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Knowledge Representations and Inference Techniques

for Medical Question Answering

TRAVIS R. GOODWIN and SANDA M. HARABAGIU, University of Texas at Dallas

Answering medical questions related to complex medical cases, as required in modern Clinical Decision Sup-
port (CDS) systems, imposes (1) access to vast medical knowledge and (2) sophisticated inference techniques.
In this article, we examine the representation and role of combining medical knowledge automatically de-
rived from (a) clinical practice and (b) research findings for inferring answers to medical questions. Knowl-
edge from medical practice was distilled from a vast Electronic Medical Record (EMR) system, while research
knowledge was processed from biomedical articles available in PubMed Central. The knowledge automati-
cally acquired from the EMR system took into account the clinical picture and therapy recognized from each
medical record to generate a probabilistic Markov network denoted as a Clinical Picture and Therapy Graph
(CPTG). Moreover, we represented the background of medical questions available from the description of
each complex medical case as a medical knowledge sketch. We considered three possible representations of
medical knowledge sketches that were used by four different probabilistic inference methods to pinpoint the
answers from the CPTG. In addition, several answer-informed relevance models were developed to provide a
ranked list of biomedical articles containing the answers. Evaluations on the TREC-CDS data show which of
the medical knowledge representations and inference methods perform optimally. The experiments indicate
an improvement of biomedical article ranking by 49% over state-of-the-art results.
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1 THE PROBLEM

Physicians face in their everyday practice a variety of clinical decisions regarding the care of their
patients, for example, deciding the diagnosis, the test(s), or the treatment that they prescribe. Clin-
ical Decision Support (CDS) systems have been designed to help physicians address the myriad of
complex clinical decisions that might arise during a patient’s care (Garg et al. 2005). By leveraging
the fact that patient care is documented in electronic medical records (EMRs), one of the goals of
modern CDS systems is to anticipate the information needs of physicians by linking EMRs with
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Fig. 1. Examples of topics evaluated in the 2015 TREC CDS track.

Fig. 2. Architecture of a typical medical question answering system for clinical decision support.

information relevant for patient care, retrieved from the bio-medical literature. Recently, the spe-
cial track on Clinical Decision Support in the Text REtrieval Conference (TREC-CDS) (Simpson
et al. 2014) has addressed the challenge of retrieving bio-medical articles relevant to a medical case
when answering one of three generic medical questions: (a) “What is the diagnosis?”; (b) “What
test(s) should be ordered?”; and (c) “Which treatment(s) should be administered?” The TREC-CDS
track did not rely on a collection of EMRs, but instead it used an idealized representation of medi-
cal records in the form of 30 shortmedical case reports, each describing a challenging medical case.
The medical case reports were presented in two formats: (a) a narrative describing the fragments
from the patient’s EMRs that were pertinent to the case detailed description or (b) a summary of
the case. Medical case reports (in both formats) along with one of the generic questions were con-
sidered topics in TREC-CDS. Thus, systems developed for the TREC-CDS challenge were provided
with a list of topics and were expected to use either the medical case description or the summary to
answer the question by providing a ranked list of articles available from PubMed Central (Varmus
et al. 1999) containing the answers. As only one of the three generic questions was asked in each
topic, the expected medical answer type (EMAT) of the question was diagnosis, test, or treatment.
Figure 1 illustrates three examples of topics evaluated in the 2015 TREC CDS, one example per
EMAT. Figure 1 also illustrates the correct answer of each of the questions.

Most systems that participated in TREC-CDS used architectures similar to the one illustrated
in Figure 2. The topics were processed to discover terms or concepts that were used to generate
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a query. Queries were expanded to enhance the quality of retrieval enabled by a relevance model
operating on the index of the PubMed Central collection. Roberts et al. (2016) details the variety
of topic processing, query expansions, and relevance modes used by the various systems. Notably,
Roberts et al. (2016) also discusses the relations between the three types of expected medical an-
swers (EMATs), namely the diagnosis, the tests, and the treatments as well as the medical findings
pertaining to the difficult medical case addressed by the CDS topics. Figure 2 also illustrates these
relationships which influence the clinical decisionmaking process, as stated in Roberts et al. (2016).
Medical findings mentioned in the medical case description and/or summary require the inference
of a diagnosis (differential or confirmed) and require tests to be ordered, either preliminary or con-
firmatory. The tests may confirm the diagnosis, thus an additional relation exists between the tests
and the diagnosis. Treatments are dependent on both the diagnosis and the results of the tests. As
Figure 2 illustrates, the EMAT of a CDS topic cannot be considered in isolation, given the depen-
dencies between the three EMATs considered in TREC-CDS and the medical findings pertaining
to the medical case. Moreover, we believe that these dependencies should be further explored, an
insight that was not considered by any of the systems participating in the TREC-CDS.
In the research presented in this article, we extend the work reported in Goodwin andHarabagiu

(2016) by focusing on the medical knowledge representations that can be successfully considered
in medical question answering (Q/A). We contemplated knowledge representations in which the
EMATs of questions evaluated in TREC-CDS are considered along with additional medical con-
cepts, as well the connections shared by them. However, we constrained these representations to
take into account connections between medical concepts that are observed in medical practice and
thus are infer-able from a vast EMR collection. Moreover, we considered a probabilistic represen-
tation of the medical knowledge, in which answers to the medical questions like those evaluated
in TREC-CDS can be inferred instead of only being searched. Thus, we believed that by focusing
on medical knowledge representations and experimenting with inference methods operating on
them, we could not only find the optimal knowledge representations and inference methods for
medical Q/A, but we could also further improve the medical article retrieval results reported in
Goodwin and Harabagiu (2016), as it would allow us to produce new answer-informed relevance
models. Our belief that improved answer inferencemust lead to enhance article retrieval originated
from observations of results of the 2015 TREC-CDS.
In the 2015 TREC-CDS track a new task was offered, in which for questions having the EMAT
∈ {test; treatment}, the patient’s diagnosis was provided (shown in Figure 1). In this way, some
of the dependencies related to clinical decision were exposed. The results for this new task, as
reported in Roberts et al. (2015) were superior to the results for the same topics when no diagnoses
were provided. This observation led us to believe that medical knowledge related to the EMAT
can be considered as a partial answer to the medical question of the CDS topic. The results from
the evaluation of the new TREC-CDS task indicated that knowledge of a partial answer leads to
significantly improved retrieval of relevant bio-medical literature. Thus, we asked ourselves if (1)
we could automatically assemble medical knowledge that could provide partial answers for any
CDS topic; and (2) if we could in fact identify the answers to medical questions from the CDS
topics with acceptable accuracy, if such medical knowledge would be available. More importantly,
we wondered if we should first try to find the answer and then rank the relevant scientific articles
for any given medical question.
As first reported in Goodwin andHarabagiu (2016), it was clear to us from the beginning that an-

swer identification would be a harder problem, unless we could tap into a new form of knowledge
and consider answering the questions directly from a knowledge base (KB). Question answering
(Q/A) from KBs has experienced a recent revival. In the 1960s and ’70s, domain-specific knowledge
bases were used to support Q/A, e.g. the Lunar Q/A system (Woods 1973). With the recent growth
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of KBs such as DBPedia (Auer et al. 2007) and Freebase (Bollacker et al. 2008), new promising
methods for Q/A from KBs have emerged (Dong et al. 2015; Yao and Van Durme 2014; Bao et al.
2014). These methods map questions into sophisticated meaning-representations that are used to
retrieve the answers from the KB. However, we believe that when probabilistic representations of
the medical knowledge are available, medical Q/A from KB can achieve significant accuracy when
the inference methods take advantage of the various forms of medical knowledge. It is equally
important to capture the background of medical questions in medical knowledge sketches. We
considered three different forms of medical knowledge sketches that combine in different ways
the knowledge processed from the description of the medical case with knowledge processed from
clinical practice and medical research. Therefore, in this article, we expand the work originally re-
ported in Goodwin and Harabagiu (2016) by exploring three different possible medical knowledge
sketches and four different inference methods to discover which combination of knowledge rep-
resentation and inference approach produces optimal results of medical Q/A on TREC-CDS data.
The ability to cast the problem of answering medical questions for CDS topics as a Q/A from

KB problem depends on the availability of a large medical knowledge base in which the clinical
picture (comprising the medical findings and the diagnoses) and therapy (comprising the tests and
treatments) of a vast population of patients is captured. Moreover, in this medical knowledge base,
the dependencies between diagnoses, medical findings, tests, and treatments would be not only
available but also captured at the level of each patient and medical case, providing the knowledge
granularity required by the medical questions evaluated in TREC-CDS (as illustrated in Figure 2).
To our knowledge, no such knowledge base is readily available. Widely used medical ontologies
such as the Unified Medical Language System (UMLS) (Bodenreider 2004) and MeSH (Lipscomb
2000) encode a large number of medical concepts, but these ontologies do not relate medical con-
cepts to any specific medical case. We believe that a medical knowledge base that could inform
the medical questions asked in TREC-CDS should capture the knowledge documented in a vast
collection of medical records. For this purpose, we automatically generated a very large medi-
cal knowledge graph from a publicly available collection of electronic medical records (EMRs).
Because, as reported in Roberts et al. (2016), the medical case descriptions from the TREC-CDS
topics were generated by consulting the EMRs from MIMIC-II (Lee et al. 2011), we used all the
publicly available EMRs provided by MIMIC-III (a more recent superset of the EMRs in MIMIC-II)
to automatically generate a very large knowledge graph designed to encode knowledge acquired
from medical practice.
We organized the medical knowledge acquired from the EMR collection into a clinical picture

and therapy graph (CPTG), which informed, along with the medical knowledge sketches resulting
from topic processing, answer inference—the central component of the new medical Q/A system
illustrated in Figure 3. The answers, ranked by their likelihood, enable novel answer-informed
relevance models to produce a ranked list of relevant biomedical articles, based on the index of
PubMed Central.
In the architecture illustrated in Figure 3, the CPTG is automatically generated by (1) processing

the language from the narratives of medical records to identify medical concepts (and their asser-
tions); and (2) inferring probabilistically the connections between medical concepts. TREC-CDS
topics can be processed to discern medical concepts and their assertions in the same format as the
one used in the CPTG. By identifying (a) several forms of medical concepts including signs and
symptoms, diagnoses, as well as tests and treatments; and (b) the way in which they are asserted
(e.g. present, absent, possible, etc.), we considered a richer semantic representation of medical
knowledge that the one provided by the three EMATs on the medical finding discussed in Roberts
et al. (2015). Furthermore, in this article, we consider for the CPTG more complex representations
of connections between medical concepts than those discussed in Roberts et al. (2016). Answers
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Fig. 3. Architecture of our medical question answering system for clinical decision support.

inferred from the CPTG were evaluated against correct answers made available to all participants
in the 2015 TREC-CDS challenge. In addition, evaluations of relevant biomedical articles could be
performed for the new form ofmedical Q/A, first reported in Goodwin andHarabagiu (2016) and il-
lustrated in Figure 3. The results confirmed our intuition that it is not necessary to first discover rel-
evant biomedical articles from which the answers can be extracted (as was the case with previous
textual Q/A systems), but we could infer the answers directly from the CPTG (i.e., the medical KB)
and then discover the relevant articles that contained the already known answers to provide addi-
tional information and context for the answers. In the extended research reported in this article, we
explore the ideal knowledge representations of medical knowledge that can be used as well as the
ideal inference methods than can be considered in an medical Q/A system similar to the architec-
ture illustrated in Figure 3. Furthermore, we experimented with another lesson learned for textual
Q/A, namely to search for an answer in texts by preferring one paragraph at a time instead of the
entire document. Our experiments show that this lesson is not applicable tomedical Q/A, as knowl-
edge distilled only from one paragraph leads to inference of less accurate answers. This may be ex-
plained by the fact that scientific articles organize knowledge about a complex medical case across
multiple paragraphs, and thus the knowledge distilled from only one paragraph is insufficient.
In this article, we present the knowledge representations considered for medical Q/A used in

clinical decision support as well as the details of the probabilistic inference methods that were
used, providing the following main contributions:

1. A probabilistic representation of the medical knowledge processed from a vast EMR collec-
tion known as a Clinical Picture and Therapy Graph (CPTG). The CPTG is represented as
a Markov network which implements: (i) nodes for diagnoses, tests, treatments, symptoms
and signs; and (ii) factors for the connections between them;

2. Usage of assigned and latent random variables in the CPTG to account for medical concepts
explicitly expressed or inferable, respectively;

3. Using the likelihood of the automatically discovered answers to produce several novel
answer-informed rankings of the relevant scientific articles;

4. Locating the answers both at document- and paragraph-level and showcasing the impact
that paragraph indexing produces on the quality of article relevance; and

5. Designing, implementing, and evaluating a system for answering medical questions which
can consider (a) the three medical knowledge sketches as well as (b) four different proba-
bilistic inference methods for discovering answers from the CPTG.
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The remainder of the article is organized as follows. Section 2 details the new architecture for an-
swering medical questions. Section 3 describes the CPTG used for capturing the necessary medical
knowledge and details the probabilistic inference methods that were used for discovering answers.
Section 4 details themethods used for automatically generating the CPTG, while Section 5 presents
and discusses the experimental results. Section 6 summarizes the conclusions.

2 AN ARCHITECTURE FOR INFERRING MEDICAL ANSWERS

The design of a Q/A architecture that operates on TREC-CDS topics and provides both answers and
relevant biomedical answers from PubMed needs to take into account (a) the medical knowledge
base that informs the answer inference as well as (b) themultiple ways in which, once the answer is
discovered, new relevance models can identify and rank the relevant PubMed articles and compare
them to the relevance results obtained when the answers are ignored.

2.1 Inferring Answers for the TREC-CDS Topics by Using Medical

Knowledge Sketches

The cornerstone of our medical Q/A method used for clinical decision support (CDS) is the deriva-
tion of the answers to a topic’s question from a vast medical knowledge graph, generated auto-
matically from a collection of EMRs. The medical knowledge base contained approximately 634
thousand nodes and 14 billion edges, in which each node represents a medical concept (and its
belief value). We automatically identified four types of medical concepts: signs/symptoms, tests,
diagnoses, and treatments (as detailed in Section 4.1). However, identifying medical concepts is
not sufficient to capture all the subtleties of medical language used by physicians when expressing
medical knowledge. Medical science involves asking hypotheses, experimenting with treatments,
and formulating beliefs about the diagnoses and tests. Therefore, when writing about medical con-
cepts, physicians often use hedging as a linguistic means of expressing an opinion rather than a
fact. Consequently, clinical writing reflects thismodus operandiwith a rich set of speculative state-
ments. Hence, automatically discovering clinical knowledge from EMRs needs to take into account
the physician’s degree of belief by qualifying the medical concepts with assertions indicating the
physician’s belief value (e.g., hypothetical, present, absent) as detailed in Section 4.2. In Section
4, we describe the methods used to identify automatically medical concepts and their associated
assertions, reflecting the belief values of the physician that authored the clinical narrative. Section
3.1 details the estimations used in the CPTG, while Section 3.2 describes the inference methods
used for discovering the answers to TREC-CDS topics.
However, answers to the TREC-CDS medical questions need also to (1) account for the medical

knowledge expressed in the description and/or summary of TREC-CDS topics; and (2) be men-
tioned in relevant biomedical articles from PubMed Central. For the first desideratum, for any of
the TREC-CDS topics, t , a medical knowledge sketch Z1 (t ) was discerned. Z1 (t ) accounts for the
clinical picture and therapy of the complex medical case referred by the topic t and it consists of
medical concepts and their inferred assertions. The second desideratum constrained us to discover
only answers to the question from t that can also be observed in biomedical articles from PubMed
Central. Thus, to find such answers, for any biomedical document l (from PubMed Central) that
was relevant to the question from topic t , we considered the medical knowledge sketch Z2 (t , l ),
which combined Z1 (t ) with medical concepts (qualified by their assertions) recognized, l . We be-
lieve that Z2 (t , l ) accounts for a more complete view of a possible clinical picture and therapy of
a medical case than the one discerned only from the topic. This belief was strengthened by the
observation that the joint distribution estimated from the CPTG favors more common medical
concepts, whereas the topics evaluated in the TREC-CDS correspond to complex medical cases,
rather than common cases.
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Fig. 4. An architecture that implements three different cases for answering medical questions for clinical

decision support.

We also wondered if an alternative medical knowledge sketch, which adds to Z1 (t ) only qual-
ified medical concepts recognized within the same paragraph of biomedical documents relevant
to the topic would not enable the inference of better answers. Textual Q/A is known to produce
superior results when answers are extracted from paragraphs rather than documents (Harabagiu
and Maiorano 1999). Thus, we also build a medical knowledge sketch denoted as Z3 (t , s ) that adds
to Z1 (t ) only asserted medical concepts from a paragraph s , belonging to a biomedical document
from PubMed Central known to be relevant to the question of the topic t . In this way, we were able
to consider three forms of knowledge sketches, namely Z1 (t ), Z2 (t , l ), or Z3 (t , s ), for identifying
the answer to a TREC-CDS topic. If z ∈ {Z1 (t ),Z2 (t , l ),Z3 (t , s )} is any of the medical knowledge
sketches, then we could discover the most likely answer â to the medical question associated with t
by discovering the medical concept encoded in the CPTG, which, when combined with the sketch,
produces the most likely clinical picture and therapy. Formally,

â = argmax
a∈A

P (a |z) = P ({a} ∪ z)
P (z)

, (1)

where the set A denotes all the concepts in the CPTG with the same type as the EMAT of t , and
P (•) refers to the probability estimate provided by the CPTG.

2.2 Architecture of Medical Q/A System used in Clinical Decision Support

The architecture of the medical QA system that can be used in Clinical Decision Support (CDS) is
illustrated in Figure 4. We envisioned three cases or scenarios for using this architecture:

� Case 1 infers answers from the CPTG only and uses the answers to retrieve PubMed Central
documents relevant to the question implied by the topic’s EMAT (e.g.,what is the most likely

diagnosis/treatment/test?);
� Case 2 combines the advantages of a vast medical knowledge base (provided by the CPTG)

with the document relevance model to infer answers, which are later used by an answer-
informed relevancemodel (different from the one used in case 1) to identify PubMed Central
documents relevant to the question implied by the topic’s EMAT; and

� Case 3 combines the same medical knowledge base used in cases 1 and 2 with a paragraph
relevancemodel to infer the answers, which are later used by an answer-informed relevance
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14:8 T. R. Goodwin and S. M. Harabagiu

model (different from the ones used in cases 1 or 2) to identify PubMed Central documents
relevant to the question implied by the topic’s EMAT.

Details of each of these cases are provided below.

Case 1. In case 1, as illustrated in Figure 4, the topic is processedwithmethods detailed in Section
4 to discern the medical concepts mentioned in the topic’s description or summary and to discover
their assertions. Topic processing generates the medical knowledge sketch Z1 (t ), which is used to
produce the ranked list of answers RLA1 according to Equation (1) based on inference enabled
by the CPTG. Additionally, we designed an answer-informed relevance model to also identify the
ranked list of documents RLD1, relevant to themedical question from each topic.When a document
li from PubMed Central (retrieved from the document index), contains an answer Yi ∈ RLA1, we
defined the answer-informed relevance to the topic t by

Rel(li ) = P (Yi |Z1 (t )) ∝ P (Yi ∪ Z1 (t )). (2)

Equation (2) represents an answer-informed ranking of each scientific article li that contains an-
swers Yi from RLA1 based on the likelihood of the answers in the article, given the medical knowl-
edge sketch derived for the topic.

Case 2. In the case 2 illustrated in Figure 4, topic processing is also used to produce a query
(as described below), which can be further expanded, as it was typically done in the systems par-
ticipating in the TREC-CDS challenge (and illustrated in Figure 2). When processing the topic to
generate a query, deciding whether to use individual words or concepts is important. In TREC-
CDS, there were systems that used all the content words from the description to produce the
query, while other systems considered only medical concepts. Both the Unified Medical Language
System (UMLS) (Bodenreider 2004) and MeSH (Lipscomb 2000) were commonly used as ontologi-
cal resources for medical concepts. When generating the query, we opted to use medical concepts
rather than words and formed a disjunctive Boolean query by considering each medical concept as
a key phrase. When the query was expanded, additional medical concepts from UMLS that share
the same concept unique identifier (CUI) as any medical concept detected from the topic were
added. These concepts represent synonyms of the topic concepts; thus, the same assertion was
extended to them as well. It should be noted that some medical concepts (e.g., “heart failure”) or
their synonyms (e.g., “cardiac insufficiency”) are phrases rather than single words. Consequently,
the resulting expanded query consists of a list of key-phrases representing medical concepts. For
example, the initial Boolean query produced for Topic 33 (from Figure 1) would include “cardiovas-
cular disease” OR “shortness of breath” OR “tachypenea,” and so on, while the expanded Boolean
query would include “cardiovascular disease” OR “cardiovascular disorder” OR “CVD,” and so on.
The document relevance model illustrated in Figure 4 makes use of the expanded query, the in-
dex of the PubMed Central articles, and a document relevance model to retrieve a list L of 1,000
relevant documents. In the index, we used a snapshot of PubMed Central articles from January
21, 2014 containing a total of 733,138 articles that were provided by the TREC-CDS organizers.
In TREC-CDS, systems implemented a variety of relevance models, as reported in Roberts et al.
(2015), to generate the ranked list of relevant articles. We also experimented with several docu-
ment relevance models (discussed in Section 5) to retrieve the first 1,000 most relevant documents,
denoted as L. We used L to produce the medical knowledge sketch Z2 (t , l ), for each topic t and
relevant document l ∈ L.
A close inspection of the contents of the medical knowledge sketches Z2 (t , l ) indicated the

inclusion of many medical concepts obtained from scientific articles presented no relevance to
the topic. This reflects the fact that many of the scientific articles in PubMed Central discuss
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unexpected or unusual medical cases—often in non-human subjects. This created a serious
problem in the usage of the medical knowledge sketch Z2 (t , l ) to infer answers from the CPTG
to the question from a topic t . Specifically, because the likelihood estimate of an answer enabled
by the CPTG is based on the observed clinical pictures and therapies of patients documented in
the MIMIC clinical database, non-relevant scientific articles that contained common diagnoses,
treatments, tests, signs, or symptoms had a disproportionately large impact on the ranking of
answers. To address this problem, we refined the ranking of answers provided by Equation (1) to
incorporate the relevance of the scientific article l ∈ L used for generating the medical knowledge
sketch Z2 (t , l ). Thus, in case 2, we produced the answer ranking by using a novel probabilistic
metric, namely the Reciprocal-Rank Article Score (RRAS). RRAS considers for each article lr ∈ L:
(1) the conditional probability of the answer given the medical knowledge sketch Z2 (t , lr ); as
well as (2) the relevance rank, r of the article lr in L. Formally, the new ranking of answers to a
question associated with topic t generated by the RRAS metric is defined as

RRAS (a) =
1,000∑
r=1

1

r
· P (a |Z2 (t , lr )) =

P ({a} ∪ Z2 (t , lr ))

P (Z2 (t , lr ))
. (3)

The list of ranked answers, denoted as RLA2, was ranked by using the RRAS metric. The document
index was used to retrieve the set of PubMed Central documents that contain answers from RLA2.
These documents were retrieved by using a Boolean query that used a disjunction of all medical
concepts from Z2 (t , l ). However, this document set needed to be ranked to produce the ranked
list of documents RLD2, relevant to the medical question from each topic in case 2. We defined
a new, answer-informed relevance model, which ranked the documents from RLD2. Specifically,
when a document li from RLD2 contains answers Yi ∈ RLA2, the answer-informed relevance of li
to the topic t is provided by

Rel (li ) = P (Yi |Z2 (t , li )) =
P (Z2 (t , li ))

P (Z2 (t , li ) − Yi ) . (4)

In this way, the relevance of an article li responding to the question of a topic is computed by
comparing the likelihood of the medical knowledge sketch Z2 (t , li ), which includes the answers
found in the article li against the likelihood of a version of the medical knowledge sketch Z2 (t , li ),
which does not contain the answers found in the article.

Case 3. Finally, in case 3, answers are inferred from the CPTG using Z3 (t , s ). Thus, a new set of
answers are inferred (details of inference methods are provided in Section 3) and ranked in a new
answer list denoted as RLA3. In RLA3, ranking is provided by a Reciprocal-Rank Paragraph Score
(RRPS) defined as

RRPS (a) =
1,000∑
r=1

1

r
× max

sk ∈lr
P (a |Z3 (t , sk )) , (5)

where the article lr has the rank r in L and paragraph sk indicates the kth paragraph in article
lr . In the definition of the ranking metric RRPS used in RLA3, we took into account (a) the rank r
of the article from L that contained the answer; as well as (b) the most likely paragraph from the
same article that contained the answer. Furthermore, the ranking generated by RPPS on the list
of answers RLA3 was used by yet another answer-informed relevance model to produce RLD3, the
ranked list of documents from PubMed Central relevant to the question from a TREC-CDS topic.
The ranking in this list of articles is generated by

Rel (li ) = max
sk ∈li

P (Yi |Z3 (t , sk )) , (6)
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Table 1. Overview of the Different Medical Knowledge Sketches, Document Relevance

Models, and Answer Ranking Metrics Used in Each Case Illustrated in Figure 4

Case Sketch Document Relevance Model Answer Ranking Metric

Case 1 Z1 (t ) P (Yi |Z1 (t )) (Equation (2)) P (a |z) (Equation (1))
Case 2 Z2 (t ,d ) P (Yi |Z2 (t , li ) (Equation (3)) RRAS (a) (Equation (4))
Case 3 Z3 (t , s ) P (Yi |Z3 (t , sk ) (Equation (6)) RRPS (a) (Equation (5))

where Yi represents all answers from RLA3 found in an article ranked on position i of L. Because
not all answers from Yi may be found in each paragraph of the article li , the ranking favors the
articles that (a) contain most of the answers in a single paragraph; and (b) also contain most of the
concepts from the topic in the same paragraph.
In summary, the architecture illustrated in Figure 4 enabled us to usemedical Q/A in CDS system

in three different cases, summarized in Table 1. Each case generated a different list of ranked
answers (RLA1, RLA2, and RLA3, depending on the usage of medical knowledge sketches Z1 (t ),
Z2 (t , l ), or Z3 (t , s )) as well as a different list of relevant articles for each topic, namely RLD1, RLD2,
and RLD3, produced by three different answer-informed relevance models.

3 ANSWER INFERENCE

In this section, we first describe the ontological principles used in representing the medical knowl-
edge as a Markov network, a special form of probabilistic graphical models. We detail howmedical
concepts and their inferred assertions are represented, as well as how relations between the var-
ious medical concepts are considered. We present the way in which any combination of medical
concepts (including the medical knowledge sketches used for answering medical questions in the
architecture presented in Figure 4) can be represented such that answer inference can be achieved
through Equations (1)–(6). In the second part of the section, we describe four distinct inference
methods that were used for inferring answers to the TREC-CDS questions from the CPTG.

3.1 Medical Knowledge Representation in the Clinical Picture and Therapy Graph

The ontological framework introduced in Scheuermann et al. (2009) considers (1) the clinical pic-
ture of a patient, consisting of the medical problems, signs/symptoms, and medical tests that might
influence the diagnosis of the patient; and (2) the therapy of a patient, consisting of the set of all
treatments, cures, and preventions included within the management plan for the patient. Medical
language processing methods detailed in Section 4 enable us to discern from a vast EMR collection
the medical concepts that represent the clinical picture and therapy (CPT) mentioned in the nar-
rative of each medical record. Moreover, the methods described in Section 4 allow us to associate
with each medical concept an assertion value, indicating whether the medical concept is present,
absent, and so on (the full list of assertion values and their definitions is provided in Section 4.2).
Thus, a CPT lists the set of medical concepts from the same medical record, with each concept
having its own assertion. It is important to note that the CPT varies significantly between pa-
tients with the same disease (e.g., in one patient, a symptom may be present, whereas in another
absent) and often varies across different points in time for the same patient during the course of
their care (e.g., a patient that had fever present at some point, after a treatment with antibiotics,
the fever resolves and is asserted as absent).
The medical knowledge acquired automatically from the EMR collection was represented in the

CPTG such that each node corresponds to a medical concept observed in any CPT derived from
the EMR collection. We decided to represent the CPTG as a factorized Markov network (Koller and
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Friedman 2009) in which the nodes are partitioned into: (1) D representing all the diagnoses; (2) S
representing all the signs/symptoms; (3) E representing all the tests; and (4) R representing all the
medical treatments. It is important to note that factorized Markov networks encode knowledge
by using (i) statistical random variables and (ii) mathematical factors (or functions) measuring
the strength of the relationships between statistical random variables in the model. Hence, in the
CPTG, each medical concept (i.e., each node) is a binary random variable that is assigned the value
of 1 when the medical concept was asserted to be present, conducted, ordered, or prescribed,
a value of 0 if the medical concept was asserted as absent, and was left as a latent or unassigned
variable, otherwise.
Given a CPT derived from a medical record, it is important to note that (a) each medical con-

cept from the CPT has a random variable assigned to it; and (b) all the nodes from the CPTG not
recognized in the CPT are associated with latent variables, whose values can be later inferred dur-
ing answer inference. It is important to note that by relying on both assigned and latent random
variables, we enable the representation of any possible combination of medical concepts (and their
assertions), regardless of whether they were mentioned in the same electronic medical record or
not. Possible combinations of medical concepts include the three medical knowledge sketches that
we have considered in the architecture for answering medical questions that can be used in clinical
decision support, defined in Section 2.1, namely Z1 (t ), Z2 (t , l ), and Z3 (t , s ). All of these medical
knowledge sketches consist of medical concepts and their assertions. The probabilistic represen-
tation of any of these medical knowledge sketches consists of (1) random variables assigned to the
medical concepts identified in the sketch; and (2) latent variables corresponding to all the other
nodes from the CPTG.
Formally, a combination of medical concepts (and their assertions) is denoted by
C = D ∪ S ∪ E ∪ R, whereD ⊆ D indicates the random variables corresponding to the diagnoses
in C, S ⊆ S indicates the random variables corresponding to signs/symptoms in C, E ⊆ E indi-
cates the random variables corresponding to tests in C, and R ⊆ R indicates the random variables
corresponding to treatments in C. The estimation of the probability of any combination of medical
concepts (and their assertions) C is made possible once the factors of the CPTG (represented
as a Markov network) are defined. We defined ten factors. The first four factors are: ϕ1 (D), the
likelihood of a CPT (derived from a medical record) containing the diagnoses from D; ϕ2 (S), the
likelihood of a CPT (derived from amedical record) containing the signs/symptoms fromS; ϕ3 (E),
the likelihood of a CPT (derived from a medical record) containing the tests from E; and ϕ4 (R ), the
likelihood of a CPT (derived from a medical record) containing the treatments from R. In addition,
the CPTG encodes relations between medical concepts of different types. Six additional factors en-
able the probabilistic representation of these relations: (1)ψ1 (D,S), the strength of the correlation
between all the diagnoses in D and all the signs/symptoms in S; (2) ψ2 (S,E), the strength of the
correlation between all the signs/symptoms in S and all the tests in E; (3)ψ3 (D,E), the strength of
the correlation between all the diagnoses inD and all the tests in E; (4)ψ4 (D,R), the strength of the
correlation between all the diagnoses in D and all the treatments in R; (5)ψ5 (E,R), the strength of
the correlation between all the tests in E and all the treatments in R; and (6)ψ6 (S,R), the strength
of the correlation between all the signs/symptoms in S and all the treatments in R. It is to be noted
that, unlike knowledge graphs that typically encode binary relations, the factors used in the CPTG
correspond to hyper-edges representing n-ary relations between many nodes in the graph. Figure 5
illustrates the representation of the CPTG as a factorized Markov network in which each partition
of random variables D, S, E, and R is shown. Figure 5 also illustrates the representation of a
combination of medical concepts (and their assertions), C = D ∪ S ∪ E ∪ R. As such, the random
variables with assigned values in D, S, E, or R are represented as filled circles, whereas the
latent variables corresponding to nodes from the CPTG that are not present in C are represented
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Fig. 5. Factorized Markov network representation of the Clinical Picture and Therapy Graph (CPTG) and

the representation of any combination of medical concepts (and their assertions) C = D ∪ S ∪ E ∪ R in the

CPTG.

as empty circles. Figure 5 also illustrates the factor ϕ1 in D as an n-ary relation involving all the
assigned and latent variables inD. Similarly, factorsϕ2,ϕ3, andϕ4 encode n-ary relations involving
all the random variables in S, E, and R, respectively. Moreover, the factors ψ1, ψ2, ψ3, ψ4, ψ5, and
ψ6, which encode the n-ary relations between medical concepts of different types, are also shown.

The factorized Markov network representation of the CPTG illustrated in Figure 5 enables us to
compute the probability of any combination of medical concepts (and their assertions) C using:

P (C) = P (D,S,E,R ) ∝ϕ1 (D) × ϕ2 (S) × ϕ3 (E) × ϕ4 (R ) ×ψ1 (D,S) ×ψ2 (S,E) ×ψ3 (D,E)
×ψ4 (D,R ) ×ψ5 (E,R ) ×ψ6 (S,R ). (7)

The probability distribution provided in Equation (7) is determined by the product of the ten fac-
tors used in the factorized Markov network representation of the CPTG. Unfortunately, evaluating
any of these factors directly can be intractably expensive. For example, pre-computing ψ1 (D,S)
requires storing 2 |D |×|S | probabilities (or counts). Beyond computational complexity, an additional
problem arises from the inherent sparsity of clinical data: for a given combination of medical con-
cepts, it is very unlikely that the given combination may be reflected in the CPT of any patient in
the EMR collection, thus, the probability assigned to that combination would be zero. For exam-
ple, if the diagnoses in C areD = {[heart attack/present], [diabetes/present], [obesity/absent],
[pneumonia/possible]}, we may not find any patient documented in the EMR collection who has
all the diagnoses with the same assertions as inD. Consequently, we would infer the likelihood of
C as zero. If C were a medical knowledge sketch, then we would not find any answers to the med-
ical question of a TREC-CDS topic. To address this problem, we decided to consider EMRs with
narratives describing clinical pictures and therapies that are similar to C (e.g., any of the medical
knowledge sketches). To do so, we relaxed the maximum likelihood estimation requirements. This
allowed us to infer the ten factors used to compute P (C) using four methods: (1) exact inference,
(2) pair-wise smoothing, (3) interpolated smoothing, and (4) applying the Bethe free-energy ap-
proximation. When inferring the factors with the methods described in Section 3.2, we are able
to use Equation (7) to compute the probability of any given combination of medical concepts as
required for ranking both answers and scientific articles (Equations (1)–(6)).

3.2 Inference Methods

3.2.1 Exact Inference. The obvious approach for defining the factors used in the CPTG is to
perform exact inference based on maximum likelihood estimates (MLE). Specifically, we define
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the MLE of any combination of medical concepts, C, as

PMLE (C) = number of EMRs in the collection which contain C in their CPTs

the total number of EMRs in the collection
, (8)

which allows us to define each of the four ϕ factors as

ϕ1 (D) = PMLE (D) ϕ2 (S) = PMLE (S) ϕ3 (E) = PMLE (E) ϕ4 (R ) = PMLE (R ), (9)

and each of the sixψ factors as

ψ1 (D,S) = PMLE (D ∪ S) ψ2 (S,E) = PMLE (S ∪ E) ψ3 (D,E) = PMLE (D ∪ E),
ψ4 (D,R ) = PMLE (D ∪ R ) ψ5 (E,R ) = PMLE (E ∪ R ) ψ6 (S,R ) = PMLE (S ∪ R ). (10)

It is important to note that we discover a very large number of CPTs from the EMR collec-
tion, and hence the CPTG contains a significantly large number of diagnoses, signs/symptoms,
tests, and treatments. Therefore, computing Equation (8) entails either (a) pre-computing PMLE (C )
for every possible combination of medical concepts—requiring considering all 2 |D∪S∪E∪R | possi-
ble combinations—which is prohibitively expensive; or (b) computing PMLE (C) on-demand. This
alternative approach takes advantage of a bag-of-medical-concepts model. In the bag-of-medical-
concepts model, akin to the bag-of-word model used in vector space retrieval, we generated an
index that uses as a dictionary of all instances of qualified medical concepts processed from the
EMR collection, while the inverted list structures the linked lists of the CPTs that contain each in-
stance of a medical concept. This index is used to compute PMLE (C), when a conjunctive Boolean
query is formed with all components of C. The estimations of the factors from Equations (9) and
(10) are all produced by using the bag-of-medical-concepts model and the index of CPTs.

3.2.2 Inference with Pair-Wise Smoothing. While the exact inference method accurately esti-
mates the number of EMRs with CPTs containing a given combination of medical concepts, it
cannot account for sparsity. For example, if the combination C contains eight medical concepts,
although there may be CPTs in the EMR collection that have six or seven medical concepts in com-
mon with C, if no CPT in the collection contains all eight medical concepts in C with the same
assertions, then the MLE probability will be zero. To address this problem, we relax the maximum
likelihood estimates to better handle sparsity. By defining each factor as the product of the pair-
wise associations between all concepts C, we are smoothing the MLE of each factor. In this way,
the four same-typed factors (ϕ1 . . .ϕ4) can be assigned to the product of pair-wise MLE estimates:

ϕ1 (D) =
∏
d1∈D

∏
d2∈D/ {d1 }

PMLE ({d1,d2}), ϕ2 (S) =
∏
s1∈S

∏
s2∈S/ {s1 }

PMLE ({s1, s2}),

ϕ3 (E) =
∏
e1∈E

∏
e2∈E/ {e1 }

PMLE ({e1, e2}), ϕ4 (R ) =
∏
r1∈R

∏
r2∈R/ {r1 }

PMLE ({r1, r2}).
(11)

Likewise, the factorsψ1 . . .ψ6 can be similarly defined:

ψ1 (D, S) =
∏
d∈D

∏
s∈S

PMLE ( {d, s }), ψ2 (S, E) =
∏
s∈S

∏
e∈E

PMLE ( {s, e }), ψ3 (D, E) =
∏
d∈D

∏
e∈E

PMLE ( {d, e }),

ψ4 (D, R ) =
∏
d∈D

∏
r ∈R

PMLE ( {d, r }), ψ5 (E, R ) =
∏
e∈E

∏
r ∈R

PMLE ( {e, r }), ψ6 (S, R ) =
∏
s∈S

∏
r ∈R

PMLE ( {s, r }).

(12)
By using the pair-wise definitions from Equations (11) and (12), we estimate the joint distribution
in Equation (7).
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3.2.3 Inference with Interpolated Smoothing. The pair-wise smoothing method for answer
inference still suffers from sparsity problems: if the likelihood of any pair of medical concepts is
zero, then (as with the exact inference method), the joint probability will be zero. Moreover, the
pairwise approach cannot distinguish between the level of similarity between a given combination
of medial concepts (and their assertions) C and the CPTs used to generated the CPTG. For
example, if C contains eight concepts, and there are 50 EMRs that share seven concepts with C
but 200 EMRs that share only one concept with C, the 200 EMRs with only a single concept in
common would dominate the probability estimates. To account for this, we define the level of
similarity between two CPTs as the number of concepts contained in both CPTs (with the same
assertions). Thus, the levels of similarity range from perfectly similar (all |C| concepts in common)
to perfectly dissimilar (0 concepts in common). To account for each of these levels of similarity, we
interpolated the likelihood of C, with the likelihoods of all subsets of C. This would typically re-
quire enumerating all 2 |C | subsets of C and, thus, would appear to be computationally intractable.
Fortunately, as with the exact inference method, we can reduce the complexity to be linear in
the size of the EMR collection by using the same bag-of-medical-concepts model described in
Section 3.2.1.
Specifically, using the same index created for exact inference (described in Section 3.2.1), we

were able to compute the smoothed likelihood of a given combination of medical concepts C
through a series of constant-time Boolean retrieval operations. Formally, for each medical con-
cept (and its assertion) ci ∈ C, we construct a separate Boolean query consisting only of ci and
identify the EMRs in the collection that are returned by that query. This allows us to produce a
binary vector hi (for each ci ∈ C), which indicates which EMRs in the collection mentioned ci
(with the given assertion). We can determined the number of medical concepts in common (i.e.,
the level of similarity) between each EMR in the collection and C by computing the element-wise
sum over each of these binary vectors. We denote the element-wise sum asm =

∑
i hi . Usingm,

we can compute the number of EMRs in the EMR collection that have each level of similarity with
C. Formally, let nj indicate the number of EMRs in the collection that have a j level of similarity
with C. We computed nj by initializing n as a zero vector and then, for eachmk ∈m, incrementing
nmk

by one. This allows the smoothed likelihood of C to be estimated by interpolating the number
of EMRs at each similarity level (n0 . . .n |C |):

P (C) ∝ α · n |C | +
|C |−1∑
i=1

[
(1 − α )2|C|−i · ni

]
, (13)

where α ∈ [0, 1] is a scaling factor that determines how much smoothing is applied: When α = 1,
no smoothing is applied and Equation (13) reduces to the exact probability estimation (given in
Section 3.2.1); when α = 0, the exact probability estimation is ignored and only the interpolated
similarity counts are used. In our experiments, we used α = 0.5.

3.2.4 Bethe Free-Energy Approximation. Finally, we considered state-of-the-art methods
for approximate inference. In contrast to the three previous approaches for answer inference,
approximate inference guarantees a constant upper bounds on the error between the approximate
probability and the true probability of each factor. The canonical example of an approximate
inference algorithm is that of Loopy Belief Propagation (Pearl 1986), wherein variables and factors
repeatedly exchange messages until convergence, at which point, the full joint distribution can be
estimated. However, recent work has considered interpreting the distribution of a set of random
variables as the information energy present in a physical system. In this setting, the distribution
of all possible clinical pictures and therapies given in Equation (7) is cast as the energy J :
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J (C) = log
4∏
i=1

ψi (C)
6∏
j=1

ϕ j (C). (14)

This allows us to then define the “Free Energy” of the system as follows:

F (C) = U (C) − H (C) =
energy︷�����︸︸�����︷

P (C) J (C) −
entropy︷�����������︸︸�����������︷

P (C) log P (C), (15)

where U (C) is the energy and H (C) is the entropy of C. It has been shown the minimum fixed
points of Equation (15) are equivalent to fixed points of the iterative Loopy Belief Propagation
algorithm, as reported by Vontobel (2013) and Yedidia et al. (2005). This observation indicates that
minimizing the free energy in Equation (15) obtains the same probability estimates as running
iterative loopy belief propagation on Equation (7) until convergence. We can take advantage of
the Bethe free energy approximation by transforming our original, potentially infinitely-looping
message passing problem into a convex linear programming problem. As with the pair-wise
smoothing approach described in Section 3.2.2, the Bethe free energy approximation relies on
pair-wise interactions. Formally,

FB (C,τ ) = UB (C,τ ) − HB (C,τ ), (16a)

where

UB (C,τ ) = −
∑
x ∈C

∑
vx ∈{0,1}

τx (vx ) logϕ (x ) −
∑

y∈C/ {x }

∑
vy ∈{0,1}

τx,y (vx ,vy ) logψ (x ,y), (16b)

HB (C,τ ) = −
∑
x ∈C

∑
vx ∈{0,1}

τx (vx ) logτx (vx ) −
∑

y∈C/ {x }

∑
vy ∈{0,1}

τx,y (vx ,vy ) log
τx,y (vx ,vy )

τx (vx )τy (vy )
.

(16c)

This allows P (C) from Equation (7) to estimated by finding the set of τ that minimize FB (C,τ ):
P (C) ≈ exp[−min

τ
Fb (C,τ )], (17a)

where τ must satisfy the following conditions:

∀x ∈ C,vx ∈ {0, 1}
∑

vy ∈{0,1}
τx,y (vx ,vy ) = τx (vx ), (17b)

∀x ∈ C,y ∈ C/{x }
∑

vx ∈{0,1}

∑
vy ∈{0,1}

τx,y (vx ,vy ) = 1, (17c)

∀x ∈ X
∑

vx ∈{0,1}
τx (vx ) = 1. (17d)

The constraints in Equations (17b)–(17d) can be represented by Lagrangianmultipliers, allowing
us to estimate the joint probability of any clinical picture and therapy from Equation (7) using
gradient descent (or any other method for convex optimization). In our implementation, we used
the publicly available Hogwild software for parallel stochastic gradient descent (Recht et al. 2011).

Overall, we have considered four approaches for inferring the probability of any given combina-
tion of clinical picture and therapies as defined by Equation (7), enabling us to use Equations (1)–(6)
to infer the answers to a medical topic and, consequently, to rank the scientific articles containing
each topic. Before computing P (C), however, it is necessary to first construct the CPTG from a
collection of EMRs.
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Fig. 6. System for Medical Concept Detection and Assertion Recognition.

4 AUTOMATICALLY GENERATING MEDICAL KNOWLEDGE REPRESENTATIONS

WITH MEDICAL LANGUAGE PROCESSING

While the probabilistic inference methods described in Section 3.2 represent the (hyper-)edges in
the CPTG as factors, the nodes of the CPTG are identified by applying natural language processing
on the collection of electronic medical records (EMRs). The natural language processing extracts
the CPT from each medical record by automatically identifying every medical concept (and its
assertions) from the natural language narrative. In this section, we detail the natural language
processing approach used to automatically identify medical concepts and their assertions. The
system that identifies medical concepts and their assertions is illustrated in Figure 6. As will be
detailed in Sections 4.1, and 4.2, first medical concepts are identified and then their assertion values
are recognized by extracting and selecting features from multiple external resources, as shown in
Figure 6. It should be noted that the same natural language processing techniques are applied to
the medical topic and scientific articles when producing the medical knowledge sketch. We first
describe how medical concepts are discerned, then we detail how assertions are identified.

4.1 Identification of Medical Concepts

When designing our automatic approach to recognizing medical concepts in clinical texts we
started from the general framework developed during the 2010 shared-task on Challenges in Natu-

ral Language Processing for Clinical Data (Uzuner et al. 2011) jointly organized by the Informatics
for Integrating Biology at the Bedside (i2b2) and the United States Department of Veteran’s Affairs
(VA). In this shared-task, participants were asked to identify three types of medical concepts in
clinical texts: medical problems, treatments, and medical tests. For our work, we have extended
this framework by further classifying medical problems into: (1) observations from the patient
(known as symptoms) or from a physical exam (known as signs); and (2) the diagnoses, includ-
ing co-morbid diseases or disorders.
We cast the problem of identifying medical concepts in narratives of EMRs as three-stage

classification:

Stage 1. Recognizing the boundaries of medical concepts.
Stage 2. Discriminating between medical problems, tests, and treatments.
Stage 3. Classifying medical problems as either SIGNS/SYMPTOMS or DIAGNOSES.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 2, Article 14. Publication date: October 2017.



Knowledge Representations for Medical Q/A 14:17

Fig. 7. Example of medical concepts and their assertions discerned from the summary of medical Topic 33

(illustrated in Figure 1) as well as from the relevant PubMed article PMC3913120.2

In stage one, a conditional random field (CRF) was used to determine the boundaries (starting
and ending tokens) of each medical concept. Stage two of the pipeline relied on a support vector
machine (SVM) to determine the type of medical concept. In stage 3, we automatically project each
identified medical concept onto the UMLS ontology and classify it as a sign/symptom if the UMLS
semantic type is Symptom or Sign or Finding, and as a diagnosis, otherwise. Stages one and
two relied on lexical information, concept type information from UMLS and Wikipedia, as well
as semantic information describing predicates and arguments. Automatic feature selection was
used to tune the number of features considered by the CRF and SVM separately, as documented in
Roberts and Harabagiu (2011). Overall, feature extraction relied on a number of external resources
including The Unified Medical Language System (UMLS) (Bodenreider 2004), MetaMap (Aronson
2001), the GENIA project (Kim et al. 2003), WordNet (Fellbaum 1998), and Wikipedia.

In addition to recognizing the boundaries and types of medical concepts, we also associated each
medical concept with a set of synonyms (including synonymous abbreviations). Synonyms were
generated by (1) collecting all UMLS atoms that share the same concept unique identifier (CUI) and
(2) sets of article titles in Wikipedia that all redirect to the same article. This allows us to account
for synonymous expressions of the same medical concept in the CPTG by combining all the nodes
corresponding to synonymous concepts into a single node representing the set of synonymous
concepts. Figure 7 illustrates examples of our approach for automatic medical concept recognition.

4.2 Recognizing the Medical Assertions

Our approach for automatically recognizing assertions for medical concepts extends the frame-
work reported by Roberts and Harabagiu (2011) in which the belief status (or assertion type) of a
medical concept is determined by a single SVM classifier. As with medical concepts, we trained our
classifier using the annotations produced during the 2010 i2b2/VA challenge (Uzuner et al. 2011).
However, in this challenge, only medical problems were annotated with assertions. Consequently,
we have extended the assertion values to also apply to tests and treatments as previously reported
in Goodwin and Harabagiu (2014). To this end, annotated six new assertion values to describe
the degree of the physicians’ beliefs for treatments and tests as well. Table 2 lists all 12 assertion
values as well as their definitions. In Table 2, the six additional assertion values we annotated are

2Management dilemmas in acute pulmonary embolism; DOI:10.1136/thoraxjnl-2013-204667.
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Table 2. Assertion Values for Medical Concept in this Table

Assertion Value

P
ro
b
le
m

T
re
a
tm

e
n
t

T
e
st

Definition

PRESENT � The indicated problem is still active at this moment.

ABSENT � � � The medical concept does not exist at this moment.

POSSIBLE � The patient may have a problem, but there is uncertainty.

HYPOTHETICAL � The patient may develop the indicated problem.

CONDITIONAL � � � The medical concept occurs only during certain conditions.

ASSOCIATEDWITH

ANOTHER
� The medical problem is associated with someone other than the patient.

�ORDERED � The indicated treatment will be completed in the immediate future.

�PRESCRIBED � The indicated treatment will begin sometime after this moment.

�CONDUCTED � The indicated medical test been performed.

�ONGOING � � The indicated problem or treatment persists beyond this moment.

�SUGGESTED � The indicated treatment or test is advised but is not certain to occur.

�HISTORICAL � � � The indicated medical concept occurred during a previous hospital visit.

In this Table a “moment” Refers to the Specific Instant in Time in which the Particular Medical Concept was Written.

indicated with a “�.” As previously reported in Goodwin and Harabagiu (2014), we have annotated
a total 2,349 medical concepts with the expended set of assertion values.
The SVM used for automatic assertion classification considered the same set of features and

external resources as those reported in Roberts and Harabagiu (2011), namely, UMLS, MetaMap,
NegEx (Chapman et al. 2001) and the Harvard General Inquirer (Stone et al. 1966). As in Roberts
and Harabagiu (2011), we relied on (1) the above external resources, (2) lexical features, and (3) sta-
tistical information about assertions classified for previous mentions of the same medical concept
to train a 12-class SVM.

5 EXPERIMENTAL RESULTS

In our experiments, we evaluated (1) the accuracy of answers produced by our system for each
topic, (2) the relevance of scientific articles retrieved for each topic, and (3) the structure and com-
position of the automatically generated clinical picture and therapy graph (CPTG). When evaluat-
ing the answers and scientific articles automatically produced by our system, we considered the 30
topics (labeled 31–60) used during the 2015 TREC-CDS evaluation (Simpson et al. 2014) (for which
answers had been given).

5.1 Medical Answer Evaluation

The accuracy of the medical answers automatically produced by our approach was measured by
computing the Mean Reciprocal Rank (MRR). The MRR is the mean of the reciprocal of the rank
produced by our system for the (first) correct answer for each topic. To identify the correct answer
for each topic, we relied on a set of “candidate answers” manually produced by the authors of the
2015 TREC-CDS topics. The candidate answers were distributed to the TREC-CDS participants
after the evaluation had completed. It should be noted that these candidate answers were not pro-
vided to the relevance assessors when evaluating document retrieval, and they were only provided
to participating teams after the evaluation had concluded. The 2015 TREC-CDS task was strictly
an information retrieval evaluation measuring only the performance of systems when retrieving
and rank scientific articles from the PubMed Central open access subset. However, the candidate
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Table 3. The Mean Reciprocal Rank (MRR) of the Medical Answers Inferred Using Each

Inference Method and Each Type of Medical Knowledge Sketch

Inference Method Case 1 (Z1,RLA1) �Case 2 (Z2,RLA2) Case 3 (Z3,RLA3)
Exact Inference 0.031 0.000 0.220
Pair-wise Smoothing 0.083 0.502 0.329
Interpolated Smoothing 0.124 0.601 0.466
�Bethe Approximation 0.125 0.694 0.464

answers provided after the conclusion of the evaluation allowed us to cast the TREC-CDS task
as a question-answering (Q/A) problem. The candidates answers produced by the topic creators
indicate one-or-more candidate answers that the topic author considered when producing each
topic. It is important to note that the candidate answers are not necessarily the “best” answers and
are not always well-represented in PubMed. We evaluated each of the three ranked list of answers
produced by our system using the candidate answers as a gold-standard. Table 3 lists the perfor-
mance of our approach when considering each type of medical knowledge sketch (as described in
Section 2) and when using each method of answer inference (as described in Section 3).
As shown in Table 3, it is clear that the most accurate answers were obtained when using (1)

the Bethe Free-Energy Approximation method for answer inference applied to (2) the medical
knowledge sketch obtained by considering both the medical topic t and an entire scientific arti-
cle l , z2 (t , l ). Clearly, exact inference was unable to produce accurate answers, as evidence by the
low performance across all three types of medical knowledge sketch. When investigating the poor
performance when Z2 (t , l ) was used with exact inference, we found that very few CPTs in our
EMR collection contained all the medical concepts with the same assertions as in Z2, highlighting
the high degree of sparsity in clinical data. It is important to point out that the was no statisti-
cally significant difference between the Bethe Free-Energy Approximation and the Interpolated
Smoothing methods of answer inference (using the Wilcoxon signed-ranked test, where p < 0.001
andN = 30), but that both methods did significantly outperform both the pair-wise smoothing and
exact inference methods of answer inference. This suggests that the accuracy of answers inferred
using the CPTG can be greatly improved by smoothing or approximation (rather than using ex-
act estimates). Overall, the answers obtained using Z1 (t ) were of significantly poorer quality than
those obtained using either Z2 (t , l ) or Z3 (t , s ). Moreover, the answers obtained using Z2 (t , s ) were
less accurate than those obtained using Z3 (t , l ). While considering paragraphs from scientific ar-
ticles can improve the accuracy of answers automatically identified by our approach, decrease in
performance from Z2 (t , l ) to Z3 (t , s ) suggests that the most accurate answers (and their rankings)
are achieved by considering the entire scientific article. Moreover, the high performance of Z2 (t , s )
suggests that the questions associated with medical topics are complex: the answer(s) are rarely
described within a single paragraph andmust be inferred frommultiple paragraphs across the doc-
ument. We analyzed the answers obtained using each type of medical knowledge sketch and found
that the answers produced by considering Z1 (t ) were dominated by the most common diseases,
tests, or treatments mentioned in the EMR collection (that is, Z1 (t ) effectively reduced to the prior
probability of each medical concept). By contrast, Z2 (t , l ) was able to identify reasonably accurate
answers in most cases, while Z3 (t , s ) preferred answers that were related to only a small number
of medical concepts in the topic, and were often unable to account for the fact that some concepts
in the medical topic are more important than others when determining an answer. Overall, the
performance measures reported in Table 3 reinforce our hypothesis that combining knowledge
from relevance scientific articles with the medical topic can produce significantly more accurate
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Fig. 8. Reciprocal Rank for each topic evaluated in TREC-CDS 2015.

Table 4. Examples of Answers Discovered for the Medical Cases Illustrated in Figure 1

Topic Details

33

EMAT: Diagnosis

Answers: acute pulonary embolism; thrombolysis; ischaemia; dvt; pulmonary hypertension; myocardial infarction; tension
pneumothorax; arrhythmia; cardiogenic shock; aortic dissection

Gold Answer: pulmonary embolism

42

EMAT: Test

Diagnosis: bacterial meningitis

Answers: spinal puncture; gram’s stain; cerebrospinal fluid culture; latex fixation test; bacterial cultures; cervical puncture;
CSF assessment; lymph node biopsy; cranial nerve assessment; computer tomographic angiogram

Gold Answer: spinal tap / cerebrospinal fluid analysis

54

EMAT: Treatment

Diagnosis: community acquired pneumonia (cap)

Answers: continuous positive airway pressure; antibiotics; moxifloxacin; fentanyl; levofloxacin; zosyn; vancomycin; fluid re-
suscitation; combination therapy

Gold Answers: antibiotics

answers when considering the topic in isolation. Moreover, the MRR obtained when considering
Z2 (t , l ) and Z3 (t , s ) show that answer inference over the clinical picture and therapy graph are
reasonably accurate compared to the candidate answers produced by the 2015 TREC-CDS topic
creators.
In addition to the Mean Reciprocal Rank shown in Table 3, Figure 8 shows the reciprocal rank

of the gold-standard answer for each individual topic used in the 2015 TREC-CDS evaluation
when using the Interpolated Smoothing method for answer inference applied to (1) Z2 (t , l ) and
(2) Z3 (t , s ). As shown, for the majority of topics, for all medical knowledge sketch types, our top-
ranked answer was the same (or synonymous with) the candidate answer produced by the topic
creators. In fact, we obtained the correct answer for the majority of topics with an EMAT of treat-
ment (i.e., topics 51–60) as well as for many of the topics with an EMAT of diagnosis (i.e., topics
31–40). Unfortunately, for many of the topics with an EMAT of medical test (i.e., topics 41–50),
our approach struggled to identify and rank the correct answers. Table 4 presents the ten highest-
ranked answers produced by our approach for each topic previously shown in Figure 1 as well as
the (1) the candidate answer(s) produced by the TREC topic authors and (2) the held-out diagnosis.
As shown, for Topics 33 and 42, we obtain the correct answer at the highest rank, while for

Topic 54, we obtain the correct answer at the second rank. In the case of Topic 33, this is because
pulmonary embolismswere mentioned with high frequency in relevant scientific articles and were
often diagnosed for patients with many of the signs/symptoms and tests as indicated by the topic.
The answers obtained at lower ranks include other cardiovascular conditions such as deep vein
thrombosis (DVT) and heart attack (myocardial infarcation), with a handful of less severe co-morbid
conditions such as low blood flow (ischaemia) and high blood pressure (hypertension). When an-
swering Topic 42, our system produced a synonym spinal puncture for the correct answer of spinal
tap. The second-ranked answer, gram’s stain is a test used to distinguish between types of bacteria
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in a collected sample or culture. Note that cerebrospinal fluid (CSF) culture and CSF assessment
from the correct answer were obtained at ranks three and seven. This indicates that although our
method was able to identify the most important medical concept for treating bacterial meningitis,
it was not as effective at ranking other highly related concepts. It should be noted that Topic 42 was
one of only three topics with an expected medical answer type (EMAT) of Test in which the correct
answer was produced at rank one. For the majority of test topics, the most commonly described
tests related to the topic were ranked at the highest positions, rather than the tests most related
to the topic. Finally, for Topic 54, we obtained the correct answer antibiotics at the second rank,
followed by a large number of specific antibiotics (e.g., mxofloxacin, fentanyl, levofloxacin, etc.).
Interestingly, the highest-ranked treatment for Topic 54 was continuous positive airway pressure,
or CPAP. Although CPAP is a treatment used to keep the airways open for patients with respira-
tory problems, it only treats the symptoms rather than the underlying pneumonia. This suggests
a possible area for future research: understanding which treatments target the disease itself (such
as antibiotics) and which treatments are designed to alleviate symptoms of the disease (such as
CPAP).
Overall, we found two main sources of errors in the answers produced by our system: (1) a fail-

ure to account for more fine-grained relationships between individual tests and treatments and the
specific medical problems the treatments are targeting, as well as (2) the inability to account for
counter-indicated medical treatments—medical treatments that are known to produce adverse ef-
fects in certain situations. Unlike electronic medical records (EMRs), many scientific articles begin
with a review of recent literature and the current knowledge of their subject, often presenting neg-
ative findings or counter-indicated treatments, such asmedications that are typically prescribed for
a disease but are known to produce adverse reactions in specific situations. This type of counter-
indicated information is not negated, or speculated, and suggests the need for identifying either
more fine-grained assertions, or detecting counter-indication relations in scientific articles and
electronic medical records.

5.2 Medical Article Retrieval Evaluation

The performance of our approach when automatically identifying and ranking scientific articles
relevant to each medical topic was measured by relying on the relevance judgments produced
during the 2015 TREC-CDS topics by Oregon Health and Science University (OHSU). For the 2015
topics, a total of 37,807 topic-article pairs were judged as either (1) relevant, (2) partially relevant,
or (3) non-relevant. Physician students provided relevance judgments by pooling the 20 top-ranked
articles as well as a 20% random sample of the articles retrieved between ranks 21 and 100 for each
topic retrieved by any participating team in the TREC CDS task.
We followed the official TREC-CDS evaluations, by not distinguishing between relevant and

partially relevant articles when measuring the performance of our system (i.e., we considered only
binary relevance). We measured the quality of the ranked list of scientific articles produced by our
approach using four information retrieval metrics also used in TREC: (1) the inferred Average
Precision (inf. AP), wherein retrieved articles were randomly sampled and the Average Precision
was calculated as in Yilmaz and Aslam (2006); (2) the inferred Normalized Discounted Cumulative
Gain (inf. NDCG), wherein retrieved articles were randomly sampled and theNDCGwas calculated
as per (Yilmaz et al. 2008); (3) the R-Precision, which measures the precision of the highest R-
retrieved documents, where R is the total number of relevant documents for the topic; and (4) the
Precision of the first ten documents retrieved (P@10) (Manning et al. 2008).

We compared the quality of ranked scientific articles produced by our system using each answer
inference method applied to each type of medical knowledge sketch and found that the best
performance was obtained when using Interpolated Smoothing for answer inference and Z2 (t , l )
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Table 5. Performance Results Obtained for the System Reported in This Paper

(Q/A-CDS) When Using Each Type of Medical Knowledge Sketch, Method for

Answer Inference, and Relevance Model as Well as the iNDCG Obtained by the

State-of-the-Art (SotA) Automatic and Manual Systems Submitted to TREC

inf. AP inf. NDCG R-Prec P@10

� Baseline: BM25 .042 .204 .163 .387
Baseline: TF-IDF .041 .197 .169 .350
Baseline: LMJM .040 .193 .151 .357
Baseline: LMDir .043 .203 .170 .360
Baseline: DFR .039 .197 .167 .333
Z1 (t ) .006 .010 .020 .062
�Z2 (t , l ) .147 .434 .344 .722
�Z3 (t , s ) .018 .114 .081 .190
Exact Inference .063 .167 .154 .410
Pair-wise Smoothing .128 .382 .330 .610
�Interpolated Smoothing .147 .434 .344 .722

Bethe Approximation .140 .432 .336 .701

as the medical knowledge sketch. Consequently, for readability, in Table 5, we present the results
when (1) using interpolated smoothing for answer inference on each type of medical knowledge
sketch, as well as (2) when using each type of answer inference for Z2 (t , l ). Moreover, Table 5
also indicates the performance obtained using five baseline information retrieval models: BM25
relied on the Okapi-BM25 (Robertson et al. 1995) (k1 = 1.2 and b = 0.75) relevance model; TF-IDF
used the standard term frequency-inverse document frequency vector retrieval relevance model;
LMJM and LMDir leveraged language-model ranking functions using Jelinek-Mercer (λ = 0.5)
or Dirichlet (μ = 2,000) smoothing (Zhai and Lafferty 2001), respectively; and DFR considered
the Divergence from Randomness framework (Amati and Van Rijsbergen 2002) with an inverse
expected document frequency model for information content, a Bernoulli-process normalization
of information gain, and Zipfian term frequency normalization. We also compare our performance
against the top-performing systems for the 2015 TREC-CDS evaluation for Tasks A and B. Note
that, as in the official evaluation, we distinguish between automatic systems that involved no
human intervention and manual systems in which arbitrary human intervention was allowed. For
Task A (in which no explicit diagnoses was provided), the best inf. NDCG reported for an auto-
matic system was 0.294 and the best for a manual system was 0.311, while for Task B (in which an
explicit diagnoses was given for each topic focusing on a medical test and treatment), the best inf.
NDCG reported for an automatic system was 0.382 and the best reported for a manual system was
0.381. Please note that our approach was designed for Task A and, consequently, does not consider
the explicit diagnoses given in Task B. Moreover, our approach incorporates a very basic form of
query expansion (described in Section 3.1) and a simple relevance model (BM25) while many of
the top-performing systems submitted to the TREC-CDS task relied on significantly more complex
methods for query expansion and often incorporated additional information retrieval compo-
nents (e.g., pseudo-relevance feedback, rank fusion) that were not considered in our approach
(Roberts et al. 2016).
Clearly, the best performance obtained by our system (denoted with a “�”) relies on (1) the

medical knowledge sketch obtained by consider the topic t and scientific article l (Z2 (t , l )) and
(2) the interpolated-smoothing method for answer inference. Likewise, we found that the best

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 2, Article 14. Publication date: October 2017.



Knowledge Representations for Medical Q/A 14:23

relevance model for our approach (based on the performance of each baseline) was the BM25 rank-
ing function. There was no statistically significant difference in the performance measured when
applying the Interpolated Smoothing or the Bethe Approximation methods for answer inference
(as observed when measuring the accuracy of answers produced by our approach). Clearly, as il-
lustrated in Table 5, our approach enabled significantly higher quality scientific article retrieval
than the top reported systems for each task (Simpson et al. 2014). Specifically, we measured a 49%
increase in inferred NDCG compared to the best reported automatic system (Balaneshin-kordan
et al. 2015) and measured a 40% increase in inferred NDCG compared to the best reported manual
system (Balaneshin-kordan et al. 2015) when considering Task A. When comparing our approach
to Task B, in which an explicit diagnosis was provided with every topic with an EMAT of test
or treatment, we measured a 14% increase in inferred NDCG compared to the best reported au-
tomatic (Song et al. 2015) and manual (You et al. 2015) systems. We believe that the difference in
performance increase observed between our approach and the state-of-the-art approaches across
task A and B indicates that our approach was often able to infer the correct diagnosis in Task A.
Moreover, we also observed a clear increase in performance when comparing our approach to the
state-of-the-art for Task B, which suggests that the ability of our approach to infer additional se-
mantically meaningful medical concepts beyond the explicit diagnosis that were able to improve
the relevance of retrieved scientific articles. This in turn, further suggests that the relevant articles
in the TREC-CDS task contain answers that were not always in the candidate answer set. Overall,
we believe that the high performance of our approach clearly demonstrates the impact of incor-
porating medical question answering from knowledge bases to improve clinical decision support.

5.3 Medical Knowledge Evaluation

There is no clear way to measure the “accuracy” of the clinical picture and therapy graph (CPTG)
(as the edges between concepts do not indicate a single, direct semantic relationship). Conse-
quently, we report the structure and connectivity of the CPTG. The CPTG contained 634 thou-
sand nodes and 13.9 billion edges where 31.2% of all nodes were diagnoses, 21.84% were signs or
symptoms, 23.62% were medical tests, and 23.34% of nodes were medical treatments. The dis-
tribution of assertions associated with medical concepts in the CPTG is: 13.1% were absent,
0.01%were associated-with-someone-else, 1.13%were conditional, 33.31%were conducted,
17.05% were historical, 0.72% were hypothetical, 8.37% were ongoing, 1.04% were ordered,
0.55% were possible, 1.12% were prescribed, 22.34% were present, and 0.89% were suggested.
To evaluate the CPTG, we evaluated only the quality of the nodes of the CPTG that represent
medical concepts and their assertions. We were unable to evaluate the edges of the CPTG, be-
cause there are no medical knowledge bases or ontologies that encode relations between medical
concepts qualified by assertions.
The evaluation of the quality of the nodes encoded in the CPTG considered the F1-scores when

(1) detecting the boundaries of medical concepts; (2) detecting the type of medical concepts; and (3)
identifying assertions. To perform the evaluation, we considered the 72, 846 gold-standard annota-
tions provided with the 2010 i2b2/VA shared-task. On that data, our system, as reported in Roberts
and Harabagiu (2011), obtained an F1-score of 83.45% for boundary detection, 95.49% for concept
type detection, and 93.94% for assertion recognition. However, as noted in Section 4, the i2b2 anno-
tations did not indicate whether medical problems were signs/symptoms or diagnoses and did not
include assertions for medical tests or treatments. Consequently, we performed 2, 349 additional
annotations on EMRs from MIMIC III. We performed 10-fold cross validation, which allowed us
to compute the F1-scores when detecting medical concept boundaries as 81.22%, whereas the F1-
score when detecting medical concept types was 85.99% and the F1-score for identifying assertions
was 75.99%. It is obvious that the new concept types and assertions that were annotated impacted

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 2, Article 14. Publication date: October 2017.



14:24 T. R. Goodwin and S. M. Harabagiu

the performance of the automatic medical concept and assertion identification system. We believe
that the performance may be improved as more annotations become available for training.

6 CONCLUSIONS

In this article, we detail the knowledge representations considered in a novel medical Q/A frame-
work that can be used in CDS systems for recognizing relevant biomedical articles and pinpointing
the answers to questions about complexmedical cases. To answermedical questions about complex
medical cases, we introduced the notion of medical knowledge sketches that capture the clinical
background of the medical case. We have presented three forms of medical knowledge sketches
and shown how they can be used to infer answers. Moreover, we have shown how four different
probabilistic inference methods operate on the medical knowledge acquired from a vast EMR col-
lection, reflecting knowledge pertaining to medical practice. We also introduced three novel article
relevance models, informed by answers, which are used to retrieve relevant biomedical articles.
In our experiments, we considered all 12 combinations of medical knowledge sketches and prob-

abilistic inference methods and the results indicated surprisingly high MRR scores of the answers
when evaluating the questions from the 2015 TREC-CDS task. Although the questions were related
to complexmedical cases, the results that were obtained rivaled the performance of Q/A results ob-
tained for simpler, factoid questions. The best results were obtained when the medical knowledge
sketch considered all the medical knowledge discerned from an entire biomedical article as well as
themedical knowledge discerned from the description of themedical case, while using the Interpo-
lated smoothing method of probabilistic inference (Bethe approximation performed equally well).
Moreover, when the answers of a medical question are known, they inform the ranking of relevant
articles from PubMed with 86.5% increased inferred Average Precision to current state-of-the-art
systems evaluated in the most recent TREC-CDS.
To our knowledge this is the first work that considers medical Q/A from a knowledge base by

employing four probabilistic inference methods. It is also the first attempt of representing knowl-
edge as (a) medical knowledge sketches and (b) a clinical picture and therapy graph. Possible av-
enues for future work include (1) automatically recognizing semantic attributes such as severity,
temporality, and so on, and incorporating them into the knowledge graph, and (2) considering the
roles of different sections, rather than paragraphs or entire articles when constructing the medical
knowledge sketch.
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