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Abstract

In this paper, we describe the use of a powerful machine learning
scheme, Support Vector Machines (SVM), within the framework of
hidden Markov model (HMM) based speech recognition. The hybrid
SVM/HMM system has been developed based on our public domain
toolkit. The hybrid system has been evaluated on the OGI Alphadigits
corpus and performs at 11.6% WER, as compared to 12.7% with a
triphone mixture-Gaussian HMM system, while using only a fifth of the
training data used by triphone system. Several important issues that arise
out of the nature of SVM classifiers have been addressed. We are in the
process of migrating this technology to large vocabulary recognition
tasks like SWITCHBOARD.
1. Introduction

Speech recognition can be viewed as a pattern recognition problem where we desire
unique sound to be distinguishable from all other sounds. Traditionally statistical mo
such as Gaussian mixture models, have been used to “represent” the various modalit
a given speech sound. The parameters of the Gaussians are estimated using a Ma
Likelihood (ML) criterion [1]. The ML formulation for the representation of the acous
space does not necessarily translate to better recognition performance since most
optimization effort is spent in learning the intricacies of the training distributions.

Extensions of the HMM learning paradigm involving discriminative training techniqu
such as Maximum Mutual Information (MMI) and Minimum Classification Error (MCE
attempt to estimate parameters using both positive and negative examples [2]. Th
they give consistent improvements in recognition performance, these technique
computationally very expensive and are, thus, limited to small vocabulary tasks.

2. Support vector machines

Classifiers are typically optimized based on some form of risk minimization. Empir
risk minimization is one of the most commonly used technique where the goal is to fi
parameter setting that minimizes the risk:
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where is the set of adjustable parameters and , are the expected output and

input, respectively. However, minimizing does not necessarily imply the b

classifier possible. For example, Figure 1 shows a two-class problem and
corresponding decision regions in the form of hyperplanes. All the hyperplanes ,

and achieve perfect classification and, hence, zero empirical risk. However, i

optimal hyperplane because it maximizes the distance between the margins and
thereby offering better generalization [4]. This form of learning is an example
Structural Risk Minimization (SRM) where the aim is to learn a classifier that minimize
bound on the expected risk, rather than the empirical risk [4]. SVM learning is base
this SRM principle.

The power of SVMs lies in their ability to transform data to a high dimensional sp
where the data can be separated using a linear hyperplane. The optimization proce
SVM learning therefore begins with the definition of a functional that needs to
optimized in terms of the parameters of a hyperplane. The functional is defined such t
guarantees good classification (if not perfect classification) on the training data and
maximizes the margin (e.g. the distance between H1 and H2 in Figure 1). The points
lie on the hyperplane satisfy,

(2)
where is the normal to the hyperplane and is the bias of the hyperplane from

origin. Let the training examples be represented as tuples

where  are the class labels. They satisfy the following constraints,

(3)

The distance between the margins can be shown to be [4]. The goal of
optimization process should be to maximize the margin. Posing this as a quad
optimization problem has several advantages and the functional can be compactly w
as,

α yi xi

Remp

C0 C1
C2 C0

H1 H2

w x⋅ b+ 0=
w b

N xi yi,{ } i, 1 … N, ,=

y 1±=

yi xi w⋅ b+( ) 1– 0≥ i∀

2 w⁄
Figure 1: 2-class hyperplane classifier example
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where the ‘s are Lagrange multipliers.

As observed previously, only a few training examples have an impact on the functi
and the optimal decision surface. This translates to the fact that, at the end o
optimization process, only a small percent of the training examples have non-
multipliers. These examples are called Support Vectors. Note that we have assume
the data are perfectly separable. This is not the case in most real data. This probl
handled by introducingslack variables into Equation 3:

. (5)

Note that the number of training errors can be characterized by .

We now have to address the need for learning classifiers that define non-linear de
regions. Notice that the linearity in the SVM design is manifested in the dot produ
Suppose we transform the data into a higher dimension space where the data is lin
separable. The theory we have developed thus far holds in this case. So one could en
replacing all ‘s with ‘s in the above formulation where the ‘s are in the hi

dimensional space. The theory of Kernel functions is used to avoid dealing directly
the high dimensional space and the excessive computations that result from
transformations [4,5].

Some of the commonly used kernels include,

(polynomial) (6)

(RBF). (7)
The final classifier takes the form,
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Figure 2: Hybrid system architecture



cided

y do
ble
e [3].
have

tion
of

stem
For

VMs
ods
VM
way

SVM
ng the
takes

rs,

ce the

the
on
each
t. To
nitial
le one

hone
ion, we
tion.
mpling
t ratio

our
ment
ng a
te on

— a
s are
(8)

where is the number of support vectors. The class to which a sample belongs is de

by the sign of .

3. Hybrid ASR system

One significant drawback in SVMs is that, they are inherently static classifiers — the
not implicitly model temporal evolution of data. HMMs have the advantage of being a
to handle dynamic data with certain assumptions about stationarity and independenc
Taking advantage of the relative strengths of these two classification paradigms we
developed a hybrid SVM/HMM system using our public domain speech recogni
toolkit [9]. The toolkit includes a cepstral front-end, a Viterbi decoder capable
generating and rescoring word-graphs and a Baum-Welch training module. This sy
provided all components for the HMM portion of the hybrid system architecture.
estimating SVMs we used a publicly available toolkit, SVMLight [6].

An important issue that had to be addressed in this hybrid system is the fact that S
output a distance measure, while the Viterbi decoding algorithm typically uses likeliho
or posterior probabilities. We therefore estimate a warping function that maps S
distances to posterior probabilities. There are several ways one could do this. One
would be to estimate the class-conditional densities based on the histogram of the
distances for positive and negative examples. A posterior can then be estimated usi
Bayes rule. A simpler approach to estimating the posterior is to assume that posterior
the form of a sigmoid, and directly estimate the sigmoid [10].

(9)

In order to avoid severe bias in the distances for the training data, the free paramete

and are estimated on a cross-validation set. Once we have the posteriors, we repla
Gaussians in the HMM system with the SVM classifiers.

4. Experimental system

Figure 2 shows the hybrid architecture used for the recognition experiments. Given
SVM classifiers and an HMM system one would first attempt to train the classifiers
frame level data and use them as the classifiers in each state of the HMM. Since
classifier is trained as a one-vs-all classifier, the amount of training data is significan
avoid burdening the quadratic optimizer, we chose to use segment-level data for our i
experiments. Using segment-level data also means that the HMMs we use are simp
state HMMs, though one could train classifiers for multi-state HMMs as well [7].

The HMM system is used to generate alignments at the phone level and each p
instance is treated as one segment. Since each segment could span a variable durat
need to use some form of sampling to arrive at a fixed length vector for classifica
Several methods have been attempted in this regard based on fixed and variable sa
techniques [11, 12]. One approach is to divide the segment into three regions in a se
and construct a composite vector from the mean vectors of the three regions. In
experiments we chose to follow empirical evidence and divide the frames in the seg
into three regions in a 3-4-3 proportion. Figure 2 shows an example for constructi
composite vector for a phone segment. SVM classifiers in our hybrid system opera
such composite vectors.

At decode time, we get the segmentation information using a baseline HMM system
cross-word triphone system with 8 Gaussian mixtures per state. Composite vector
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generated for each of the segments and posterior probabilities are hypothesized th
used to find the best word sequence using the Viterbi decoder. A better methodolo
follow would be to generate segmentations for the hypothesis in an N-best list and re
the list using the likelihoods generated by the SVMs [7].

5. Results

The hybrid architecture has been benchmarked on the OGI alphadigit corpus that
vocabulary of 36 words [8]. We used 29 phones to represent the pronunciations o
words, and therefore trained 29 SVM classifiers. The baseline HMM system was tra
on 39-dimensional feature vectors comprised of 12 cepstral coefficients, energy, delt
acceleration coefficients. The training set had 50,000 sentences averaging 6 wo
sentence. The SVM classifiers were trained using the composite feature vectors gen
for only 9000 training sentences. The test set was an open-loop speaker independ
with 1000 sentences. The composite vectors are also normalized to the range (-1
avoid convergence problems with the quadratic optimizer.

Table 1 shows the performance of the hybrid system in its various configurations.
system performs better than the baseline cross-word triphone HMM system wi
Gaussian mixture components per state which gives 12.7% WER on this dataset. Th
performance is achieved when the ratio of the segments in the composite feature ve
3-4-3 which is in agreement with our notion that most of the information in a 3-st
HMM is provided by the central state. From the results we also note that the RBF kern
typically better at classification than the polynomial kernels owing to its ability to mo
decision regions where one class encloses the other. In terms of resource usage the
systems have about 13000 unique support vectors. This is an order of magnitude les
the number of free parameters in the cross-word triphone HMM system.

6. Summary

In this work we have developed a paradigm for integrating SVMs into an HM
framework. The goal of this work was to augment HMMs with powerful classifie
SVMs, that are trained discriminatively. Results on the OGI Alphadigits data show tha
hybrid system gives a significant improvement (10% relative) over the baseline H
system while using only a fifth of the training data. We expect that extending this appr
to process N-best lists will give us further gains, especially in large vocabulary tasks
SWITCHBOARD. We are in the process of developing a method to convert varia
length feature vectors into a fixed length vector based on the sufficient statistics gene
using the Baum-Welch algorithm.
hh aw aa r y uw

k frames

region 1 region 2 region 3

mean region 1 mean region 2 mean region 3

0.3*k frames 0.4*k frames 0.3*k frames
Figure 3: Example of a composite vector construction
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polynomial kernel
RBF

kernel
order-4 order-6

1-1-1 13.2 13.6 12.8

3-4-3 12.1 13.4 11.6

2-4-2 13.1 13.5 12.5

Table 1: Performance of the hybrid system on OGI
alphadigits (numbers show percent word error rate)
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