

B.2 What was accomplished under the goals of the Main Project?
Goals Specific to Aim 2 in the main project: Automatically recognize critical concepts in an EMR: (1) EEG activities and their attributes, (2) EEG events, (3) medical problems, (4) medical treatments and (5) medical tests mentioned in the narratives of the EEG reports, along with their inferred forms of modality and polarity. When we considered the recognition of the modality, we took advantage of the definitions used in the 2012 i2b2 challenge on evaluating temporal relations in medical text. In that challenge, modality was used to capture whether a medical event discerned from a medical record actually happened, is merely proposed, mentioned as conditional, or described as possible. We extended this definition such that the possible modality values of “factual”, “possible”, and “proposed” indicate that medical concepts mentioned in the EEGs are actual findings, possible findings and findings that may be true at some point in the future, respectively. For identifying polarity of medical concepts in EEG reports, we relied on the same definition used in the 2012 i2b2 challenge, considering that each concept can have either a “positive” or a “negative” polarity, depending on any absent or present negation of its finding. Through the identification of modality and polarity of the medical concepts, we aimed to capture the neurologist’s beliefs about the medical concepts mentioned in the EEG report. Some of the medical concepts mentioned in the EEG reports that describe the clinical picture of a patient are similar to those evaluated in the 2010 i2b2 challenge, as they represent medical problems, tests and treatments, thus we could take advantage of our participation in that challenge and use many of the features we have developed for automatically recognizing such medical concepts. However, EEG reports also contain a substantial number of mentions of EEG activities and EEG events, as they discuss the EEG test.

In the third year of the project, the team from the University of Texas at Dallas has developed the ability to automatically infer missing and unspecified information from the EEG reports. More specifically, we developed inference methods capable to generate the impression sections and the clinical correlations sections. When these sections are absent from the EEG report, critical concepts are missing and cannot be indexed in the patient cohort retrieval system. After we generated the missing information, we used the Multi-task Active Deep Learning (MTADL) framework for annotating (1) EEG activities and their attributes, (2) EEG events, (3) medical problems, (4) medical treatments and (5) medical tests mentioned in the narratives of the reports, along with their inferred forms of modality and polarity. The MTDADL framework was developed in the second year of the project.
Inferring the over-all impression from EEG reports is a challenging problem because the over-all impression is informed by the neurologist’s subjective interpretation of the EEG recording as well as his or her neurological expertise and accumulated experience. In fact, automatically inferring the over-all impression requires accounting for the role of neurological knowledge and experience. Our deep learning model is able to automatically infer such knowledge by processing the natural language within EEG reports. The model operates in the following steps:
[Step 1] word-level features are automatically extracted based on their context by incorporating the skip-gram model popularized by the Word2Vec framework;
[Step 2] report-level features are automatically extracted using either (i) a deep averaging network (DAN), or (ii) a recurrent neural network (RNN); and
[Step 3] the most likely over-all impression is predicted from word- and report-level features through densely-connected “deep” neural layers.
When writing an EEG report, the neurologist typically documents their over-all impression of the EEG: whether it indicates normal or abnormal brain activity. However, this information is not always explicitly stated in the impression section of an EEG report and must sometimes be inferred by the reader. Figure 1 illustrates three EEG reports indicating (a) an over-all impression of NORMAL, (b) an over-all impression of ABNORMAL, and (c) an underspecified over-all impression. Note, in Figure 1, we have normalized the order and titles of the sections in each EEG report; in reality, however, we observed a total of 1,176 unique section titles in our collection. 
	INTRODUCTION: The EEG was performed using the standard 10/20 electrode placement system with an EKG electrode and anterior temporal electrodes. The EEG was recorded during wakefulness and photic stimulation, as well as hyperventilation, activation procedures were performed.
MEDICATIONS: Depakote ER

HISTORY: A 21-year-old man with a history of seizures since age 15. Has had five episodes since 2005, all tonic-clonic seizures with loss of consciousness lasting one to two minutes and postictal confusion. 

DESCRIPTION: The EEG opens to a well-formed 9 to 10Hz posterior dominant rhythm, which is symmetrically reactive to eye opening and eye closing. There is a normal amount of frontal central beta rhythm seen. The recording is only seen during wakefulness and he has normal response to hyperventilation and photic stimulation.



IMPRESSION: Normal EEG in wakefulness.




CLINICAL CORRELATION: This awake EEG is normal. Please note that a normal EEG does not exclude the diagnosis of epilepsy.
	INTRODUCTION: Digital video EEG is performed at the bedside using standard 10-20 system of electrode placement with one channel of EKG. The patient is sitting out of her bed. She is very confused and poorly cooperative.

MEDICATIONS: Keppra.

HISTORY:  An elderly woman with change in mental status, waxing and waning mental status, COPD, morbid obesity, and markedly abnormal EEG. Digital 3EG was done on June 27, 2011.
DESCRIPTION: Much of the EEG includes muscle artifact. When she Is cooperative, there is a theta pattern with bursts of frontal delta. Muscle artifact is remarkable when the patient becomes a bit more agitated. As she goes off to sleep, the deltas slowed considerably. There are handful of triphasic waves noted. Heart rate 84 BPM.


IMPRESSION: This is an abnormal EEG due to 1. Prominent versus frontally predominant rhythmic delta. 2 Excess beta. 3. Excess theta.
	INTRODUCTION: Digital video EEG is performed at bedside using standard 10-20 system of electrode placement with 1 channel of EKG. The patient is agitated.





MEDICATIONS: Keppra, Aricept, Senna, Aricept, ASA, famotidine
HISTORY: 84-year-old woman of unknown handedness with advanced dementia, failure to thrive, change in mental status, TIA, dementia.



DESCRIPTION: As the tracing opens, the patient has a lot of muscle activity. She seems to have facial twitching and grimacing and it almost looks like she has a suck or snout reflexes. Although the patient does not appear to interact with the physician in any way, this produces an alerting response with an increase in 5-7 hertz theta activity in the background. The overall background is 1 of shifting asymmetries with theta from side as with beta sometimes better represented on either side, shifting arrhythmic delta and intermittent, subtle attenuations in the background.  Following admission of the Ativan, the EEG becomes somewhat more discontinuous.
IMPRESSION: This EEG is similar to the 2 previous studies this year which demonstrated a slow background. Each recording seems to demonstrate an increase in slowing. The administration of Ativan produced a somewhat discontinuous pattern as may be anticipated in a patient with advanced dementia.
CLINICAL CORRELATION: No epileptiform features were seen.

	(a)
	(b)
	(c)

	Figure 1. Examples of EEG reports with (a) an over-all impression of NORMAL, (b) an over-all impression of ABNORMAL, and (c) an underspecified over-all impression which does not state whether the EEG was normal or abnormal.


When producing an over-all impression, the neurologist interprets the EEG signal as well as the patient’s clinical history, medications, and the setting of the EEG. For example, consider report (b) from Figure 1: determining that the EEG was abnormal required identifying, among other findings, the frontal delta rhythm, while in report (c) the impression involves the drug Ativan and the patient’s prior diagnoses of dementia. These examples show that automatically inferring the over-all impression requires accounting for high-level semantic information in EEG reports capturing the characteristics of the patient and the described EEG signal. Moreover, we observed that not all EEG reports included an impression section.
The UTD team developed an approach for automatically inferring the overall impression from an EEG report even when the impression section is omitted. To accomplish this, we combined deep neural learning with the largest collection of publicly available EEG reports – the Temple University Hospital (TUH) EEG Corpus. The TUH EEG Corpus contains 16,495 de-identified EEG reports generated at TUH between 2002 and 2013. We found that 15,313 reports contained a clear over-all impression, while 1,029 reports had a missing or underspecified over-all impression. To train and evaluate our model, we considered only the reports with a clear over-all impression and (1) identified the over-all impression (which was used as the gold-standard) and (2) removed the impression section from the report. This allowed us to design a deep neural network to predict the over-all impression for EEG reports without relying on the impression section. We used a standard 3:1:1 split for training, development, and testing. 
When designing our deep neural network, we noticed that the natural language content of each EEG report was far from uniform. The number of sections, the title of sections, the number of sentences in each section, and the lengths of each sentence all varied between individual neurologists and individual reports. Moreover, when describing an EEG recording, each neurologist wrote in a different style: while some neurologists preferred terse economical language, others provided meticulous multi-paragraph discussions. Thus, it was necessary to design the deep neural network to be independent of the length (and style) of the language used by the neurologist. Our approach for determining the over-all impression from EEG reports takes advantage of recent advances in deep learning in order to (1) automatically preform high-level feature extraction from EEG reports and (2) determine the most likely overall impression based on trends observed in a large collection of EEG reports. High-level feature extraction was performed automatically and was accomplished in two steps. In the first step, we learned word-level features for every word used in any EEG report. In the second step, we learned how to combine and compose the word-level features to produce high-level features characterizing the report itself.
Formally, we represent each EEG report as a tensor, , where  is the number of words in the report and  is the size of the vocabulary or number of unique words across all EEG reports in the training set (in our case, ). Each row  is known as a one-hot vector which indicates that the  word in the report corresponds to the  word in the vocabulary in by assigning a value of one to  and a value of zero to all elements. The overall impression of an EEG report (obtained from the removed impression section) is represented as  where . The goal of the deep neural network presented in this paper is to determine the optimal parameters  which are able to predict the correct assignment of  for a report :

where  indicates the training set of EEG reports. Unfortunately, determining the over-all impression directly from the words in each report is difficult. For example, spikes and sharp waves typically indicate abnormal brain activity but can be non-pathologic if they occur in the temporal regions of the brain during sleep: small sharp spikes in the temporal region of the brain during sleep are known as benign epileptiform transients of sleep (BETS) and do not indicate an abnormal EEG. Consequently, to correctly predict the overall impression , it is important to consider high-level features characterizing the content each report rather than individual words. We extract these features automatically as part of our deep learning architecture. Specifically, we factorize the distribution used in Equation 1 into three factors: 

The three factors in Equation 2 correspond to the three steps used to train our deep learning model:
(1) produce a high-level feature representation  of every word in , i.e. ;Figure 2. The skip-gram model used to learn word-level features for each word in an EEG report, shown on report (c) from Figure 1.

(2) create a single high-level feature representation  for the report itself by combining and composing the high-level feature representations of every word in the reporti.e. ; and 
(3) determine the most likely over-all impression  for the report based on its high-level feature representation , i.e. . 
Next, we will describe each of these steps in detail followed by a description of the training and application of our model to infer underspecified over-all impressions from EEG reports, as well as details on how model parameters were selected and the model parameters used in our experiments.

Learning Word-Level Features from EEG Reports
We determined a high-level feature representation for each possible word  by examining the context around that word in each report, where  is the size of the vocabulary (described above). To do this, we adapt the skip-gram model. The skip-gram model learns a single feature representation for every word in the vocabulary based on all of its contexts across all EEG reports in the training set. Specifically, we learn the projection matrix  where each row  is the high-level feature representation of the  word in the vocabulary. Figure 2 shows the architecture of the skip-gram model when considering the word EEG from the context Digital video EEG is performed (from report (c) in Figure 1). The goal of the skip-gram model is to learn the projection matrix  which, when multiplied with the one-hot vector for EEG, is best able to predict the one-hot vectors associated with each context word, e.g., Digital, video, is, and performed. In this way, the skip-gram model is able to learn a representation for the word EEG which captures the facts that (1) an EEG can be performed and that (2) digital video is a type of EEG. We learn the optimal project matrix  by training a separate neural network in which the input is every word  in every report , and the goal is to predict the  previous and  following words using the projection matrix : 
	
	
	(3)


where 
	
	
	(4)


In our experiments, we used . Learning the optimal projection matrix  allows the model to produce a high-level feature representation of every word in the report, , by simply multiplying  with : 
	
	
	(5)


where each  indicates the word-level feature vector associated with . The word-level feature vectors () learned by the skip-gram model have a number of useful algebraic properties. Of particular note is their ability to capture semantic similarity, for example, closest feature vector to the word generalized is that of the word diffuse, and the closest feature vector to focal is that of the word localized. This highlights the ability of the skip-gram model to capture the fact that both generalized and diffuse refer to activity spread across a large area of the brain (e.g. both hemispheres, multiple lobes), while focal and localized describe activity concentrated in one or two regions of the brain.
Learning EEG Report-Level Features
Representing each word in a report as an independent feature vector is not sufficient to predict the overall impression. Instead, it is necessary to learn how to combine and compose the word-level feature vectors  to create a single high-level feature vector for the report, . We considered two different neural architectures for learning . The first model is based on a Deep Averaging Network (DAN), while the second uses a Recurrent Neural Network (RNN). Both architectures enable the model to learn a semantic composition but in different ways. Specifically, a DAN learns an un-ordered composition of each word in the document, while an RNN learns an ordered composition. However, the representation learned by an RNN often struggles to account for long-distance interactions and favors the latter half of each document. Consequently, we evaluated both models in order to determine the most effective architecture for learning report-level features from EEG reports.
Deep Averaging Network for Inferring Underspecified Information. The Deep Averaging Network (DAN) learns the report-level feature representation  of a report based on its word-level features . To understand the need for report-level features, consider the excerpt:Figure 3. Architecture of the Deep Averaging Network (DAN) used to combine and compose word-level features  extracted from the EEG Report shown in Figure 1(c).

 …a well-formed 9 to 10Hz posterior dominant rhythm, which is symmetrically reactive to eye opening and eye closing. 
Interpreting  requires understanding (1) that the words posterior dominant rhythm describe a single EEG activity, and (2) that the posterior dominant rhythm is well-formed. Clearly, word-level features are not sufficient to capture this information. Instead we would like to extract high-level semantic features encoding information across words, sentences, and even sections of the report. The DAN used in our model accomplishes these goals using five layers, as shown in Figure 3. The first two layers learn an encoding of each word  associated with the report, and the third layer combines the resulting encodings to produce an encoding for the report itself. The final two layers refine this encoding to produce .  To learn an encoding for each word, we apply two densely-connected Rectified Linear Units (ReLUs). The rectifying activation functions used in ReLUs have several notable advantages, in particular the ability to allow for sparse activation. This enables learning which words in an EEG report have the largest impact the over-all impression. By using a ReLU for the first layer of our encoder, each word represented by feature vector  is projected onto an initial encoding vector . The ReLU used in the second layer of the encoder produces a more expressive14 encoding . Both encodings are generated as:
	
	
	(6)

	
	
	(7)


where  are the learned weights of the connections between the neurons in layers 1 and 2, and  are bias vectors. While the encoding  represents information obtained from each word vector , we are interested in producing a single representation that captures the information about the entire EEG report. This is accomplished by layers 3 through 5. In layer 3, the piece-wise average of all word vector encodings is produced:
	
	
	(8)


Layers 4 and 5 act as additional “deep” layers which enhance the quality of the encoding. To implement layers 4 and 5 we used two additional ReLUs:
	
	
	(9)

	
	
	(10)


where  are the learned weights and biases used by each ReLU layer. Equations 6 through 10 enable our model to generate a fixed-length high-level vector, , which encodes semantic information about the entire EEG report.
Recurrent Neural Network for Inferring Underspecified Information. In contrast to the DAN, the recurrent neural network (RNN) used in our model jointly learn how to (1) map a sequence of word-feature vectors (to a sequence of hidden memory states () as well as to (2) map the hidden memory states to a sequence of output vectors (), as illustrates in Figure 4. Formally, for each word  where  is the length of the EEG report:Figure 4. Architecture of the Recurrent Neural Network (RNN) used to combine and compose word-level features  extracted from an EEG Report, shown on report (c) from Figure 1.
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where  are the learned weights connecting the neurons in each layer. Unfortunately, RNNs are known to have difficulties learning long-range dependencies between words. For example, consider the excerpt:
 periodic delta with associated periodic paroxysmal fast activity identified from the left hemisphere with a generous field of spread including the centrotemporal and frontocentral region.  
A standard RNN would be unlikely to infer that the periodic delta activity was observed in the centrotemporal and frontocentral regions of the brain due to the significant number of words between them. In order to enable our RNLM to overcome this barrier, we implement each of our RNNs as a stacked series of long short-term memory units (LSTMs) which are able to learn long-range dependencies by accumulating an internal memory.



Inferring the Over-all Impression from EEG Reports
The learned high-level feature vector  is used to determine the most likely over-all impression associated with the EEG report. Given , we approximated the likelihood of assigning the over-all impression  to the EEG report associated with , i.e. , with a densely connected logistic sigmoid layer. The sigmoid layer computes a floating point number  such that  if , and  if :
	
	
	(13)


where  are the learned weights and bias vector for the sigmoid layer, and  is the standard logistic sigmoid function, . Equation 19 allows us to approximate the likelihood of the over-all impression  being assigned to the report associated with  as:
	
	
	(14)



Training the Model with EEG Reports
We trained our model by learning the parameters  which minimize the loss when computing the over-all impression  for each report  in the training set . In our experiments, we used the cross-entropy loss between the predicted over-all impression  and the gold-standard value  indicated by the neurologist (in the removed impression section). Formally:
	
	
	(15)


where  if , and zero otherwise. We trained our model using adaptive moment estimation (ADAM).
Inferring Underspecified Information from EEG Reports
The optimal over-all impression  for a new EEG report  can be determined in three steps: (1) transform  into a word-level feature matrix, , using the projection matrix  learned from the training data; (2) transform the word-level feature matrix  into a single report-level feature vector  using either the DAN or the RNN; and (3) determine the over-all impression  from the report-level feature vector .
Implementation Details
In our experiments, we implemented our model using Tensorflow (version 0.8). Because ADAM tunes the learning rate as it trains, we initialized ADAM using the default parameters in Tensorflow (learning rate , , , and ). For the purposes of our experiments, gradient clipping was not applied, and no regularization terms were added. Model parameters were determined using a grid-search as follows: skip-gram, ReLU. and LSTM dimensionality were chosen from . When performing grid search, we constrained all ReLUs to share the same dimensionality. We found the optimal dimensionality for the skip-gram embeddings, ReLU layers, and LSTM to each be  dimensions/units. 

For Aim2 of the project, the UTD team has also developed a novel Deep Section Recovery Model (DSRM) which applies deep neural learning on a large body of EEG reports in order to infer the expected clinical correlations for a patient based solely on the natural language content in his or her EEG report. The paper that reported on the DSRM approach received the Homer Warner award at the 2017 AMIA Symposium. The DSRM was trained and evaluated using the Temple University Hospital (TUH) EEG Corpus5 by (a) identifying and removing the clinical correlation section written by the neurologist and (b) training the DSRM to infer the entire clinical correlation section from the remainder of the report. At a high level, the DSRM can be viewed as operating through two general steps:
Step 1: word- and report- level features are automatically extracted from each EEG report to capture contextual, semantic, and background knowledge; and
Step 2: the most likely clinical correlation section is jointly (a) inferred and (b) expressed through automatically generated natural language.

[image: ]
Figure 5: Simplified Architecture of the Deep Section Recovery Model (DSRM).
Inferring the Clinical Correlation Section
When writing the clinical correlation section of an EEG report, the neurologist considers the information described in the previous sections, such as relevant clinical history or notable epileptiform activities, as well as their accumulated medical knowledge and experience with interpreting EEGs. This type of background knowledge is difficult to capture with hand-crafted features because it is rarely explicitly stated; rather, it is implied through the subtlety, context, and nuance afforded the neurologist by natural language. Consequently, to approach this problem, we present a deep neural network architecture which we refer to as the Deep Section Recovery Model (DSRM). Illustrated in Figure 5, the DSRM consists of two major components:
· the Extractor which learns how to automatically extract (a) feature vectors representing contextual and background knowledge associated with each word in a given EEG report as well as (b) a feature vector encoding semantic, background, and domain knowledge about the entire report; and
· the Generator which learns how to use the feature vectors extracted by the Extractor to produce the most likely clinical correlation section for the given report while also considering the semantics of the natural language it is generating.
In order to train and evaluate the DSRM, we identified all EEG reports in the TUH EEG Corpus which contained a CLINICAL CORRELATION section and removed that section from the report. The model was trained to recover the missing clinical correlation section in the training set and evaluated based on the clinical correlation sections it inferred for reports in the test set. In the remainder of this section, we describe (1) the natural language pre-processing steps applied to the data, (2) the mathematical problem formulation, (3) the Extractor, (4) the Generator, (5) how the parameters of the model are learned from the training set, and (6) how the learned parameters are used to infer the most likely clinical correlation section for a (new) EEG report.

Natural Language Pre-processing
Before applying the Deep Section Recovery Model, we pre-processed each EEG report with three basic natural language processing steps: (1) sentence boundaries were identified using the OpenNLP sentence splitter; (2) word boundaries were detected using the GENIA tokenizer, and (3) section boundaries were identified using a simple regular expression search for capitalized characters ending in a colon. These three pre-processing steps allowed us to represent each section of an EEG report as a sequence of words in which the symbols  and  were used to indicate the start and end of each sentence,  and  were used to indicate the start and end of each section, and  and  were used to indicate the start and end of each report.
Problem Formulation
In order to formally define the problem, it is necessary to first define the vocabulary as the set of all words observed at least once in any section (including the clinical correlation section) of any EEG report in the training set. Let V indicate the size or number of words in the vocabulary. This allows us to represent an EEG report as sequence of V -length one-hot vectors corresponding to each word in the report, i.e., R∈{0,1}N×V where N is the length or number of words in the report. Likewise, we also represent a clinical correlation section as a sequence of V -length one-hot vectors; in this case, S∈{0,1}M×V where M is the number of words in the clinical correlation section. The goal of the Deep Section Recovery Model is to infer the most likely clinical correlation section for a given EEG report. Let θ be the learn-able parameters of the model. Training the model equates to finding the values of θ which assign the highest probabilities to the gold-standard (neurologist-written) clinical correlation sections for each EEG report in the training set; formally:
		(16)
We decomposed the probability of a particular clinical correlation section being produced for a given EEG report (i.e., correctly identifying and describing the clinical correlations in the report) into two factors:
		(17)
where the first factor is implemented by the Extractor and the second factor is implemented by the Generator.
The Extractor
The language in the clinical correlation section is intended to relate findings and observations described in the previous sections of the record to the over-all clinical picture of the patient. Consequently, in order to automatically produce the clinical correlation section, the goal of the Extractor is to automatically (1) identify important neurological findings and observations (e.g., “background slowing”); (2) identify descriptions of the patient’s clinical picture (e.g., “previous seizure”); and (3) determine the inferred relationship(s) between each finding and the clinical picture as described by the EEG report or implied by medical knowledge and experience (e.g., “observed epileptiform activity is consistent with head trauma”). It should be noted that the length and content of each EEG report varies significantly throughout the collection, both in terms of the sections included in each report as well as the content in each section. Moreover, when producing an EEG report, each neurologist writes in a different style, ranging between terse 12-word sections to 600-word sections organized into multiple paragraphs. Consequently, the role of the Extractor is to overcome these barriers and extract meaningful feature vectors which characterize semantic, contextual, and domain knowledge. To address these requirements, we implemented the Extractor using the deep neural architecture illustrated in Figure 6. The Encoder relies on five neural layers to produce feature vectors for each word in the report (h1,···,hN) as well as a feature vector characterizing the entire report (e):
Layer 1: Embedding. The role of the embedding layer is to embed each word in the EEG report  (represented as a V-length 1-hot vector) into a K-length continuous vector (where ). This is accomplished by using a fully connected linear projection layer, , where  correspond to the vocabulary projection matrix and bias vector learned by the Extractor.
[image: ]Layer 2: Bidirectional Recurrent Neural Network. Layer 2 implements a bidirectional recurrent neural network (RNN) using two parallel RNNs trained on the same inputs: (1) a forward RNN which processes words in the EEG report in left-to-right order and (2) a backward RNN which processes words in the EEG report in right-to-left order. This allows the forward RNN to extract features capturing any short- or long-range contextual information about each word in R provided by any preceding words in the EEG report (e.g. that “slowing” is negated in “no background slowing”). Likewise, the backward RNN extracts features capturing any short- or long-range contextual information provided by successive words in the EEG report (e.g. that “hyperventilation” described in the introduction section may influence the inclusion of “spike and wave discharges” in the EEG impression or description sections). Formally, the forward RNN maps the series word embeddings  to a series of “forward” word-level feature vectors , while the backward RNN maps  to a series of “backward” word-level feature vectors . In our model, the forward and backward RNNs were implemented as a series of shared Gated Recurrence Units (GRUs).Figure 6: Detailed Architecture of the Extractor

Layer 3: Concatenation. The concatenation layer combines the forward and backward word-level feature vectors to produce a single feature vector for each word, namely,  where [x;y] indicates the concatenation of vectors x and y
Layer 4: 2nd Bidirectional Recurrent Neural Network. In order to allow the model to extract more expressive features, we use a second bidirectional RNN layer. This layer operates identically to the bidirectional RNN in Layer 2, except that the word-level feature vectors produced in Layer 3, i.e., , are used as the input to the bidirectional RNN (instead of  used in Layer 2). Likewise, the memory states produced in Layer 4 are denoted as   and , corresponding to the forward RNN and the backward RNN, respectively. Unlike the bidirectional RNN used in Layer 2, we use the final memory of the forward RNN (i.e. ) as the report-level feature vector e which will be used by the Generator.
Layer 5: 2nd Concatenation. As in Layer 3, the second concatenation layer combines the forward and backward word-level features vectors produced in the previous layer. In the case of Layer 5, however, we used the resulting feature vectors  as the word-level feature vectors which will be provided to the Generator.
The Generator
The role of the Generator is to generate the most likely clinical correlation section for a given EEG report using the feature vectors extracted by the Extractor. It is important to note that because the clinical correlation sections vary both in terms of their length and content, the number of possible clinical correlations sections that could be produced is intractably high (V MMAX where MMAX is the maximum length of a clinical correlation section). Consequently, we substantially reduce the complexity of the problem by modeling the assumption that each word in the clinical correlation section can be determined based solely on (1) the word-level feature vectors ,···, extracted by the Extractor, (2) the report-level feature vector e extracted by the Extractor, and (3) any preceding words produced by the Generator. This assumption allows us to define the probability of any clinical correlation section, S0, having been produced by a neurologist for a given EEG report (i.e., the second factor in Equation 2) as:
		(18)
To compute Equation 18, we designed the Generator to act as a type of Recurrent Neural Language Model (RNLM) which incorporates a Recurrent Neural Network (RNN) to produce one word in the clinical correlation section at-a-time while maintaining and updating an internal memory of which words have already been produced. 
[image: ][image: ]
	(a) Training Configuration	(b) Inference Configuration
Figure 7: Detailed Architecture of the Generator under (a) Training and (b) Inference Configurations.
To improve training efficiency, the Generator has two similar but distinct configurations: one for training, and one for inference (e.g. testing). Figure 3 illustrates the architecture of the Generator under both configurations. The primary difference between each configuration is the input to the RNN: when training, the model embeds the previous word from the gold-standard clinical correlation section (e.g. ) to predict  while during inference the RNN operates on the embedding of the previously generated word (e.g. ) to predict . The Generator produces the natural language content of a clinical correlation section for a given EEG report using four layers (with the preliminary embedding layer in the training configuration acting as an extra “zero”-th layer):
· Layer 0: Embedding. The embedding layer, which is only used when the Generator is in training configuration, embeds each word in the gold-standard clinical correlation section  (represented by V-length 1-hot vectors) into an L-length continuous vector space, , where . This is accomplished by using a fully connected linear projection layer,  where  correspond to the vocabulary projection matrix and vocabulary bias vector learned by the Generator.
· Layer 1: Concatenation. The first layer used in both configurations of the Generator is a concatenation layer which combines the embedded representation of the previous word with e, the report-level feature vector extracted by the Extractor,  where  indicates the concatenation of vectors x and y and  is defined as a zero vector.
· Layer 2: Gated Recurrent Unit. The second layer used by both configurations is a Gated Recurrent Unit (GRU). The GRU allows the model to accumulate memories encoding long-distance relationships between each produced word of the clinical correlation section, , and any words previously produced by the model. This is performed by updating and maintaining an internal memory within the GRU which is shared across all words in the clinical correlation section. We denote the output of the GRU as .
· Layer 3: Attention. In order to improve the quality and coherence of natural language produced by the Generator, an attention mechanism was introduced. The attention mechanism allows the Generator to consider all of the world-level feature vectors  produced by the Extractor for the given report, and learns the degree that each word in the EEG report influences the selection of (or aligns with) ; formally: 
such that  is an alignment vector used in the alignment model βij which determines the degree that the ith word in the EEG report R (represented by hi) influences the jth word of the clinical correlation section  (represented by ).
· Layer 4: Addition. The role of the fourth layer is to combine the result of the previous attention layer with the result of the GRU in Layer 2, i.e., 
· Layer 5: Softmax Projection. In order to measure the probability of each word  being produced for the given EEG report, we use a final softmax projection layer to produce a vocabulary-length vector sj(5) in which the vth element indicates the probability that  should be generated as the vth word in the vocabulary,  where , and . This allows us to complete the definition of Equation 3:
		(19)
Training the Deep Section Recovery Model
Training the Deep Section Recovery Model (DSRM) is achieved by finding the parameters  which are most likely to produce the gold-standard clinical correlation sections for each EEG report in the training set T. Formally, we model this by minimizing the cross-entropy loss between the vocabulary-length probability vectors produced by the model () and the one-hot vectors corresponding to each word in the gold-standard clinical correlation section ().
		(20)
The model was trained using Adaptive Moment Estimation (ADAM) (with an initial learning rate η=0.001).
Inferring Clinical Correlations
Given  learned from the training set, the clinical correlation section S can be generated for a new EEG report R using the inference configuration illustrated in Figure 3b. In contrast to the training configuration in which is selected using the previous word from the gold-standard clinical correlation section (), during inference, the model predicts  using the word previously produced by the model (). It is important to note that, unlike training, we do not know the length of the clinical correlation section we will generate. Consequently, the model continually generates output until it produces the END-OF-SECTION symbol . Thus, the length of the inferred clinical correlation section M is determined dynamically by the model. When inferring the most likely clinical correlation section, it is necessary to the convert the vocabulary probability vectors  to one-hot vocabulary vectors  that can be directly mapped to natural language.[footnoteRef:1] [1:  Let  is defined as the one-hot vector in which the  value is 1 and all other values are zero.] 




Goals Specific to Aim 3 in the main project: Retrieve patient cohorts from the EMRs that document their hospital visits. In the third year of the project, the team from the University of Texas at Dallas has enhanced the  Multi-Modal EEG Patient Cohort Retrieval system called MERCuRY  ( and acronym for Multi-modal EncephalogRam patient Cohort discoverY),  by incorporating a learning-to-rank methodology.
[bookmark: _Hlk509943629]In the third year of the project, the team from the University of Texas at Dallas has enhanced the MERCuRY system with learning-to-rank capabilities. Ranking of the patients in the cohort was essential in the usability studies performed with the MERCuRY system, as it enabled neurologist researchers to rapidly identify effective interventions for epilepsy accompanied by mental health comorbidities. However, not all the patients from the cohorts discovered by MERCuRY were relevant to the cohort criteria. Relevance judgements produced by neurologists indicated limitations of the system, but also provided important lessons that can be used for learning how to rank patients. Inspired by this observation, we designed a learning patient cohort retrieval (L-PCR) system using the publicly-available collection of electroencephalography (EEG) reports from the Temple University Hospital (TUH) EEG Corpus. Patient cohorts were recognized from the TUH EEG Corpus based on descriptions provided by practicing neurologists. Specifically, we trained and evaluated the L-PCR system using 30 cohort descriptions generated by four practicing neurologists. 
Unlike traditional patient cohort retrieval systems, such as MERCuRY, the L-PCR system uses a learning-to-rank approach for identifying patient cohorts that takes advantage of physician feedback. The learning-to-rank paradigm allows the L-PCR system to consider relevance judgments performed by clinicians to learn an improved patient relevance model used for retrieving and ranking patients for any given cohort descriptions.
The L-PCR system illustrated in Figure 8 includes five main components: 
· a query processing component processes a given cohort description  to produce a machine-readable query, ; 
· an EHR processing component produces an index of the narratives from the EHR collection; 
· a visit retrieval component retrieves a sub-set of “candidate” visits from the EHR collection, , to be ranked by the learning relevance model; 
· a feature extraction component extracts features vectors  corresponding to each candidate visit the relationship between the visit and the cohort description; and
· the learning relevance model uses a Random Forest (RF) classifier to infer the relevance scores  for each candidate visit  based on their associated feature vectors ; the RF is trained using the relevance judgments  provided by physicians. 

[image: ]Figure 8: Architecture of the learning patient cohort retrieval (L-PCR) system.
While the query processing was already developed for the MERCuRY in the previous years of the project, novel methods had tp be developed for the Electronic Health Record (HER) processing used by the L-PCR system.
Electronic Health Record Processing
Stream Processing. We unified indexing, searching, and feature extraction across the TUH EHR collection, by representing the EHR as a set of multiple, abstract streams of unstructured information. Each stream corresponds to one or more sections in the EHR collection. Conceptually, each stream acts as a “lens” that determines which sections of the EHR are considered during feature extraction and retrieval. The stream representation allows the L-PCR system to automatically account for the semantics of each stream, without the semantics being explicitly encoded. Figure 9 illustrates the streams used for each EHR collection available from the Temple University Hospital in the form of a big data EEG data. Processing streams of narratives from the EEG reports is important, because identifying patient relevant to a cohort description needs to take into account that a patient may have multiple hospital visits, which need to be assembled to determine the relevance of the patient to the cohort description.
Stream Indexing. To expedite feature extraction from the EHRs associated with each hospital visit, we separately indexed the content of each EHR collection using Apache Lucene. We used a tiered indexing approach in which each stream was indexed independently, allowing individual streams of each EHR to be retrieved during feature extraction and retrieval. No pre-processing was applied beyond tokenization with Lucene’s English Analyzer. 

[image: ]
Figure 9. Indexed Streams from EEG Reports (left) and Hospital Records (right).
Visit Retrieval
To reduce complexity and improve scalability of the L-PCR system, rather than extracting features from every EHR in the collection, we rely on a basic retrieval step to identify a high-recall set of “candidate’’ visits likely to be relevant to the cohort description. These candidate visits are obtained by constructing a query with Bag-of-Words (), expanding by All Expansions (), and identifying the top  ranked EHRs by the All Text stream (/) with the BM25 ranking function (in our experiments we used ). This allowed the set of “candidate” visits to be obtained by mapping the retrieved EHRs to their corresponding patient visits.
Feature Extraction 
Determining whether a “candidate” patient visit  is relevant to (i.e., satisfies the criteria from) a given cohort description  requires access to a rich set of features derived from (a) the cohort description , (b) the patient visit  and (c) the interactions between  and . To account for the variation between cohort descriptions, we considered multiple strategies for transforming  into queries. Let  represent the query obtained when using query construction method  and query expansion method . Likewise, we considered multiple strategies for representing the information encoded in each visit . Hence, we considered  the textual content provided by stream  of the electronic health record , and define  as the content of stream  from each report associated with visit . We produced a single feature vector  encoding information about  and  by extracting the 14 high-level multi-valued features listed in Table 1. 




Table 1: Features extracted for a cohort description  and hospital visit . Additional details for each feature are provided in Appendix E. represents the natural numbers,  represents the real numbers, and the exponent (if provided) indicates the dimensionality, or number of values produced by that feature in the resultant feature vector).
	
	Feature Description
	Domain of Values

	
	number of criteria detected in cohort description  with each construction method 
	

	
	number of terms in  for each  , and each expansion method 
	

	
	statistics of the normalized inverse document frequency (IDF) of  in each stream  for each .
	

	

	

	
	number of reports associated with 
	

	
	distribution of report types associated with 
	

	
	statistics of the number of words in each  for every 
	

	

	

	
	whether the age (if any) specified in cohort description  matches the age in any stream of any report 
	

	
	whether the gender (if any) specified in cohort description  matches the most frequently-mentioned gender in any stream of any report 
	

	
	whether the hospital status in cohort description  matches the hospital status in any stream of any report 
	

	
	statistics of the Dirichlet-smoothed language model similarity[37] (LM:Dir) between  and each  for every 
	

	
	statistics of the Jelinek-Mercer-smoothed language model similarity[37] (LM:JM) between  and each  for every 
	

	
	statistics of the BM25 similarity[38] between  and each  for every 
	

	
	statistics of the TF-IDF similarity[7] between  and each  for every 
	

	
	statistics of the term frequency (TF) between  and each  for every 
	

	



As shown, 10 of the 14 features illustrated in Table 1 are multivalued, i.e., consist of distinct values for each possible query representation  of  and each stream  of  (where applicable). Each of these values corresponds to a single entry in the resultant feature vector – i.e.,  corresponds to five entries in the generated feature vector. Moreover, Features ,  and - capture the distribution of feature values extracted for each component of the query () or for each report associated with the hospital visit (, -) using five aggregation methods (described below). Of note are features - which incorporate standard relevance models from information retrieval to measure the relevance between the criteria in   and each stream of visit .
Aggregation Methods. To capture the distribution of feature values obtained using different streams or for each report associated with a candidate visit, we considered five aggregating statics  =. 
The Learning Relevance Model
The role of the learning relevance model (LRM) is to infer a relevance score between every candidate visit  and the cohort description  using the feature vector  extracted above. This is accomplished by using the pairwise strategy of learning-to-rank. Given (1) feature vectors  associated with candidate visits  and (2) “gold-standard” relevance judgments  indicating the relevance of each candidate visit to , the Random Forest is trained to infer the scores  which result in the optimal ordering of hospital visits as indicated by . We investigated multiple learning-to-rank approaches when designing the Learning Relevance Model, including pointwise, pairwise, and listwise strategies. Specifically, we analyzed the performance of RankNet, RankBoost, AdaRank, Coordinate Ascent, LambdaMART, Multiple Additive Regression Trees (MART), ListNet, and Random Forests. We found Random Forests to obtain the best performance on a small held-out set of cohort descriptions. Although we investigated multiple sets of model parameters, we found no statistically significant change in performance when changing the ranking criterion (entropy vs Gini impurity), number of sampled features (, , or ), or maximum forest size (, , or ).  

Goals Specific to Aim 4 in the main project: Validate the usefulness of the patient cohort identification system by collecting feedback from clinicians and medical students. For each query, medical experts shall examine the top ranked cohorts for common precision errors (false positives), and the bottom five ranked common recall errors (false negatives). In a very fruitful collaboration, both the Temple University team and the UTD team have participated in the evaluation and validation of the patient cohort identification system implemented in the MERCuRY system. We have assembled 250 clinically relevant queries that are used by neurologists to evaluate the quality of the EEG reports/records considered relevant by the patient cohort retrieval system in its current form.  In addition, we have collected judgements of the patient cohorts through a secure-interface generated at UTD. We primarily evaluated the MERCuRY system according to its ability to retrieve patient cohorts with and without learning to rank. To this end, we generated a set of 100 evaluation queries. For each query, we retrieved the ten most relevant patients as well as a random sample of ten additional patients retrieved between ranks eleven and one hundred. We asked six relevance assessors to judge whether each of these patients belonged or did not belong to the given cohort. Moreover, the order of the documents (and queries) were randomized and judges were not told the ranked position of each patient. Each query and patient pair was judged by at least two relevance assessors, obtaining an inter-annotator agreement of 80.1% (measured by Cohen’s kappa).
This experimental design allowed us to evaluate not only the set of patients retrieved for each cohort, but also the individual rank assigned to them. Specifically, we adopted standard measures for information retrieval effectiveness, where patients labeled as belonging to the cohort were considered relevant to the cohort query, and patients labelled as not belonging to the cohort were considered as non-relevant the cohort query. Note that because our relevance assessments consider only a sample of the patients retrieved for each query, we adopted two measures of ranked retrieval quality: the Mean Average Precision (MAP) and the Normalized Discounted Cumulative Gain (NDCG). The MAP provides a single measurement of the quality of patients retrieved at each rank for a particular topic. Likewise, the NDCG measures the gain in overall cohort quality obtained by including the patients retrieved at each rank. This gain is accumulated from the top-retrieved patient to the bottom-retrieved patient, with the gain of each patient discounted at lower ranks. Lastly, we computed the “Precision at 10” metric (P@10), which measures the ratio of patients retrieved in the first ranks which belong to the patient cohort.

B.3 What was accomplished under the goals of the Supplement Project?

Goals Specific to Aim 3 in the supplement project: Defining Hierarchical epileptiform Activity Descriptors (HAD) for EEGs. After defining and designing a fine-grained hierarchy of activity descriptors last year, the team from the University of Texas at Dallas has proceeded to design an automatic methodology of discovering long-distance relations between concepts from the HAD identified in the same EEG report, e.g:
CLINICAL HISTORY: 55 year old man admitted for [change in mental status ]MEDICAL PROBLEM, with a past medical history of [GI bleed]MEDICAL PROBLEM, [anemia]MEDICAL PROBLEM [encephalopathy]MEDICAL PROBLEM, and others.
MEDICATIONS: [Pantoprazole]TREATMENT, [Folic Acid]TREATMENT , [Carvedilol]TREATMENT
INTRODUCTION: Digital video EEG was performed at the bedside using standard 10-20 system of electrode placement with 1 channel EKG.
DESCRIPTION OF THE RECORD: The background EEG is characterized by [slowing]EEG ACTIVITY  and [disorganization]EEG ACTIVITY. There is prominent shifting arrhythmic [delta activity ]1EEG ACTIVITY more prominent in the left mid to anterior temporal region. [Photic stimulation ]EEG EVENT generates scant [driving]EEG ACTIVITY.
IMPRESSION: Abnormal EEG due to:
1. Marked background [slowing]EEG ACTIVITY and [disorganization]EEG ACTIVITY
2. Some arrhythmic [delta activity ]1EEG ACTIVITY
CLINICAL CORRELATION: These findings are supportive of a [bihemispheric disturbance of cerebral function ]MEDICAL PROBLEM. These are nonspecific findings which can be seen in a toxic and metabolic [encephalopathy]MEDICAL PROBLEM and/or underlying [cerebrovascular disease ]2MEDICAL PROBLEM.
In the exemplified EEG report seven relations between HAD concepts need to be identified: 
(R1) [delta activity]EEG ACTIVITY Evidences[cerebrovascular disease]MEDICAL PROBLEM; 
(R2) [slowing]EEG ACTIVITY Evidences[bihemispheric disturbance of cerebral function]MEDICAL PROBLEM; 
(R3) [disorganization]EEG ACTIVITY Evidences[bihemispheric disturbance of cerebral function]MEDICAL PROBLEM; 
(R4) [bihemispheric disturbance of cerebral function]MEDICAL PROBLEMEvidences![encephalopathy]MEDICAL PROBLEM; 
(R5) [Pantoprazole]TREATMENTTREATMENT-FOR [GI bleed]MEDICAL PROBLEM; 
(R6) [Folic acid]TREATMENTTREATMENT-FOR[anemia]MEDICAL PROBLEM and 
(R7) [photic stimulation]EEG EVENTEvokes[driving]EEG ACTIVITY . 

Thus, in addition to the hierarchical relations incorporated in the HAD, we found necessary to discover three forms of relations between the concepts of the hierarchy, namely: EVIDENCES, EVOKES, and TREATMENT-FOR. 
The EVIDENCES relation considers (a) EEG events, EEG activities, treatments, and medical problems as providing evidence for (b) medical problems mentioned in the EEG report. The EVOKES relation represents the relationship where a medical concept evokes an EEG activity. EEG events, other EEG activities, medical problems and treatments can all evoke EEG activities. The TREATMENT-FOR relation links treatments to the medical problems for which they are prescribed. In addition, we made the decision to annotate relations between medical concepts, and not between their mentions in the EEG report. Because the same concept can be mentioned multiple times in the same EEG report, the representation of concepts achieved while pre-processing the EEG reports by (i) their normalized mention and (ii) their attributes made it possible to recognize co-referring mentions of the same concept by simply grouping concepts with the same normalized mention name and attribute values. Therefore, all co-referring mentions were considered a unique concept, and relations were annotated between unique concept pairs.


Goals Specific to Aim 4 in the supplement project: Automated Tagging of HADs in medical texts. 
We focused on the automatic identification of relations between pairs of HAD concepts automatically annotated in EEG reports, regardless of their presence in the same sentence, section or across sentences and sections of the report, has been made possible by a novel deep learning system that we designed and implemented in the previous year, namely the Multi-task Active Deep Learning (MTADL) paradigm. This year we developed the Memory-Augmented Active Deep Learning (MAADL) system, with the goal of identifying binary relations between HAD concepts, as designed in the Aim 3 of the supplement project. MAADL combines the strength of the Active Learning framework with the advantages of deep learning. While deep learning methods provide unprecedented performance in many tasks, active learning allows a deep learner to achieve this performance with less manually annotated training data, as it exposes the system to new examples on which its performance is still suffering. The paper that reported on the MTADL paradigm, authored by Ramon Maldonado, Travis Goodwin and Sanda Harabagiu, from the University of Texas at Dallas, received the AMIA Clinical Research Informatics Award at the 2018 AMIA Informatics Summit.

[image: ]
Figure 10: The Memory-Augmented Active Deep Learning (MAADL) system for automatically identifying relations between pairs of medical concepts in EEG reports

The identification of relations between medical concepts in MAADL, illustrated in Figure 10, uses the following five steps:
STEP 1: The development of an annotation schema for relations between medical concepts in EEG reports;
STEP 2: Annotation of relations between medical concepts in the initial training data;
STEP 3: Design of a deep learning method for detecting relations between medical concepts in the EEG reports;
STEP 4: Development of sampling methods for the MAADL;
STEP 5: Usage of the Active Learning system which involves:
STEP 5.a: Accepting/Editing annotations of sampled examples of relations between medical concepts in EEG reports;
STEP 5.b: Re-training the deep learning method and evaluating the re-trained system.

STEP 1: Annotation Schema for relations between pairs of medical concepts in EEG reports: The annotation schema has been developed in the Aim 3 of the supplement project.
STEP 2: Initial Relation Annotations: A set of 40 EEG reports with 198 EVIDENCES relations, 146 EVOKES relations, and 72 TREATMENT-FOR relations were manually annotated and used as the initial training data for the relation detection system. This set of EEG reports had previously been manually annotated with medical concepts and their attributes to ensure errors in concept/attribute detection did not affect relation detection.

STEP 3: Design of Deep Learning Architecture for the Memory-Augmented Active Deep Learning System: We designed a deep learning architecture, called EEG-RelNet, which provides an end-to-end detection of relations between medical concepts in each EEG report by using a neural network augmented with two types of memories: (i) a memory for each medical concept; and (ii) a memory for each relation between each pair of medical concepts. Moreover, the relational memory is dynamic as it changes to model the specific relations observed in each EEG report.

STEP 4: Active Learning Sampling Method: To improve the quality of the identified relations between medical concepts in EEG reports, as illustrated in Figure 10, an active learning loop is designed. In an active learning framework, the sampling method is used to automatically select examples of relations for human validation. Since this work is focused on relation detection between pairs of medical concepts, we chose a sampling method that only prioritizes relation detection performance. Therefore, we selected standard uncertainty sampling whereby EEG reports containing relations for which the model is most uncertain are selected for manual validation. The uncertainty of a report is measured at the report level by averaging the uncertainty of each relation classification decision in the report. The uncertainty of a relation classification decision is calculated using Shannon Entropy, ,  where   is a vector representing the probability distribution over possible relation types. These probability distributions are derived by EEG-RelNet from the learned dynamic relation memory, as shown in Figure 10.

STEP 5: Usage of the Memory-Augmented Active Deep Learning System: As shown in Figure 4, each iteration of active learning involves using the EEG-RelNet to make automatic relation annotations on the unlabeled EEG reports, selecting the most informative examples for manual validation, and re-training the EEG-RelNet using the new set of validated training examples.

EEG-RelNet: a Deep Learning Architecture for long-distance Relation Detection in EEG Reports While medical concepts (EEG activities, EEG events, medical problems, treatments and tests) are available in each EEG report, due to the preprocessing that was applied to the entire TUH EEG corpus, inference of the EVIDENCES, EVOKES, and TREATMENT-FOR relations between pairs of such concepts was produced through dynamic memories based on neural networks, capable to capture the implicit participation of each medical concept in a relation of interest. This was made possible because we developed the EEG-RelNet, a deep neural network architecture that operates on the full text of an EEG report considering all medical concepts identified in the report to detect relations of the type EVIDENCES, EVOKES, and TREATMENT-FOR between any pair of concepts. More specifically, given the full text of an EEG report and the set of medical concepts identified in that report, EEG-RelNet can predict whether there is relation of type , , between any pair of medical concepts  and  recognized in the report. To do so, EEG-RelNet processes the EEG report, one sentence at a time, reading its words, encoding the information from the sentence, processing the sentence information in the dynamic relational memory, and predicting each type of relation based on the dynamic memories after they have processed each sentence in the EEG report. The three modules of EEG-RelNet are:
· the Input Encoding Module which encodes information from the report at concept- and sentence-level embedding vectors, which are used throughout the deep learning architecture;
· the Dynamic Relational Memory Module which maintains and updates a set of hidden states called memories to capture accumulated information about each medical concept and potential relation in the EEG report;
· the Output Module which uses the updated memories to determine the most likely relations (and their types) between medical concepts in the EEG report.
In the remainder of this section, we provide a detailed description of each module of EEG-RelNet.

The Input Encoding Module. The role of this module is to learn (1) an embedding encoding each medical concept as well as each of its attributes and (2) an embedding encoding the information from each sentence in the EEG report. Formally, we represent an EEG report as a set of medical concepts,  and a sequence of sentences, . Each medical concept, is associated with several N-dimensional vectors called embeddings: (a) an embedding for the normalized concept name,  and (b) separate embeddings for each of its A attributes values . Thus, the embedding  for a medical concept is created by (1) concatenating the embedding for the name of the medical concept with the embedding for each of its attributes and (2) projecting this concatenated vector using a learned weight matrix , i.e. . In this way, each medical concept is represented by an embedding,  which is a vector in .

Participation of medical concepts in relations is informed by the context of each concept in the text of the EEG report. Contextual information is provided by the words of the sentence where the concept is mentioned, hence a representation of words from each sentence as is also desirable. Therefore, we learn an embedding  for each word  in a sentence, enabling us to represent each sentence as a sequence of embeddings  such that the elements of   occur in the same order as the words from the sentence. While the traditional choice for combining and composing the embeddings in  into a single sentence embedding would be a Recurrent Neural Network (RNN), we instead adopt a more recent and significantly more efficient strategy, namely a positional mask, such that the k-th sentence from the EEG report is represented as: , given that the sentence had m words, and the vectors  represent the learned positional mask while  is the element-wise product. It is important to note that the same vectors   are used when each new sentence is encoded and they are learned jointly with the other parameters of the deep learning model.

The Dynamic Relational Memory Module. Because EEG reports often contain long-distance relations between concepts we relied on a Dynamic Relational Memory (DRM) Module to keep track of the interactions between medical concepts in each report. The DRM accumulates information about medical concepts and the relations between them by processing each sentence encoded by the Input Module and updating a set of hidden states, called memories. Specifically, given a sentence embedding, , and the corresponding set of concept embeddings , there are two scenarios for each : (scenario 1): the medical concept  has not been mentioned in any previous sentence, thus its Concept Memory needs to be accounted for using a single, shared Concept Memory Cell; and (scenario 2): the concept  has been previously mentioned, and thus its corresponding Concept Memory needs to be updated. Moreover, since each medical concept  may participate in a relation, in (scenario 1), a unique Relation Memory needs to account for each relation in which the concept participates, whereas in (scenario 2) the corresponding Relation Memory needs to be updated. If an EEG report refers to d medical concepts, there will be d Concept Memory cells and  Relation Memory cells. The Dynamic Relational Memory (DRM) consists of the entire set of Concept and Relation Memories in an EEG report.

The Concept Memories are organized as a Key-Value Memory Network. Key-value paired memories are a generalization of the way context of concepts is stored in memory. In a Key-Value Memory Network, the lookup (addressing) stage is based on the key vector while the reading stage (giving the returned result) returns the value memory. Consequently, in EEG-RelNet, memory vectors are tied to so-called key vectors enabling the model to only update a memory vector when the input sentence has context that is relevant to the memory’s associated key vector. The dynamic relations memory model of EEG RelNet is illustrated in Figure 5.
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Figure 11: The Dynamic Relational Memory Module of EEG-RelNet. The Dynamic Relational Memory Module processes n sentences, updating a set of d Concept Memories and  Relation Memories for each sentence.
 
It is well known that when concept embeddings are used as key vectors, the associated memory vectors will accumulate information about those concepts. Consequently, in EEG-RelNet, concept embeddings are used as key vectors allowing the network to update each Concept Memory, , if an input sentence is relevant to the concept, .
The Concept Memory Cell, illustrated in Figure 12, is used to update a Concept Memory, , given a medical concept embedding,, and a sentence encoding, , via the following equations:
[image: ]

              (21)
 

Figure 12: Concept Memory Cell 


where ;  and  are trainable weight matrices in , is the inner product,   is the sigmoid function and   is a Parametric Rectified Linear Unit (PReLU). Equation 21 is a gating function that determines how much the k-th input sentence affects the i-th Concept Memory such that   values close to 1 indicate sentence  is relevant to medical concept  and values close to 0 indicate the opposite. Equation 22 defines the candidate Concept Memory that will be used to update the existing Concept Memory, , after it is scaled by as shown in equation 23.


As illustrated in Figure 11, when each sentence   is processed, the DRM uses and updates not only concept memories, but also a much larger set of relation memories. This is explained by the fact that, unfortunately, maintaining a single memory vector for each concept is not sufficient for modeling concepts that participate in multiple relations, especially when those relations involve concepts that are mentioned at significant distance in the EEG report. Thus, to model the interactions each concept has with each other concept in the same EEG report, we maintain a set of Relation Memories corresponding to each pair of concepts from the EEG report, , where   is the set of medical concepts in the EEG report. Each Relation Memory is updated using the Relation Memory Cell illustrated in Figure 13 via the following equations:
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Figure 13: Relation Memory Cell


where  and  are trainable weight matrices in . As in the Concept Memory Cell, the Relation Memory Cell uses a gating function (equation 24) and a candidate memory (equation 25) to update the Relation Memory in a way that reflects how relevant the input sentence, , is to the concept pair, . To compute the gate value , the Relation Memory Cell uses the two concept gate values, ; and  from the Concept Memory Cells for concepts  and , ensuring that input sentences that are relevant to either concept can be used to update the Relation Memory. By maintaining a memory vector for each pair of concepts and updating that memory vector as the model accumulates information across each sentence in an EEG report, thus the EEG-RelNet can be interpreted as constructing a local latent knowledge graph for each EEG report, where each Relation Memory represents a possible relation in the graph.

The Output Module. The output module makes use of the Dynamic Relational Memory updated after processing the last sentence in the EEG report to identify relations (and their types) between any pair of medical concepts from the report. The relation prediction,  between medical concepts  and  is produced by passing the Concept Memories associated with concepts  and  along with the Relational Memory  to two fully connected PReLU layers followed by a softmax layer: 
  


where  and  are learned weight matrices, and  is a Parametric Rectified Linear Unit.  is a probability distribution over 4 possible relations: the 3 relation types described in the annotation schema and a 4th type indicating no relation. Consequently, the relation (if any) detected between concepts  and  is given by .


B.4 What opportunities for training and professional development has the project provided?
Six PhD students have been advised for their research conducted for this project at University of Texas at Dallas. 

Travis Goodwin has defended his PhD thesis in March 2018, after 6 years of PhD studies in Computer Science at UTD, advised by Prof. Sanda Harabagiu. He has accepted a fellowship at NIH starting in June 2018. He participated in our project for the past three years, developing novel research in the area of multi-modal indexing, inference of underspecified information in the EEG reports and interaction of various factors in the EEG reports. In November 2017, he received the Homer Warner award at the 2017 AMIA Symposium for the paper co-authored with his adviser, Dr. Sanda Harabagiu, entitled “Inferring Clinical Correlations from EEG Reports with Deep Neural Learning”. Travis has also been working on defining the HAD tags under the supplement project. He has also worked on using deep learning methods for the automatic annotation of HAD tags as well for generating data-driven neural knowledge representations of the knowledge discerned from the EEG reports. He is also the co-author of a paper that received the AMIA Clinical Research Informatics Award at the 2018 AMIA Informatics Summit, in March 2018. The paper is entitled “Memory-Augmented Active Deep Learning for Identifying Relations Between Distant Medical Concepts in Electroencephalography Reports” with the authors: Ramon Maldonado, Travis Goodwin and Sanda Harabagiu. Travis has successfully submitted 23 conference papers and has received in 2016 the Best Student Paper Award at the ACM International Conference in Information and Knowledge Management (CIKM-2016), a major conference on knowledge managements and information retrieval. In addition, he has published four journal papers. These accomplishments exceeded Travis’s Individual Development Plans (IDPs).


Ramon Maldonado is a 3rd year PhD student in Computer Science at UTD, advised by Prof. Sanda Harabagiu, who has performed research on automatically identifying all medical concepts and recognizing the relations between them in the Temple University Hospital EEG data, in the form of EEG reports documenting 25,000 sessions and 15,000 patients collected over 12 years at Temple University Hospital. Ramon is a qualified PhD student, by passing a set of qualifying exams, while developing new techniques for his research, which is remarkable. He is the lead author on the paper entitled “Memory-Augmented Active Deep Learning for Identifying Relations Between Distant Medical Concepts in Electroencephalography Reports”, which has received the AMIA Clinical Research Informatics Award at the 2018 AMIA Informatics Summit, in March 2018. Ramon is also the lead authors of the paper entitled “Active Deep Learning-Based Annotation of Electroencephalography Reports for Cohort Identification”, which was nominated for Distinguished Paper Award at the 2017 American Medical Informatics Association Joint Summits on Clinical Research Informatics (AMIA-CRI).  Ramon has also been lead author on a paper published in the American Medical Informatics Association Annual Symposium (AMIA-2017) which introduced a novel form of medical knowledge, called medical knowledge embeddings, developed from the TUH corpus, in the form of EEG-MKE. The EEG-MKE have been described in the paper entitled “Deep Learning Meets Biomedical Ontologies: Knowledge Embeddings for Epilepsy”.   Moreover, Ramon was a co-author on a journal paper published this year in the Journal of Biomedical Informatics. These accomplishments meet Ramon’s Individual Development Plans (IDPs).


Stuart Taylor is a 2nd year PhD student in Computer Science at UTD, advised by Prof. Sanda Harabagiu, who has worked on the initial development of the active deep learning for annotating EEG reports. Stuart is a qualified PhD student, by passing a set of qualifying exams, while developing new techniques for his research, which is remarkable. He worked on the generation of queries for the evaluation of patient cohorts. Stuart has published a poster at the American Medical Informatics Association Annual Symposium (AMIA) in 2017 and submitted a full paper at the American Medical Informatics Association Annual Symposium (AMIA) in 2018. has plan on working on the recognition of HAD tags in biomedical texts.  These accomplishments meet Stuart’s Individual Development Plans (IDPs).

[bookmark: _GoBack]Pracheta Sahoo, Shasha Jin and SaraRouhani, are qualified PhD students in Computer Science at UTD, advised by Prof. Vibhav Gogate, who have participated in the project a few months this year to help with machine learning frameworks for deep learning and for evaluation of the results as well as to produce relevance judgements. They are part of the Statistical Relational Artificial Intelligence and Machine Learning Lab, led by Prof. Gogate at UTD. They have published papers in the AAAI conference. 




B.5 How have the results been disseminated to communities of interest?
If the overall award is not designed to
disseminate information to the public or conduct similar outreach activities, select "Nothing to Report." If there are individual components
designed to disseminate information or conduct outreach activities, report those activities under that component. Note that scientific
publications and the sharing of research resources will be reported under Products

B.6 What do you plan to do during the next reporting period to accomplish the goals?
Describe briefly what you plan to do during the next reporting period to accomplish the goals and objectives.
Discuss efforts to ensure that the approach is scientifically rigorous and results are robust and unbiased.

In the next few months of the project the UTD team shall re-index the patient cohort retrieval system for the latest release of the seizure data, when it becomes available from Temple University. We also plan to apply the Multi-task Active Deep Learning (MTADL) paradigm and the Memory-Augmented Active Deep Learning (MAADL) system on the new data ad create a new version of the EEG-MKE medical knowledge embeddings.
The UTD team plans to organize our data and software for public release and dissemination and to complete the final report for the project.
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