test data usin
word-internal models. All the processing wa
performed at a real-time rate of 100x on a 600 MH
Pentium III processor.

The evaluation material consisted of a spee
database previously collected [6] during the selecti
process for the 2400 bps Federal Standard vocod
Conversations were recorded in sound boot
between col laborat ing user pairs who wer
communicating through various channels an
vocoders, and using different headsets while bei
subjected to pre-recorded noise types over lou
speakers . The t ra in ing da ta cons is ted
approximately 7.5 hours of speech from 10 speak
pairs, with four different noise types: AC, HMMWV,
Office and Quiet . The evaluat ion data wa
approximately 10 hours long, with 20 speaker pair
and two additional noise types: E3A and MCE.

3. RESULTS AND ANALYSIS

Using the available training and evaluation data, tw
recognition experiments were performed with th
baseline system, and the baseline system coup
with the HENPP front-end, i.e., both training an
evaluat ion data was subjected to noise pr
processing. The recognition experiments did n
utilize the noise type information for the conversatio
AC E3A HMMWV M

Substitutions:
Baseline
HENPP

26.96
27.61

29.68
30.14

27.16
25.99

Deletions:
Baseline
HENPP

27.48
31.08

27.18
31.37

15.58
16.92

Insertions:
Baseline
HENPP

21.51
14.82

9.74
6.24

4.64
5.21

Total Errors:
Baseline
HENPP

75.95
73.52

66.59
67.75

47.38
48.12
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sides. Conversation sides were pre-segmented us
an energy based speech detector algorithm.

The error statistics from the evaluation, broken dow
according to the six provided noise types are given
Table 1. Compared with the baseline system, HENP
front-end system decreased the number of correc
recognized words in almost all cases. Substitutio
errors were virtually the same except for MCE, an
Office, where baseline system was better. Deletio
errors were significantly better for the baselin
system in all cases. In term of insertion errors
HENPP front-end system either helped, or did n
hurt performance, including the Quiet conversation
Considering the total number of errors (or wor
accuracy), HENPP front-end seemed to do better th
the baseline for AC, performed virtually the same fo
E3A and HMMWV, and did poorly for MCE, Office
and Quiet.

Since only the type of noise was given without an
signal-to-noise ratio (SNR) information, it was no
possible to directly gauge the effect of the HENP
front-end on recognition performance as a function
the noise level present in a speech segment. For t
purpose, a blind SNR estimation algorithm wa
applied to the segmented conversation sides. Tabl
lists the statistics of the estimated SNR figures for a
six noise types in the evaluation database.

Following the SNR estimation of the pre-segmente
conversation sides in the evaluation data, a mo
CE Office Quiet All Noise All

31.27
33.57

21.46
23.07

20.62
21.96

27.18
28.20

26.03
27.10

20.85
26.64

17.90
21.19

17.57
20.61

21.90
25.77

21.13
24.86

9.35
6.16

5.00
4.06

3.72
3.03

10.12
7.23

8.99
6.49

61.47
66.37

44.36
48.32

41.92
45.60

59.20
61.20

56.15
58.45
Table 1: An analysis of performance by noise condition demonstrated that HENPP processing was effective for only one noise
condition (the shaded cell), even though the system produced measurable improvements in SNR.
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detailed analysis of the recognition experimen
results was done across the six noise types and f
SNR ranges for each noise type. When consideri
the number of correctly recognized words, in 18 o
the 24 cases (of noise type and SNR range), t
baseline system was significantly better, includin
some noisier cases such as AC. In the remaining
they were not significantly different. For substitutio
errors, the two systems were virtually identical in 2
of the 24 cases. The baseline was better in only o
case: MCE. Considering deletion errors, the basel
beat HENPP front-end system in 13 out of 24 case
including some noisier cases (AC, E3A, MCE, an
Office).

For the remaining 11 cases, the two system
performed virtually identical. In terms of insertion
errors, the HENPP front-end system performed bet
in 12 of the 24 cases (AC, E3A AWACS, and MCE
ranges), and the two systems performed virtually t
same for the remaining 12. Considering the tot
number of errors, or word accuracy, baseline syste
performed better in 7 of the 24 cases including som
noisier cases such as MCE. The two systems we
virtually identical in 16 cases, including some noisie
ones (AC, E3A and HMMWV). The HENPP front-
end system performed better in one case only: A
This was mostly due to the lower number o
insertions. In summary, compared to the baseline,
HENPP front-end system only helped in reducing th
insertion errors for half of the noise type/SNR rang
cases, and that by itself lead to a better word accura
only in one out of 24 cases (AC).
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4. CONCLUSIONS

This paper has presented an initial study about t
implications of using noise cancellation as
preprocessor to a state-of-the-art recognition syste
in a tactical communications environment. The nois
cancellation algorithm did not produce measurab
improvements in performance. Though the overa
results are discouraging, and this conclusion
consistent with findings of many studies over th
years, we believe the noise cancellation algorithm
performance can be improved. Such approaches
going to be essential for applications where you d
not have access to channel-specific training data.
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Table 2: An analysis of the noise conditions by SNR.

Condition Avg Min Max

AC 25.4 12.6 35.2

E3A 23.5 12.5 34.6

HMMWV 24.6 11.2 36.0

MCE 27.8 17.9 36.2

Office 31.8 24.0 42.7

Quiet 32.6 24.2 37.0
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