What are the major goals of the project?

Two overarching goals were listed in the proposal: (1) explore the fundamental nature of the claimed quantum annealing behavior and confirm that a wide range of configuration options (Markov Random Fields) trained with a variety of application-relevant data) have this property of finding the so-called ‘difficult to find’ local valleys (LVs); (2) apply this behavior to Deep Graphical Models to achieve superior classification and pattern reconstruction accuracy.
There were three specific tasks outlined in the research plan: (1) confirm the LV-related QAC behavior for more complex graphs and datasets, (2) develop a hybrid classical quantum (HCQ) sampling algorithm, and (3) apply HCQ to contemporary machine learning problems.
We also proposed to focus on two extremely challenging machine learning (ML) tasks that have extensive experience with, and which are representative of “needle in the haystack” problems: (1) seizure detection on EEG signals, which involves learning effective temporal and spatial dependencies, and (2) automatic interpretation of digital pathology images, which involves analyzing extremely large high resolution images (50K x 50K pixels) by integrating local and global dependencies.
What was accomplished under these goals and objectives (you must provide information for at least one of the 4 categories below)?

Major Activities:

In the first year of this three-year project, we focused on Objective 1 and Tasks T1 and T2 of Objective 3 in the attached project timeline. Objective 1, which was executed by the Mississippi State University (MS State) team, focused on understanding the behavior of quantum annealing computers (QAC). Our primary target architecture was the D-Wave quantum computer. Specific activities included (1) classical training of RBMs, (2) classical search for local minima in the RBM energy function, (3) optimization of RBM embedding into the D-Wave hardware, and (4) RBM-based search for the ground state and the local minima.
MS State and Temple collaborated on Objective 3 and focused on (1) establishing reliable benchmarks using existing algorithms, and (2) running a series of diagnostic experiments.
Specific Objectives:

With respect to Objective 1, which was to confirm the behavior of the D-Wave quantum computer for graphs and datasets that are more complex than those explored in the pre-proposal work, we established these objectives: Task 1 – use D-Wave to find unfamiliar local valleys missed by even a prohibitively long classical search, Task 2 – separate the most promising of those local valleys by statistical analysis using a set of criteria, and Task 3 – statistically compare basins of attraction for otherwise similar local valleys concerning the size of their basins of attraction. 
We also began work on Task 1 of Objective 2 – develop a hybrid classical-quantum (HCQ) sampling algorithm for RBM training. The specific objective here was to develop an approach for embedding large-size graphs in the QAC hardware.

With respect to Objective 3, our goal (T1) was to define an experimental paradigm that was sufficiently rich to measure statistically significant differences in performance between algorithms, yet also something that can be reasonably computed on a quantum computer. We also established a family of diagnostic experiments (T2) that explored approaches to quantize floating-point data without a significant loss in precision.

Significant results:

Objective 1:

Our investigation confirmed observations from the latest publications in the field – the D-Wave quantum annealer improves the time-to-solution when doing its primary job – searching for the ground state. However, we are confirming our preliminary observation that this also means a deteriorated potential for using the D-Wave to obtain a representative, diverse sample from probability distributions. The preliminary criterion we used for the sample quality was the number of different local valleys found by the D-Wave compared to classical MCMC methods. Compared to our pre-proposal experiments on the Chimera D-Wave hardware, the Pegasus hardware consistently provides fewer local valleys compared to the classical search. 

[bookmark: _Hlk139719795]We considered a new hypothesis that a reduced annealing time while complicating the discovery of the ground state, should produce a more diverse sample. Experiments with the annealing time remain inconclusive; however, no apparent benefits have been observed. A more statistically reliable investigation will be required. 

Concerning the statistical analysis of the relative “importance” of the local valleys found by the classical vs. the D-Wave search, the results were qualitatively similar to what had been observed in the pre-proposal work on much smaller graphs. The good news was that most of those higher numbers of the local valleys found by the classical search but missed by the D-Wave are higher-energy, lower-probability (i.e., not representative) states. Concerning the states more critical for a high-quality sample, the D-Wave and the classical search miss many local valleys found by the other. This observation preliminary confirmed our central hypothesis explaining that the lack of significant improvements in the D-Wave-based training compared to the classical training, as reported by many research groups, preliminary supported the merits of our main focus on the hybrid classical-quantum training. 

Objective 2:

We developed procedures to use graph sizes of significantly higher dimensionality than in the pre-proposal work. The Pegasus architecture of the D-Wave allowed us to move from 64 RBM visible units and incomplete RBM connectivity to (currently) 144 visible units (pixels of the image) and complete RBM connectivity. 

Our approach to testing the adequacy of embedding was based on using classically trained (no use of QC) RBMs and applying the D-Wave to reconstruct the classification label by finding the ground state of a model with qubits corresponding to visible RBM units clamped to each of the training patterns. With proper optimization, we observed that the classification error was similar to that from the classical testing (without the D-Wave), which indicated sufficiently precise embedding. This embedding is ready for future experiments with hybrid classical-quantum RBM training algorithms. 

Objective 3:

There are three interesting results regarding Objective 3. To test the generalization abilities of our deep learning models, we used three synthetic balanced datasets of varying difficulty levels. These are summarized in the second attached image (data.pdf). These data sets were designed to test the generalization capability of a machine learning algorithm. Overtraining will result in poor performance on these sets.
We also demonstrated that linear 16-bit quantization of the floating-point values in these data sets does not reduce performance. Since a QC currently can only handle binary inputs, this allows us to map real data sets into a format conducive to QC experimentation.
Third, and most interestingly, our quantum-based model is able to capture the underlying structure of data more efficiently with a small amount of training data. By using only 2,000 data points for training, the QRBM model achieved an error rate of 21% on set no. 10, which is about 50% lower than the error rate of competing models. Compared to the alternatives, QRBM shows superior generalization capability.
In order to test the generalization capabilities of machine learning systems, three synthetic datasets were created using the Python-based open-source tool IMLD that we developed. In dataset number 8, the model is asked to identify an optimal non-linear decision surface based on three classes with complex distributions. Five tight equally spaced Gaussian distributions were used to generate dataset number 9. Gaussian noise was added to dataset #10 after the samples were manually created using IMLD.
We used the 16-bit binary encoding or representation mode for data. Every feature is represented using 16-bit binary data, with each bit representing a binary value (0 or 1). To obtain data in the linear 16-bit binary mode first need to determine the range of values that you want to encode. For example, all the features in set 10 are in the range of (-1.4, 1.4). This is because we need to ensure that your data falls within this range. The second step is dividing the range into 2^16 (65536) equal intervals. Each interval will represent a unique 16-bit binary value. Then map each feature to the nearest interval value and lastly convert the mapped values to their binary representation using 16 bits.
In general, Restricted Boltzmann Machines are not designed to do classification tasks. Hence, a clamp decoding approach is used for this purpose. In this method, the labels are first replaced with a 0 or 1, then a chain is constructed by decoding a number of times to converge to the correct label. Each time, the generated features of the data are replaced with the actual features, but the predicted label remains intact. For each data point, we capture the predicted labels after a few jumps and vote by the majority on all generated labels. In general, RBMs are used as classifiers in this manner. In addition, all other models, especially the QRBM model, were only given one chance to decode the eval set. 
In the last attached figure (qrbm_training.pdf), we demonstrate the generalization ability of the three models based on the number of data points used during the training process. Each point shows the performance of the models on evaluation set based on a balanced subset of training points. Since the data points are randomly selected and stochastic in nature RBM and QRBM the reported results are the average of multiple runs. Using only a small portion of the training data, QRBM achieves better performance and demonstrates the ability of the model to generalize. The model is more efficient in terms of using less than 10,000 data points as compared to the other two models. It is evident from the study that quantum computing-inspired models have the potential to revolutionize machine learning, particularly in situations where limited data availability poses a challenge. 

Key outcomes or other achievements:
We have integrated our deep RBM model into our machine learning visualization tool, IMLD. This makes it very easy to do back-to-back comparisons with other conventional algorithms.
We have developed the computing infrastructure, in Python, necessary to run local experiments and connect with the D-Wave cloud. This will allow us to consider much more complex algorithms and understand ways we can overcome the limitations in qubits that these machines have.

What do you plan to do during the next reporting period to accomplish the goals?
Finish Objective 1 – Confirm that the previously observed behavior of the D-Wave for graphs and datasets that are more complex than those explored in the pre-proposal work.  Specifically, concerning finishing Task 1 - conduct a more statistically reliable investigation of a possible benefit of a shorter annealing time on the D-Wave’s ability to find a larger than otherwise number of distinct high probability local valleys.
Finish Task 3 – statistically compare basins of attraction for otherwise similar local valleys concerning the size of their basins of attraction. Submit a journal manuscript to Quantum Information Processing. 
Continue working on Objective 2 - develop a hybrid classical-quantum (HCQ) sampling algorithm for RBM training. Specifically, finish Task 1 – develop an approach for embedding larger-size graphs in the QAC hardware. We have reasons to deprioritize Task 2 until the third year. Instead, we will prioritize work on Task 3 – develop training algorithms for RBM, based on a hybrid classical-quantum sampling algorithm to achieve improvements beyond the mere speed up of nondirected generative model training.
Regarding Objective 3, we have two main goals. First, we want to further understand and validate our primary result that the QRBM system requires less training data to find a good solution. We plan to re-run these experiments on more realistic data sets involving EEG and digital pathology (DPATH) data. We also need to look at how performance varies as a function of the number of training epochs.
Second, we need to implement more contemporary machine learning models that incorporate attention (e.g., transformers). Mapping these computationally intensive algorithms onto a quantum computer will be a challenge. We will start by working with our simulator, and then progressively migrate stages to the QC.
In terms of new tasks for Year 2, we will develop a set of baseline experiments on actual EEG and digital pathology data sets. Both of these data sets represent specific but different machine learning challenges. EEG data requires extremely long-term temporal context. DPATH data requires spatial context. We are investigating a number of recent machine learning models that efficiently encode long-term context. In the first quarter of the second year, we plan to complete a baseline implementation of these algorithms in Python, and then we will investigate how to map them into a QC. In the process, we will investigate optimization of the training process.

