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B. ACCOMPLISHMENTS

B.1 WHAT ARE THE MAJOR GOALS OF THE PROJECT? 
 
The specific aims have not changed since the start of the project. The percentages listed are relative to the overall goals of the multi-year
project since many of the sub-tasks span multiple years.
 
Specific Aim 1: Automatically recognize and time-align EEG events that contribute to a diagnosis: We will develop automated techniques
to discover and align the underlying EEG events that led to a diagnosis using data-driven approaches and semi-supervised learning. Five
classes of events will be identified: spike and sharp wave; generalized periodic epileptiform discharges; periodic lateralized epileptiform
discharges, eye blink and artifact. Everything else is considered background. This will make the data more useful to a wide range of
clinical research, and support a new form of biomedical knowledge derived from BigData repositories.
 
YR1 Sub-Tasks: Annotation Development (50%), Iterative Training and Bootstrapping (50%)
 
Specific Aim 2: Automatically recognize critical concepts in the EEG reports: We will automatically recognize clinical  events (e.g.
“intermittent bursts of paroxysmal high amplitude activity”) and their types: EEG-specific ACTIVITY (e.g. “beta frequency activity”), EEG-
specific PATTERN (e.g. “burst suppression pattern”), or CLINICAL DEPARTMENT (e.g. “coded for 30 minutes in the emergency room”).
In addition we shall automatically distinguish the clinical events’ polarity (POSITIVE, NEGATIVE) and modality (e.g. CONDITIONAL,
POSSIBLE). In EEG reports, mentions of clinical events also have dense spatial and temporal information associated with them that will
be mined automatically. Spatial expressions (e.g. “bilateral”, “diffuse”) and their spatial roles to the clinical events shall be discovered.
Similarly, temporal expressions (e.g. “every ten seconds”) and their temporal links to the clinical events shall be automatically mined. In
addition, because EEG reports describe also the clinical picture of patients, we shall identify automatically several types of medical
concepts in the form of medical problems (e.g. “epilepsy”), tests and treatments.
 
YR1: Clinical Events (80%), Medical Concepts (75%)
 
Specific Aim 3: Automatic patient cohort retrieval: We shall develop a patient cohort retrieval system that will identify patients having
EEGs relevant to a query or similar to a given EEG. Central to the patient cohort retrieval system is a qualified medical knowledge graph,
generated automatically by using a BigData solution based on MapReduce operating on the knowledge automatically extracted in
aims 1 and 2. In this way, the patient cohort retrieval system will be designed to search both free-text chart notes and EEG signals.
Searching both areas will enhance retrieval for those medical events or concepts recorded in only one place. In addition, a spatial and
temporal characterization of the way in which events in an EEG are narrated by physicians and the validation of these across a BigData
resource are important contributions to basic science.
 
YR1: Generation of QMKG with MapReduce (33%), Query Expansion (33%), Index Generation (95%), Learning to Rank Based on
Feedback (100%)
 
Specific Aim 4: Evaluation and analysis of the results of the patient cohort retrieval: To evaluate the cohort identification system clinicians
and medical students shall design sets of queries that model inclusion criteria that describe the kinds of patients desired for comparative
studies on EEG data. In addition, the experts will select subsets of EEGs to retrieve similar EEG data automatically from the cohort
identification system. Relevance judgements produced by clinical experts shall be used to qualify the degrees of relevance of the patients
identified. For each query, medical experts shall examine the top-ranked cohorts for common precision errors (false positives), and the
bottom five ranked common recall errors (false negatives). User validation testing will be performed using live clinical data and the
feedback will enable an analysis of the errors that will be used to better rank EEG reports. This will enhance the quality of the cohort
identification system. User acceptance studies shall also be conducted and information about the perceived value of the system shall be
collected.
 
An annotated big data archive of EEGs will greatly increase accessibility for non-experts in neuroscience, bioengineering and medical
informatics who would like to study EEG data and demonstrate that a much wider range of big data bioengineering applications are now
tractable. The cohort retrieval system and annotated EEG signals will greatly reduce training times for medical students pursing careers
in neuroscience.
 
YR 1: Generation of Queries (33%), Evaluation of Patient Cohort System (33%), Analysis of Results (33%), Component Evaluation
(33%), Demonstration / Feedback (25%) 
 

B.1.a Have the major goals changed since the initial competing award or previous report?   
 
Yes 
 
Revised goals:  
 
The specific aims have not changed since the start of the project. The percentages listed are relative to the overall goals of the multi-year
project since many of the sub-tasks span multiple years.
 
Specific Aim 1: Automatically recognize and time-align EEG events that contribute to a diagnosis: We will develop automated techniques
to discover and align the underlying EEG events that led to a diagnosis using data-driven approaches and semi-supervised learning. Five
classes of events will be identified: spike and sharp wave; generalized periodic epileptiform discharges; periodic lateralized epileptiform
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discharges, eye blink and artifact. Everything else is considered background. This will make the data more useful to a wide range of
clinical research, and support a new form of biomedical knowledge derived from BigData repositories.
 
Specific Aim 2: Automatically recognize critical concepts in the EEG reports: We will automatically recognize clinical  events (e.g.
“intermittent bursts of paroxysmal high amplitude activity”) and their types: EEG-specific ACTIVITY (e.g. “beta frequency activity”), EEG-
specific PATTERN (e.g. “burst suppression pattern”), or CLINICAL DEPARTMENT (e.g. “coded for 30 minutes in the emergency room”).
In addition we shall automatically distinguish the clinical events’ polarity (POSITIVE, NEGATIVE) and modality (e.g. CONDITIONAL,
POSSIBLE). In EEG reports, mentions of clinical events also have dense spatial and temporal information associated with them that will
be mined automatically. Spatial expressions (e.g. “bilateral”, “diffuse”) and their spatial roles to the clinical events shall be discovered.
Similarly, temporal expressions (e.g. “every ten seconds”) and their temporal links to the clinical events shall be automatically mined. In
addition, because EEG reports describe also the clinical picture of patients, we shall identify automatically several types of medical
concepts in the form of medical problems (e.g. “epilepsy”), tests and treatments.
 
Specific Aim 3: Automatic patient cohort retrieval: We shall develop a patient cohort retrieval system that will identify patients having
EEGs relevant to a query or similar to a given EEG. Central to the patient cohort retrieval system is a qualified medical knowledge graph,
generated automatically by using a BigData solution based on MapReduce operating on the knowledge automatically extracted in
aims 1 and 2. In this way, the patient cohort retrieval system will be designed to search both free-text chart notes and EEG signals.
Searching both areas will enhance retrieval for those medical events or concepts recorded in only one place. In addition, a spatial and
temporal characterization of the way in which events in an EEG are narrated by physicians and the validation of these across a BigData
resource are important contributions to basic science.
 
Specific Aim 4: Evaluation and analysis of the results of the patient cohort retrieval: To evaluate the cohort identification system clinicians
and medical students shall design sets of queries that model inclusion criteria that describe the kinds of patients desired for comparative
studies on EEG data. In addition, the experts will select subsets of EEGs to retrieve similar EEG data automatically from the cohort
identification system. Relevance judgements produced by clinical experts shall be used to qualify the degrees of relevance of the patients
identified. For each query, medical experts shall examine the top-ranked cohorts for common precision errors (false positives), and the
bottom five ranked common recall errors (false negatives). User validation testing will be performed using live clinical data and the
feedback will enable an analysis of the errors that will be used to better rank EEG reports. This will enhance the quality of the cohort
identification system. User acceptance studies shall also be conducted and information about the perceived value of the system shall be
collected.
 
An annotated big data archive of EEGs will greatly increase accessibility for non-experts in neuroscience, bioengineering and medical
informatics who would like to study EEG data and demonstrate that a much wider range of big data bioengineering applications are now
tractable. The cohort retrieval system and annotated EEG signals will greatly reduce training times for medical students pursing careers
in neuroscience. 
 

B.2 WHAT WAS ACCOMPLISHED UNDER THESE GOALS? 
 
File uploaded: accomplishments_v01.pdf 
 

B.3 COMPETITIVE REVISIONS/ADMINISTRATIVE SUPPLEMENTS 
 
For this reporting period, is there one or more Revision/Supplement associated with this award for which reporting is required?  
 
No

B.4 WHAT OPPORTUNITIES FOR TRAINING AND PROFESSIONAL DEVELOPMENT HAS THE PROJECT PROVIDED? 
 
File uploaded: training.pdf 
 

B.5 HOW HAVE THE RESULTS BEEN DISSEMINATED TO COMMUNITIES OF INTEREST? 
 
Throughout the course of this project, we have maintained an extensive web presence using two sites:
 
(1) Data and Resources: https://www.isip.piconepress.com/projects/tuh_eeg/
(2) Project-related Information: https://www.isip.piconepress.com/projects/nih_cohort/
 
The first site is most significant because has been used to disseminate our databases, annotated data, tagged reports and software. We
currently have over 2,250 subscribers of these resources and we average about three customer contacts per day.
 
We currently distribute five major resources related to this project: (1) the TUH EEG Corpus, (2) the TUH EEG Normal/Abnormal Corpus,
(3) the TUH EEG Artifact Corpus, (4) the TUH EEG Seizure Corpus, and (5) the TUH EEG Slowing Corpus. These are all subsets of the
main TUH EEG Corpus. We have released manual and automatically generated annotations of the data.
 
We also have released various types of support software and documents that educate users about the data. We provide personalized
customer support as a courtesy to our users as well. 
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B.6 WHAT DO YOU PLAN TO DO DURING THE NEXT REPORTING PERIOD TO ACCOMPLISH THE GOALS? 
 
Not Applicable 
 



 

 

Cohort retrieval systems can be a powerful clinical tool to aid diagnosis and training if we can 
harness the untapped potential of electronic medical records that include unstructured text, 
temporally constrained measurements (e.g., vital signs), multichannel signal data (e.g., EEGs), and 
image data (e.g., MRIs). In this talk, we will demonstrate a system that automatically ingests and 
organizes medical reports so that unstructured queries can be answered. Clinicians are able to 
retrieve relevant EEG signals and EEG reports using standard queries (e.g. “Young patients with 
focal cerebral dysfunction who were treated with Topamax”) from a large open source repository 
of clinical EEG data known as the TUH EEG Corpus. The system automatically annotates EEG 
signal data for events such as seizures and overall assessments such as abnormality using a multi-
stage deep learning approach that integrates temporal and spatial context. Key clinical concepts 
are extracted from unstructured EEG reports using a novel recurrent neural network approach and 
used to understand semantic composition. The system also infers underspecified information and 
normalizes information across reports. Signal data annotations are combined with clinical concepts 
in a single unified representation based on a Qualified Medical Knowledge Graph. A novel 
learning-to-rank framework was developed to improve cohort ranking and usability based on 
relevance judgements produced by neurologists. The annotated data and knowledge 
representations are available as open source resources. 

In this project, there were four aims directed at the development of two major subsystems: 
automatic labeling of EEG signal and automatic interpretation of electronic medical records. EEG 
processing was the primary subject of Aim 1, which the Temple University team was responsible 
for. Automatic processing of electronic medical records was the primary focus of Aims 2 and 3, 
which the University of Texas at Dallas team was responsible. Aim 4 was directed towards the 
integration of these two technologies into a Cohort Retrieval system. 

1. Automated Processing of EEG Records 

Scalp electroencephalograms (EEGs) are the primary means by which physicians diagnose brain-
related illnesses such as epilepsy and seizures. Automated seizure detection using clinical EEGs is 
a very difficult machine learning problem due to the low fidelity of a scalp EEG signal. 
Nevertheless, despite the poor signal quality, clinicians can reliably diagnose illnesses from visual 
inspection of the signal waveform. Commercially available automated seizure detection systems, 
however, suffer from unacceptably high false alarm rates. Deep learning algorithms that require 
large amounts of training data have not previously been effective on this task due to the lack of 
big data resources necessary for building such models and the complexity of the signals involved. 
The evolution of big data science, most notably the release of the Temple University EEG (TUEG) 
Corpus, has motivated renewed interest in this problem. 

In this section, we discuss the application of a variety of deep learning architectures to automated 
seizure detection. Architectures explored include multilayer perceptrons, convolutional neural 
networks (CNNs), long short-term memory networks (LSTMs), gated recurrent units and residual 
neural networks. We use the TUEG Corpus, supplemented with data from Duke University, to 
evaluate the performance of these hybrid deep structures. Since TUEG contains a significant 
amount of unlabeled data, we also discuss unsupervised pre-training methods used prior to training 
these complex recurrent networks. 

Exploiting spatial and temporal context is critical for accurate disambiguation of seizures from 
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artifacts. We explore how effectively several conventional architectures are able to model context 
and introduce a hybrid system that integrates CNNs and LSTMs. The primary error modalities 
observed by this state-of-the-art system were false alarms generated during brief delta range 
slowing patterns such as intermittent rhythmic delta activity. A variety of these types of events 
have been observed during inter-ictal and post-ictal stages. Training models on such events with 
diverse morphologies has the potential to significantly reduce the remaining false alarms. This is 
one reason we are continuing our efforts to annotate a larger portion of TUEG. Increasing the data 
set size significantly allows us to leverage more advanced machine learning methodologies. 

1.1. Background 

An EEG records the electrical activity along the scalp and measures spontaneous electrical activity 
of the brain. The signals measured along the scalp can be correlated with brain activity, which 
makes it a primary tool for diagnosis of brain-related illnesses. Electroencephalograms (EEGs) are 
used in a broad range of health care institutions to monitor and record electrical activity in the 
brain. EEGs are essential in the diagnosis of clinical conditions such as epilepsy, depth of 
anesthesia, coma, encephalopathy, brain death and even in the progression of Alzheimer’s disease.  

Manual interpretation of EEGs is time-consuming since these recordings may last hours or days. 
It is also an expensive process as it requires highly trained experts. Therefore, high performance 
automated analysis of EEGs can reduce time of diagnosis and enhance real-time applications by 
flagging sections of the signal that need further review. Many methods have been developed over 
the years, including time-frequency digital signal processing techniques, autoregressive spectral 
analysis, wavelet analysis, nonlinear dynamical analysis, multivariate techniques based on 
simulated leaky integrate-and-fire neurons and expert systems that attempt to mimic a human 
observer. In spite of recent research progress in this field, the transition of automated EEG analysis 
technology to commercial products in operational use in clinical settings has been limited, mainly 
because of unacceptably high false alarm rates. 

In recent years, progress in machine learning and big data resources has enabled a new generation 
of technology that is approaching acceptable levels of performance for clinical applications. The 
main challenge in this task is to operate with an extremely low false alarm rate. A typical critical 
care unit contains 12 to 24 beds. Even a relatively low false alarm rate of 5 false alarms (FAs) per 
24 hours per patient, which translates to between 60 and 120 false alarms per day, would 
overwhelm healthcare staff servicing these events. This is especially true when one considers the 
amount of other equipment that frequently trigger alerts. In this section, we discuss the application 
of deep learning technology to the automated EEG interpretation problem and introduce several 
promising architectures that deliver performance close to the requirements for operational use in 
clinical settings. 

1.1.1. Leveraging Recent Advances in Deep Learning 

Machine learning has made tremendous progress over the past three decades due to rapid advances 
in low-cost highly-parallel computational infrastructure, powerful machine learning algorithms, 
and, most importantly, big data. Although contemporary approaches for automatic interpretation 
of EEGs have employed more modern machine learning approaches such as neural networks [19, 
20] and support vector machine, state-of-the-art machine learning algorithms have not previously 
been utilized in EEG analysis because of a lack of big data resources. A significant big data 
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resource, known as the TUH EEG Corpus (TUEG) is now available creating a unique opportunity 
to evaluate high performance deep learning approaches. This database includes detailed physician 
reports and patient medical histories, which are critical to the application of deep learning. 
However, transforming physicians’ reports into meaningful information that can be exploited by 
deep learning paradigms is proving to be challenging because the mapping of reports to underlying 
EEG events is nontrivial. 

Though modern deep learning algorithms have generated significant improvements in 
performance in fields such as speech and image recognition, it is far from trivial to apply these 
approaches to new domains, especially applications such as EEG analysis that rely on waveform 
interpretation. Deep learning approaches can be viewed as a broad family of neural network 
algorithms that use a large number of layers of nonlinear processing units to learn a mapping 
between inputs and outputs. These algorithms are usually trained using a combination of 
supervised and unsupervised learning. The best overall approach is often determined empirically 
and requires extensive experimentation for optimization. There is no universal theory on how to 
arrive at the best architecture, and the results are almost always heavily data dependent. Therefore, 
in this section we will present a variety of approaches and establish some well-calibrated 
benchmarks of performance. We explore two general classes of deep neural networks in detail. 

The first class is a Convolutional Neural Network (CNN), which is a class of deep neural networks 
that have revolutionized fields like image and video recognition, recommender systems, image 
classification, medical image analysis, and natural language processing through end to end 
learning from raw data. An interesting characteristic of CNNs that was leveraged in these 
applications is their ability to learn local patterns in data by using convolutions, more precisely 
cross-correlation, as their key component. This property makes them a powerful candidate for 
modeling EEGs which are inherently multichannel signals. Each channel in an EEG possesses 
some spatial significance with respect to the type and locality of a seizure event. EEGs also have 
an extremely low signal to noise ratio and events of interest such as seizures are easily confused 
with signal artifacts (e.g., eye movements) or benign variants (e.g., slowing). The spatial property 
of the signal is an important cue for disambiguating these types of artifacts from seizures. These 
properties make modeling EEGs more challenging compared to more conventional applications 
like image recognition of static images or speech recognition using a single microphone. In this 
study, we adapt well-known CNN architectures to be more suitable for automatic seizure detection. 
Leveraging a high-performance time-synchronous system that provides accurate segmentation of 
the signal is also crucial to the development of these kinds of systems. Hence, we use a hidden 
Markov model (HMM) based approach as a non-deep learning baseline system. 

Optimizing the depth of a CNN is crucial to achieving state-of-the-art performance. Best results 
are achieved on most tasks by exploiting very deep structures (e.g., thirteen layers are common). 
However, training deeper CNN structures is more difficult since they are prone to degradation in 
performance with respect to generalization and suffer from convergence problems. Increasing the 
depth of a CNN incrementally often saturates sensitivity and also results in a rapid decrease in 
sensitivity. Often increasing the number of layers also increases the error on the training data due 
to convergence issues, indicating that the degradation in performance is not created by overfitting. 
We address such degradations in performance by designing deeper CNNs using a deep residual 
learning framework (ResNet). 
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We also extend the CNN approach by introducing an alternate structure, a deep convolutional 
generative adversarial network (DCGAN) to allow unsupervised training. Generative adversarial 
networks (GANs) have emerged as powerful techniques for learning generative models based on 
game theory. Generative models use an analysis by synthesis approach to learn the essential 
features of data required for high performance classification using an unsupervised approach. We 
introduce techniques to stabilize the training of DCGAN for spatio-temporal modeling of EEGs. 

The second class of network that we discuss is a Long Short-Term Memory (LSTM) network. 
LSTMs are a special kind of recurrent neural network (RNN) architecture that can learn long-term 
dependencies. This is achieved by introducing a new structure called a memory cell and by adding 
multiplicative gate units that learn to open and close access to the constant error flow. It has been 
shown that LSTMs are capable of learning to bridge minimal time lags in excess of 1,000 discrete 
time steps. To overcome the problem of learning long-term dependencies in modeling of EEGs, 
we describe a few hybrid systems composed of LSTMs that model both spatial relationships (e.g., 
cross-channel dependencies) and temporal dynamics (e.g., spikes). In an alternative approach for 
sequence learning of EEGs, we propose a structure based on gated recurrent units (GRUs). A GRU 
is a gating mechanism for RNNs that is similar in concept to what LSTMs attempt to accomplish. 
It has been shown that GRUs can outperform many other RNNs, including LSTM, in several 
datasets. 

1.1.2. Big Data Enables Deep Learning Research 

Recognizing that deep learning algorithms require large amounts of data to train complex models, 
especially when one attempts to process clinical data with a significant number of artifacts using 
specialized models, we have developed a large corpus of EEG data to support this kind of 
technology development. The TUEG Corpus is the largest publicly available corpus of clinical 
EEG recordings in the world. The most recent release, v1.1.0, includes data from 2002 – 2015 and 
contains over 23,000 sessions from over 13,500 patients – over 1.8 years of multichannel signal 
data in total. This dataset was collected at the Department of Neurology at Temple University 
Hospital. The data includes sessions taken from outpatient treatments, Intensive Care Units (ICU) 
and Epilepsy Monitoring Units (EMU), Emergency Rooms (ER) as well as several other locations 
within the hospital. Since TUEG consists entirely of clinical data, it contains many real-world 
artifacts (e.g., eye blinking, muscle artifacts, head movements). This makes it an extremely 
challenging task for machine learning systems and differentiates it from most research corpora 
currently available in this area. Each of the sessions contains at least one EDF file and one 
physician report. These reports are generated by a board-certified neurologist and are the official 
hospital record. These reports are comprised of unstructured text that describes the patient, relevant 
history, medications, and clinical impression. The corpus is publicly available from the Neural 
Engineering Data Consortium (www.nedcdata.org). 

EEG signals in TUEG were recorded using several generations of Natus Medical Incorporated’s 
NicoletTM EEG recording technology. The raw signals consist of multichannel recordings in 
which the number of channels varies between 20 and 128 channels. A 16-bit A/D converter was 
used to digitize the data. The sample frequency varies from 250 Hz to 1024 Hz. In our work, we 
resample all EEGs to a sample frequency of 250 Hz. The Natus system stores the data in a 
proprietary format that has been exported to EDF with the use of NicVue v5.71.4.2530. The 
original EEG records are split into multiple EDF files depending on how the session was annotated 
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by the attending technician. For our studies, we use the 19 channels associated with a standard 
10/20 EEG configuration and apply a Transverse Central Parasagittal (TCP) montage. 

A portion of TUEG was annotated manually for seizures. This corpus is known as the TUH EEG 
Seizure Detection Corpus (TUSZ). TUSZ is also the world’s largest publicly available corpus of 
annotated data for seizure detection that is unencumbered. No data sharing or IRB agreements are 
needed to access the data. TUSZ contains a rich variety of seizure morphologies. Variation in onset 
and termination, frequency and amplitude, and locality and focality protect the corpus from a bias 
towards one type of seizure morphology. TUSZ, which reflects a seizure detection task, is the 
focus of the experiments presented in this section. For related work on six-way classification of 
EEG events, see. 

We have also included an evaluation on a held-out data set based on the Duke University Seizure 
Corpus (DUSZ). The DUSZ database is collected solely from the adult ICU patients exhibiting 
non-convulsive seizures. These are continuous EEG (cEEG) records where most seizures are focal 
and slower in frequency. TUSZ in contrast contains records from a much broader range of patients 
and morphologies. A comparison of these two corpora is shown in Table 1. The evaluation sets 
are comparable in terms of the number of patients and total amount of data, but TUSZ contains 
many more sessions collected from each patient.  

It is important to note that TUSZ was collected using several generations of Natus Incorporated 
EEG equipment, while DUSZ was collected at a different hospital, Duke University, using a Nihon 
Kohden system. Hence, using DUSZ as a held-out evaluation set is an important benchmark 
because it tests the robustness of the models to variations in the recording conditions. Deep 
learning systems are notoriously prone to overtraining, so this second data set represents important 
evidence that the results presented here are generalizable and reproducible on other tasks.  

1.2. Temporal Modeling of Sequential Signals 

The classic approach to machine learning, shown in Fig. 1, involves an iterative process that begins 
with the collection and annotation of data and ends with an open set, or blind, evaluation. Data is 
usually sorted into training (train), development test set (dev_test) and evaluation (eval). 
Evaluations on the dev_test data is used to guide system development. One cannot adjust system 
parameters based on the outcome of evaluations on the eval set but can use these results to assess 
overall system performance. We typically iterate on all aspects of this approach, including 
expansion and repartitioning of the training and dev_test data, until overall system performance is 
optimized. 

Table 1. An overview of the corpora used to develop the technology described in this section 

Description 
TUSZ DUSZ 

Train Eval Eval 
Patients 64 50 45 
Sessions 281 229 45 
Files 1,028 985 45 
Seizure (secs) 17,686 45,649 48,567 
Non-Seizure (secs) 596,696 556,033 599,381 
Total (secs) 614,382 601,682 647,948 
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We often leverage previous stages of 
technology development to seed, or 
initialize, models used in a new round of 
development. Further, there is often a 
need to temporally segment the data, for 
example automatically labeling events of 
interest, to support further explorations of 
the problem space. Therefore, it is 
common when exploring new 
applications to begin with a familiar 
technology. As previously mentioned, 
EEG signals have a strong temporal 
component. Hence, a likely candidate for 
establishing good baseline results is an 
HMM approach, since this algorithm is 
particularly strong at automatically 
segmenting the data and localizing events 
of interest.  

HMM systems typically operate on a sequence of vectors referred to as features. In this section, 
we briefly introduce the feature extraction process we have used, and we describe a baseline system 
that integrates hidden Markov models for sequential decoding of EEG events with deep learning 
for decision-making based on temporal and spatial context.  

1.2.1. A Linear Frequency Cepstral Coefficient Approach to Feature Extraction 

The first step in our machine learning systems consists of converting the signal to a sequence of 
feature vectors. Common EEG feature extraction methods include temporal, spatial and spectral 
analysis. A variety of methodologies have been broadly applied for extracting features from EEG 
signals including a wavelet transform, independent component analysis and autoregressive 
modeling. In this study, we use a methodology based on mel-frequency cepstral coefficients 
(MFCC) which have been successfully applied to many signal processing applications including 
speech recognition. In our systems, we use linear frequency cepstral coefficients (LFCCs) since a 
linear frequency scale provides some slight advantages over the mel scale for EEG signals. A block 
diagram summarizing the feature extraction process used in this work is presented in Fig. 2. 
Though it is increasingly popular to operate directly from sampled data in a deep learning system, 
and let the system learn the best set of features automatically, for applications in which there is 
limited annotated data, it is often more beneficial to begin with a specific feature extraction 
algorithm. Experiments with different types of features or with using sampled data directly have 
not shown a significant improvement in performance.  

We did an extensive exploration of many of the common parameters associated with feature 
extraction and optimized the process for six-way event classification. We have found this 
approach, which leverages a popular technique in speech recognition, is remarkably robust across 
many types of machine learning applications. The LFCCs are computed by dividing raw EEG 
signals into shorter frames using a standard overlapping window approach. A high resolution Fast 
Fourier Transform (FFT) is computed next. The spectrum is downsampled with a filter bank 
composed of an array of overlapping bandpass filters. Finally, the cepstral coefficients are derived 

 

Fig. 1. An overview of a typical design cycle for machine learning 
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by computing a discrete cosine 
transform of the filter bank’s 
output [44]. In our experiments, 
we discarded the zeroth-order 
cepstral coefficient, and replaced 
it with a frequency domain energy 
term which is calculated by 
adding the output of the 
oversampled filter bank after they 
are downsampled:  

E" = log(∑ |X(k)|-./0
123 )	.	 (1)	

We also introduce a new feature, 
called differential energy, that is 
based on the long-term 
differentiation of energy. Differential energy can significantly improve the results of spike 
detection, which is a critical part of seizure detection, because it amplifies the differences between 
transient pulse shape patterns and stationary background noise. To compute the differential energy 
term, we compute the energy of a set of consecutive frames, which we refer to as a window, for 
each channel of an EEG: 

𝐸8 = 𝑚𝑎𝑥
<

=𝐸>(𝑚)? − 𝑚𝑖𝑛< =𝐸>(𝑚)? . 		 (2)	

We have used a window of 9 frames which is 0.1 secs in duration, corresponding to a total duration 
of 0.9 secs, to calculate differential energy term. Even though this term is a relatively simple 
feature, it resulted in a statistically significant improvement in spike detection performance. 

Our experiments have also shown that using regression-based derivatives of features, which is a 
popular method in speech recognition, is effective in the classification of EEG events. We use the 
following definition for the derivative:  

𝑑E =
∑ F(GHIJ/GHKJ)L
JMN

-∑ FOL
JMN

	.	 (3)	

Eq. (3) is applied to the cepstral coefficients, 𝑐E, to compute the first derivatives, which are referred 
to as delta coefficients. Eq. (3) is then reapplied to the first derivatives to compute the second 
derivatives, which are referred to as delta-delta coefficients. Again, we use a window length of 9 
frames (0.9 secs) for the first derivative and a window length of 3 (0.3 secs) for the second 
derivative. The introduction of derivatives helps the system discriminate between steady-state 
behavior, such as that found in a periodic lateralized epileptiform discharges (PLED) event, and 
impulsive or nonstationary signals, such as that found in spikes (SPSW) and eye movements 
(EYEM). 

Through experiments designed to optimize feature extraction, we found best performance can be 
achieved using a feature vector length of 26. This vector includes nine absolute features consisting 
of seven cepstral coefficients, one frequency-domain energy term, and one differential energy 
term. Nine deltas are added for these nine absolute features. Eight delta-deltas are added because 
we exclude the delta-delta term for differential energy. 

 

Fig. 2. Base features are calculated using linear frequency cepstral coefficients 
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1.2.2. Temporal and Spatial Context Modeling 

HMMs are among the most powerful statistical modeling tools available today for signals that 
have both a time and frequency domain component. HMMs have been used quite successfully in 
sequential decoding tasks like speech recognition, cough detection and gesture recognition to 
model signals that have sequential properties such as temporal or spatial evolution. Automated 
interpretation of EEGs is a problem like speech recognition since both time domain (e.g., spikes) 
and frequency domain information (e.g., alpha waves) are used to identify critical events. EEGs 
have a spatial component as well. 

A left-to-right channel-independent GMM-HMM, as illustrated in Fig. 3, was used as a baseline 
system for sequential decoding. HMMs are attractive because training is much faster than 
comparable deep learning systems, and HMMs tend to work well when moderate amounts of 
annotated data are available. We divide each channel of an EEG into 1 sec epochs, and further 
subdivide these epochs into a sequence of 0.1 sec frames. Each epoch is classified using an HMM 
trained on the subdivided epoch. These epoch-based decisions are postprocessed by additional 
statistical models in a process that parallels the language modeling component of a speech 
recognizer. Standard three state left-to-right HMMs with 8 Gaussian mixture components per state 
were used. The covariance matrix for each mixture component was assumed to be a diagonal 
matrix – a common assumption for cepstral-based features. Though we evaluated both channel-
dependent and channel-independent models, channel-independent models were ultimately used 
because channel-dependent models did not provide any improvement in performance.  

Supervised training based on the Baum-Welch reestimation algorithm was used to train two 
models – seizure and background. Models were trained on segments of data containing seizures 
based on manual annotations. Since seizures comprise a small percentage of the overall data (3% 
in the training set; 8% in the evaluation set), the amount of non-seizure data was limited to be 
comparable to the amount of seizure data, and non-seizure data was selected to include a rich 
variety of artifacts such as muscle and eye movements. Twenty iterations of Baum-Welch were 
used though performance is not very sensitive to this value. Standard Viterbi decoding (no beam 
search) was used in recognition to estimate the model likelihoods for every epoch of data. The 
entire file was not decoded as one stream because of the imbalance between the seizure and 
background classes – decoding was restarted for each epoch. 

 

Fig. 3. A hybrid architecture based on HMMs 
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The output of the epoch-based decisions was postprocessed by a deep learning system. Our 
baseline system used a Stacked denoising Autoencoder (SdA) as shown in Fig. 3. SdAs are an 
extension of stacked autoencoders and are a class of deep learning algorithms well-suited to 
learning knowledge representations that are organized hierarchically. They also lend themselves 
to problems involving training data that is sparse, ambiguous or incomplete. Since inter-rater 
agreement is relatively low for seizure detection, it made sense to evaluate this type of algorithm 
as part of a baseline approach. 

An N-channel EEG was transformed into N independent feature streams. The hypotheses 
generated by the HMMs were postprocessed using a second stage of processing that examines 
temporal and spatial context. We apply a third pass of postprocessing that uses a stochastic 
language model to smooth hypotheses involving sequences of events so that we can suppress 
spurious outputs. This third stage of postprocessing provides a moderate reduction in false alarms. 

Training of SdA networks are done in two steps: (1) pre-training in a greedy layer-wise approach 
and (2) fine-tuning by adding a logistic regression layer on top of the network. The output of the 
first stage of processing is a vector of two likelihoods for each channel at each epoch. Therefore, 
if we have 22 channels and 2 classes (seizure and background), we will have a vector of dimension 
2 x 22 = 44 for each epoch. 

Each of these scores is independent of the spatial context (other EEG channels) or temporal context 
(past or future epochs). To incorporate context, we form a supervector consisting of N epochs in 
time using a sliding window approach. We find it beneficial to make N large – typically 41. This 
results in a vector of dimension 41 x 44 = 1,804 that needs to be processed each epoch. The input 
dimensionality is too high considering the amount of manually labeled data available for training 
and the computational requirements. To deal with this problem we used Principal Components 
Analysis (PCA) to reduce the dimensionality to 20 before applying the SdA postprocessing. 

The parameters of the SdA model are optimized to minimize the average reconstruction error using 
a cross-entropy loss function. In the optimization process, a variant of stochastic gradient descent 
is used called “Minibatch stochastic gradient descent” (MSGD). MSGD works identically to 
stochastic gradient descent, except that we use more than one training example to make each 
estimate of the gradient. This technique reduces variance in the estimate of the gradient, and often 
makes better use of the hierarchical memory organization in modern computers. 

The SdA network has three hidden layers with corruption levels of 0.3 for each layer. The number 
of nodes per layer are: 1st layer (connected to the input layer) = 800, 2nd layer = 500, 3rd layer 
(connected to the output layer) = 300. The parameters for pre-training are: learning rate = 0.5, 
number of epochs = 150, batch size = 300. The parameters for fine-tuning are: learning rate = 0.1, 
number of epochs = 300, batch size = 100. The overall result of the second stage is a probability 
vector of dimension two containing a likelihood that each label could have occurred in the epoch. 
A soft decision paradigm is used rather than a hard decision paradigm because this output is 
smoothed in the third stage of processing. 

1.3. Improved Spatial Modeling Using CNNs 

Convolutional Neural Networks (CNNs) have delivered state of the art performance on highly 
challenging tasks such as speech and image recognition. These early successes played a vital role 
in stimulating interest in deep learning approaches. In this section we explore modeling of spatial 

Page 13Final RPPR

                         B.2 (accomplishments_v01.pdf)



information in the multichannel EEG signal to exploit our knowledge that seizures occur on a 
subset of channels. The identity of these channels also plays an important role localizing the seizure 
and identifying the type of seizure. 

1.3.1. Deep Two-Dimensional Convolutional Neural Networks 

CNN networks are usually composed of convolutional layers and subsampling layers followed by 
one or more fully connected layers. Consider an image of dimension W × H × N, where W and H 
are the width and height of the image in pixels, and N is the number of channels (e.g. in an RGB 
image, N = 3 since there are three colors). Two-dimensional (2D) CNNs commonly used in 
sequential decoding problems such as speech or image recognition typically consist of a 
convolutional layer that will have K filters (or kernels) of size M × N × Q where M and N are 
smaller than the dimension of the data and Q is smaller than the number of channels. The image 
can be subsampled by skipping samples as you convolve the kernel over the image. This is known 
as the stride, which is essentially a decimation factor. CNNs have a large learning capacity that 
can be controlled by varying their depth and breadth to produce K feature maps of size (W – M + 1) 
× (H – N + 1) for a stride of 1, and proportionally smaller for larger strides. Each map is then 
subsampled using a technique known as max pooling, in which a filter is applied to reduce the 
dimensionality of the map. An activation function, such as a rectified linear unit (ReLU), is applied 
to each feature map either before or after the subsampling layer to introduce nonlinear properties 
to the network. Nonlinear activation functions are necessary for learning complex functional 
mappings. 

In Fig. 4, a system that combines CNN and a multi-layer perceptron (MLP) is shown. Drawing on 
our image classification analogy, each image is a signal where the width of the image (W) is the 
window length multiplied by the number of samples per second, the height of the image (H) is the 
number of EEG channels and the number of image channels (N) is the length of the feature vector. 
This architecture includes six convolutional layers, three max pooling layers and two fully-
connected layers. A rectified linear unit (ReLU) nonlinearity is applied to the output of every 
convolutional and fully-connected layer.  

In our optimized version of this architecture, a window duration of 7 secs is used. The first 
convolutional layer filters the input of size of 70 × 22 × 26 using 16 kernels of size 3 × 3 with a 
stride of 1. The input feature vectors have a dimension of 26, while there are 22 EEG channels. 

 

Fig. 4. A two-dimensional decoding of EEG signals using a CNN/MLP hybrid architecture 

Page 14Final RPPR

                         B.2 (accomplishments_v01.pdf)



The window length is 70 because the features are computed every 0.1 secs, or 10 times per second, 
and the window duration is 7 sec. These kernel sizes and strides were experimentally optimized. 

The second convolutional layer filters its input using 16 kernels of size 3 × 3 with a stride of 1. 
The first max pooling layer takes as input the output of the second convolutional layer and applies 
a pooling size of 2 × 2. This process is repeated two times with kernels of size 32 and 64. Next, a 
fully-connected layer with 512 neurons is applied and the output is fed to a 2-way sigmoid function 
which produces a two-class decision. This two-class decision is the final label for the given epoch, 
which is 1 sec in duration. Neurologists usually review EEGs using 10 sec windows, so we attempt 
to use a similar amount of context in this system. Pattern recognition systems often subdivide the 
signal into small segments during which the signal can be considered quasi-stationary. A simple 
set of preliminary experiments determined that a reasonable tradeoff between computational 
complexity and performance was to split a 10 sec window, which is what neurologists use to view 
the data, into 1 sec epochs. 

In our experiments, we found structures that are composed of two consecutive convolutional layers 
before a pooling layer perform better than structures with one convolutional layer before a pooling 
layer. Pooling layers decrease the dimensions of the data and thereby can result in a loss of 
information. Using two convolutional layers before pooling mitigates the loss of information. We 
find that using very small fields throughout the architecture (e.g., 3 x 3) performs better than larger 
fields (e.g. 5 × 5 or 7 × 7) in the first convolutional layer. 

1.3.2. Augmenting CNNs with Deep Residual Learning 

The depth of a CNN plays an instrumental role in its ability to achieve high performanc. As many 
as thirteen layers are used for challenging problems such as speech and image recognition. 
However, training deeper CNN structures is more difficult since convergence and generalization 
become issues. Increasing the depth of CNNs, in our experience, tends to increase the error on 
evaluation dataset. As we add more convolutional layers, sensitivity first saturates and then 
degrades quickly. We also see an increase in the error on the training data when increasing the 
depth of a CNN, indicating that overfitting is actually not occurring. Such degradations in 
performance can be addressed by using a deep residual learning framework known as a ResNet. 
ResNets introduce an “identity shortcut connection” that skips layers. Denoting the desired 
underlying mapping as 𝐻(𝑥), we map the stacked nonlinear layers using 𝐹(𝑥) 	= 	𝐻(𝑥)	– 	𝑥, 
where x is the input. The original mapping is recast into 𝐹(𝑥) 	+ 	𝑥. It can be shown that it is easier 
to optimize the residual mapping than to optimize the original, unreferenced mapping.  

The deep residual learning structure mitigates two important problems: vanishing/exploding 
gradients and saturation of accuracy when the number of layers is increased. As the gradient is 
backpropagated to earlier layers, repeated multiplication of numbers less than one often makes the 
gradient infinitively small. Performance saturates and can rapidly degrade due to numerical 
precision issues. Our structure addresses these problems by reformulating the layers as learning 
residual functions with reference to the layer inputs instead of learning unreferenced functions.  

An architecture for our ResNet approach is illustrated in Fig. 5. The shortcut connections between 
the convolutional layers make training of the model tractable by allowing information to propagate 
effectively through this very deep structure. The network consists of 6 residual blocks with two 
2D convolutional layers per block. These convolutional layers are followed by a fully connected 
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layer and a single dense neuron as the last layer. This brings the total number of layers in this 
modified CNN structure to 14. The 2D convolutional layers all have a filter length of (3, 3). The 
first 7 layers of this architecture have 32 filters while the last layers have 64 filters. We increment 
the number of filters from 32 to 64, since the initial layers represent generic features, while the 
deeper layers represent more detailed features. In other words, the richness of the data 
representations increases because each additional layer forms new kernels using combinations of 
the features from the previous layer. 

Except for the first and last layers of the network, before each convolutional layer we apply a 
Rectified Linear Unit (ReLU) as an activation function. ReLU is the most commonly used 
activation function in deep learning models. The function returns 0 if it receives any negative input, 
but for any positive value it returns that value (e.g., 𝑓(𝑥) = max(0, 𝑥)). To overcome the problem 
of overfitting in deep learning structures with a large number of parameters, we use dropout as our 
regularization method between the convolutional layers and after ReLU. Dropout is a 
regularization technique for addressing overfitting by randomly dropping units along with their 
connections from the deep learning structures during training. We use the Adam optimizer which 
is an algorithm for first-order gradient-based optimization of stochastic objective functions, based 
on adaptive estimates of lower-order moments. After parameter tuning, we apply Adam 
optimization using the following parameters (according to the notation in their original paper): 
𝛼	 = 	0.00005, 𝛽0 = 	0.9, 𝛽-	 = 0.999, 𝜀	 = 	10/a, and 𝑑𝑒𝑐𝑎𝑦	 = 	0.0001. 

The deep learning systems described thus far have incorporated fully supervised training and 
discriminative models. Next, we introduce a generative deep learning structure based on 
convolutional neural networks that leverages unsupervised learning techniques. These are 
important for biomedical applications where large amounts of fully annotated data are difficult to 
find. 

 

Fig. 5. A deep residual learning framework, ResNet, is shown. 
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1.3.3. Unsupervised Learning 

Machine learning algorithms can generally be split into two categories: generative and 
discriminative. A generative model learns the joint probability distribution of 𝑃(𝑋, 𝑌) where 𝑋	is 
an observable variable and 𝑌	is the target variable. These models learn the statistical distributions 
of the input data rather than simply classifying the data as one of 𝐶 output classes. Hence the name, 
generative, since these methods learn to replicate the underlying statistics of the data. GMMs 
trained using a greedy clustering algorithm or HMMs trained using the Expectation Maximization 
(EM) algorithm are well-known examples of generative models. A discriminative model, on the 
other hand, learns the conditional probability of the target 𝑌, given an observation 𝑋, which we 
denote 𝑃(𝑌|𝑋). Support Vector Machine and Maximum Mutual Information Estimation (MMIE) 
are two well-known discriminative models. 

Generative adversarial networks (GANs) have emerged as a powerful learning paradigm technique 
for learning generative models for high-dimensional unstructured data. GANs use a game theory 
approach to find the Nash equilibrium between a generator and discriminator network. A basic 
GAN structure consists of two neural networks: a generative model 𝐺 that captures the data 
distribution, and a discriminative model 𝐷 that estimates the probability that a sample came from 
the training data rather than 𝐺. These two networks are trained simultaneously via an adversarial 
process. In this process, the generative network, 𝐺, transforms the input noise vector 𝑧 to generate 
synthetic data 𝐺(𝑧). The training objective for 𝐺 is to maximize the probability of 𝐷 making a 
mistake about the source of the data. 

The output of the generator is a synthetic EEG – data that is statistically consistent with an actual 
EEG but is fabricated entirely by the network. The second network, which is the discriminator, 
𝐷,	takes as input either the output of 𝐺 or samples from real world data. The output of 𝐷 is a 
probability distribution over possible input sources. The output of the discriminator in GAN 
determines if the signal is a sample from real world data or synthetic data from the generator. 

The generative model, 𝐺,	and the discriminative model, 𝐷,	compete in a two-player minimax game 
with a value function, 𝑉(𝐺;𝐷),	in a way that 𝐷 is trained to maximize the probability of assigning 
the correct label to both the synthetic and real data from 𝐺. The generative model 𝐺 is trained to 
fool the discriminator by minimizing 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))):  

𝑚𝑖𝑛
p
𝑚𝑎𝑥
q

𝑉(𝐷, 𝐺) = 𝔼s~uvwHw(s)[𝑙𝑜𝑔 𝐷(𝑥)] +𝔼z~u{(z)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))] . (4) 

During the training process, our goal is to find a Nash equilibrium of a non-convex two-player 
game that minimizes both the generator and discriminator’s cost functions.  

A deep convolutional generative adversarial network (DCGAN) is shown in Fig. 6. The generative 
model takes 100 random inputs and maps them to a matrix with size of [21, 22, 250], where 21 is 
the window length (corresponding to a 21 sec duration), 22 is number of EEG channels and 250 is 
number of samples per sec. Recall, in our study, we resample all EEGs to a sample frequency of 
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250 Hz. The generator is composed of transposed CNNs with upsamplers. Transposed 
convolution, also known as fractionally-strided convolution, can be implemented by swapping the 
forward and backward passes of a regular convolution. We need transposed convolutions in the 
generators since we want to go in the opposite direction of a normal convolution. For example, in 
this case we want to compose the vector of [21, 22, 250] from 100 random inputs. Using transposed 
convolutional layers, we can transform feature maps to a higher-dimensional space. Leaky ReLUs 
are used for the activation function and dropout layers are used for regularization. Adam is used 
as the optimizer and binary cross-entropy is used as the loss function.  

In this architecture, the discriminative model accepts vectors from two sources: synthetic data 
generators and real data (raw EEGs in this case). It is composed of strided convolutional neural 
networks. Strided convolutional neural networks are like regular CNNs but with a stride greater 
than one. In the discriminator we replace the usual approach of convolutional layers with max 
pooling layers with strided convolutional neural networks. This is based on our observations that 
using convolutional layers with max pooling makes the training of DCGAN unstable. This is due 
to the fact that using strided convolutional layers, the network learns its own spatial downsampling, 
and convolutional layers with max pooling tend to conflict with striding. 

Finding the Nash equilibrium, which is a key part of the GAN approach, is a challenging problem 
that impacts convergence during training. Several recent studies address the instability of GANs 
and suggest techniques to increase the training stability of GANs. We conducted a number of 
preliminary experiments and determined that these techniques were appropriate: 

In the discriminator: 
• pretraining of the discriminator; 
• one-sided label smoothing; 
• eliminating fully connected layers on top of convolutional features; 
• replacing deterministic spatial pooling functions (such as max pooling) with strided convolutions. 

In the generator: 

• using an ReLU activation for all layers except for the output;  
• normalizing the input to [-1, 1] for the discriminator;  
• using a 𝑡𝑎𝑛ℎ()	activation in the last layer except for the output;  

 

Fig. 6. An unsupervised learning architecture is shown that uses DCGANs 
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• using leaky ReLU activations in the discriminator for all layers except for the output;  
• freezing the weights of discriminator during adversarial training process;  
• unfreezing weights during discriminative training; 
• eliminating batch normalization in all the layers of both the generator and discriminator. 

The GAN approach is attractive for a number of reasons including creating an opportunity for data 
augmentation. Data augmentation is common in many state-of-the-art deep learning systems today, 
allowing the size of the training set to be increased as well as exposing the system to previously 
unseen patterns during training.  

1.4. Learning Temporal Dependencies 

The duration of events such as seizures can vary dramatically from a few seconds to minutes. 
Further, neurologists use significant amounts of temporal context and adaptation in manually 
interpreting EEGs. They are very familiar with their patients and often can identify the patient by 
examining the EEG signal, especially when there are certain types of anomalous behaviors. In fact, 
they routinely use the first minute or so of an EEG to establish baseline signal conditions, or 
normalize their expectations, so that they can more accurately determine anomalous behavior. 
Recurrent neural networks (RNN), which date back to the late 1980’s, have been proposed as a 
way to learn such dependencies. Prior to this, successful systems were often based on approaches 
such as hidden Markov models, or used heuristics to convert frame-level output into longer-term 
hypotheses. In this section, we introduce several architectures that model long-term dependencies. 

1.4.1. Integration of Incremental Principal Component Analysis with LSTMs 

In the HMM/SdA structure proposed in Section 1.2.2, PCA was used prior to SdA for 
dimensionality reduction. Unlike HMM/SdA, applying LSTM networks directly to features 
requires more memory efficient approaches than PCA, or the memory requirements of the network 
can easily exceed the available computational resources (e.g., low-cost graphics processing units 
such as the Nvidia 1080ti have limited amount of memory – typically 8 Gbytes). Incremental 
principal components analysis (IPCA) is an effective technique for dimensionality reduction. This 
algorithm is often more memory efficient than PCA. IPCA has constant memory complexity 
proportional to the batch size, and it enables use of large datasets without a need to load the entire 
file or dataset into memory. IPCA builds a low-rank approximation for the input data using an 
amount of memory which is independent of the number of input data samples. It is still dependent 
on the dimensionality of the input data features but allows more direct control of memory usage 
by changing the batch size. 

In PCA, the first 𝑘 dominant principal components, 𝑦0(𝑛), 𝑦-(𝑛), . . . , 𝑦�(𝑛),	are computed directly 
from the input, 𝑥(𝑛) as follows:  

𝐹𝑜𝑟	𝑛	 = 	1, 2, . . . , 𝑑𝑜	𝑡ℎ𝑒	𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔: 

1)	𝑥0(𝑛) 	= 	𝑥(𝑛).	

2)	𝐹𝑜𝑟	𝑖	 = 	1, 2, . . . , min	(𝑘, 𝑛), 𝑑𝑜: 

𝑎)	𝑖𝑓	𝑖	 = 	𝑛, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑡ℎ𝑒	𝑖	𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑎𝑠	𝑦�(𝑛) = 	𝑥�(𝑛); 

	𝑏)	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	𝑐𝑜𝑚𝑝𝑢𝑡𝑒: 
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𝑦�(𝑛) =
�/0/�

F
𝑦�(𝑛 − 1) +
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||��(F/0)||

	,	 (5)	

𝑥��0(𝑛) = 𝑥�(𝑛) − 𝑥��(𝑛)
��(F)
||��(F)||

��(F)
||��(F)||

	,		 (6)	

where the positive parameter 𝑝 is called the amnesic parameter. Typically, 𝑝 ranges from 2 to 4. 
Then the eigenvector and eigenvalues are given by: 

𝑒� =
��(F)
||��(F)||

	𝑎𝑛𝑑	𝜆� = ||𝑦�(𝑛)||	.	 (7)	

In Fig. 7, we present an architecture that integrates IPCA and LSTM. In this system, samples are 
converted to features and the features are delivered to an IPCA layer that performs spatial context 
analysis and dimensionality reduction. The output of the IPCA layer is delivered to a one-layer 
LSTM for seizure classification task. The input to the IPCA layer is a vector whose dimension is 
the product of the number of channels, the number of features per frame and the number of frames 
of context. Preliminary experiments have shown that 7 seconds of temporal context performs well. 
The corresponding dimension of the vector input to IPCA is 22 channels × 26 features × 7 seconds 
× 10 frames/second, or a total of 4004 elements. A batch size of 50 is used and the dimension of 
its output is 25 elements per frame at 10 frames/second. In order to learn long-term dependencies, 
one LSTM with a hidden layer size of 128 and batch size of 128 is used along with Adam 
optimization and a cross-entropy loss function. 

1.4.2. End-to-End Sequence Labeling Using Deep Architectures 

In machine learning, sequence labeling is defined as assigning a categorial label to each member 
of a sequence of observed values. In automatic seizure detection, we assign one of two labels: 
seizure or non-seizure. This decision is made every epoch, which is typically a 1 sec interval. The 
proposed structures are trained in an end-to-end fashion, requiring no pre-training and no pre-
processing, beyond the feature extraction process that was explained in Section 1.2.1. For example, 
for an architecture composed of a combination of CNN and LSTM, we do not train CNN 
independently from LSTM, but we train both jointly. This is challenging because there are 
typically convergence issues when attempting this. 

In Fig. 8, we integrate 2D CNNs, 1-D CNNs and LSTM networks, which we refer to as 
CNN/LSTM, to better exploit long-term dependencies. Note that the way that we handle data in 
CNN/LSTM is different from the CNN/MLP system presented in Fig. 4. The input EEG features 
vector sequence can be thought of as being composed of frames distributed in time where each 
frame is an image of width (W) equal to the length of a feature vector. The height (H) equals the 
number of EEG channels and the number of image channels (N) equals one. The input to the 
network consists of T frames where T is equal to the window length multiplied by the number of 

 

Fig. 7. An architecture that integrates IPCA and LSTM 
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frames per second. In our optimized system, where features are available 10 times per second, a 
window duration of 21 seconds is used. The first 2D convolutional layer filters 210 frames (T = 21 
× 10) of EEGs distributed in time with a size of 26 × 22 × 1 (W = 26, H = 22, N = 1) using 16 
kernels of size 3 × 3 with a stride of 1. The first 2D max pooling layer takes as input a vector which 
is 260 frames distributed in time with a size of 26 × 22 × 16 and applies a pooling size of 2 × 2. 
This process is repeated two times with two 2D convolutional layers with 32 and 64 kernels of 
size 3 × 3 respectively and two 2D max pooling layers with a pooling size 2 × 2. 

The output of the third max pooling layer is flattened to 210 frames with a size of 384 × 1. Then a 
1D convolutional layer filters the output of the flattening layer using 16 kernels of size 3 which 
decreases the dimensionality in space to 210 × 16. Next, we apply a 1D max pooling layer with a 
size of 8 to decrease the dimensionality to 26 × 16. This is the input to a deep bidirectional LSTM 
network where the dimensionality of the output space is 128 and 256. The output of the last 
bidirectional LSTM layer is fed to a 2-way sigmoid function which produces a final classification 
of an epoch. To overcome the problem of overfitting and force the system to learn more robust 
features, dropout and Gaussian noise layers are used between layers. To increase nonlinearity, 
Exponential Linear Units (ELU) are used. Adam is used in the optimization process along with a 
mean squared error loss function. 

More recently, researchers proposed another type of recurrent neural network, known as a gated 
recurrent unit (GRU). A GRU architecture is similar to an LSTM but without a separate memory 
cell. Unlike LSTM, a GRU does not include output activation functions and peep hole connections. 
It also integrates the input and forget gates into an update gate to balance between the previous 
activation and the candidate activation. The reset gate allows it to forget the previous state. It has 
been shown that the performance of a GRU is on par with an LSTM, but a GRU can be trained 
faster. The architecture is similar to that Fig. 8, but we simply replace LSTM with GRU, in a way 
that the output of 1D max pooling is the input to a GRU where the dimensionality of the output 
space is 128 and 256. The output of the last GRU is fed to a 2-way sigmoid function which 
produces a final classification of an epoch. These two approaches, LSTM and GRU, are evaluated 
as part of a hybrid architecture that integrates CNNs with RNNs. 

 

Fig. 8. A deep recurrent convolutional architecture 
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1.4.3. Temporal Event Modeling Using LSTMs 

A final architecture we wish to consider is a relatively straightforward variation of an LSTM 
network. LSTMs are a special type of recurrent neural network which contains forget and output 
gates to control the information flow during its recurrent passes. LSTM networks have proven to 
be outperform conventional RNNs, HMMs and other sequence learning methods in numerous 
applications such as speech recognition and handwriting recognition. Our first implementation of 
LSTM was a hybrid network of both HMM and LSTM networks. A block diagram of 
HMM/LSTM system is shown in Fig. 9. Similar to the HMM/SdA model discussed before, the 
input to the second layer of the system, which is the first layer of LSTMs, is a vector of dimension 
2 × 22 × window length. We use PCA to reduce the dimensionality of the input vector to 20 and 
pass it to the LSTM model. A window size of 41 secs (41 epochs at 1 sec per epoch) is used for a 
32-node single hidden layer LSTM network. The final layer uses a dense neuron with a sigmoid 
activation function. The parameters of the models are optimized to minimize the error using a 
cross-entropy loss function and Adam. 

Next, we use a 3-layer LSTM network model. Identification of a seizure event is done based on an 
observation of a specific type of epileptiform activity called “spike and wave discharges”. The 
evolution of these activities across time helps identify a seizure event. These events can be 
observed on individual channels. Once observed, the seizures can be confirmed based on their 
focality, signal energy and its polarity across spatially close channels. The architecture is shown 
in Fig. 10. 

In the preprocessing step, we extract a 26-dimensional feature vector for an 11-frame context 
centered around the current frame. The output dimensionality for each frame is 10 x 26 (left) + 26 
(center) + 10 x 26 (right) = 546. The static LSTM cells are used with a fixed batch size of 64 and 
a window size of 7 seconds. The data is randomly split into subsets where 80% is used for training 
and 20% is used for cross-validation during optimization. The features are normalized and scaled 
down to a range of [0, 1] on a file basis, which helps the gradient descent algorithm (and its 
variants) to converge much faster. Shuffling was performed on batches to avoid training biases. 

The network includes 3 LSTM layers with (256, 64, 16) hidden layers followed by a 2-cell dense 
layer. The activation function used for all LSTM layers is a hyperbolic tangent function, tanh(), 
except for the final layer, which uses a softmax function to compress the range of output values to 

 

Fig. 9. A hybrid architecture that integrates HMM and LSTM. 
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[0,1] so they resemble posterior probabilities. A cross-entropy function is used for calculating loss. 
Stochastic gradient descent with Nesterov momentum is used for optimization. Nesterov 
momentum attempts to increase the speed of training by introducing a momentum term based on 
accumulated gradients of its previous steps and a correction term in the direction of the current 
gradient. This tends to reduce the amount of overshoot during optimization.  

The optimization is performed on the training data at a very high learning rate of 1.0 for the first 
five epochs. Cross-validation is performed after each epoch. After five epochs, if the cross-
validation loss stagnates for three consecutive epochs (referred to as “patience = 3”), learning rates 
are halved after each iteration until it anneals to zero. If the model fails to show consistent 
performance on a cross-validation set, then it reverts to the previous epoch’s weights and restarts 
training until convergence. This method helps models avoid overfitting on the training data as long 
as the training and cross-validation sets are equally diverse. 

The outputs of the models are fed to a postprocessor which is described in more detail in Section 
1.5. This postprocessor is designed based on domain knowledge and observed system behavior to 
remove spurious and misleading detections. This is implemented to incorporate spatial context. 
The postprocessor sets a threshold for hypothesis confidence, the minimum number of channels 
for target event detection and a duration constraint which must be satisfied for detection. For 
example, if multiple channels consistently detected spike and wave discharges in the same 9-
second interval, this event would be permitted as a valid output. Outputs from a fewer number of 
channels or over a smaller duration of time would be suppressed. 

We have now presented a considerable variety of deep learning architectures. It is difficult to 
predict which architecture performs best on a given task without extensive experimentation. 
Hence, in the following section, we review a wide-ranging study of how these architectures 
perform on the TUSZ seizure detection task. 

1.5. Experimentation 

Machine learning is at its core an experimental science when addressing real-world problems of 
scale. Real world data is complex and poses many challenges that require a wide variety of 
technologies to solve and can mask the benefits of one specific algorithm. Therefore, it is important 
that a rigorous evaluation paradigm be used to guide architecture decisions. In this section, we are 
focusing on the TUSZ Corpus because it is a very comprehensive dataset and it offers a very 
challenging task. 

 

Fig. 10. A channel-based long short-term memory (LSTM) architecture 
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The evaluation of machine learning algorithms in biomedical fields for applications involving 
sequential data lacks standardization. Common quantitative scalar evaluation metrics such as 
sensitivity and specificity can often be misleading depending on the requirements of the 
application. Evaluation metrics must ultimately reflect the needs of users yet be sufficiently 
sensitive to guide algorithm development. Feedback from critical care clinicians who use 
automated event detection software in clinical applications has been overwhelmingly emphatic 
that a low false alarm rate, typically measured in units of the number of errors per 24 hours, is the 
single most important criterion for user acceptance. Though using a single metric is not often as 
insightful as examining performance over a range of operating conditions, there is a need for a 
single scalar figure of merit. Shah et al. discuss the deficiencies of existing metrics for a seizure 
detection task and propose several new metrics that offer a more balanced view of performance. 
In this section, we compare the architectures previously described using one of these measures, 
the Any-Overlap Method (OVLP). We also provide detection error tradeoff (DET) curves. 

1.5.1. Evaluation Metrics 

Researchers in biomedical fields typically report performance in terms of sensitivity and 
specificity. In a two-class classification problem such as seizure detection, we can define four types 
of errors: 

• True Positives (TP): the number of ‘positives’ detected correctly 
• True Negatives (TN): the number of ‘negatives’ detected correctly 
• False Positives (FP): the number of ‘negatives’ detected as ‘positives’ 
• False Negatives (FN): the number of ‘positives’ detected as ‘negatives’  

Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are derived from these quantities. There 
are a large number of auxiliary measures that can be calculated from these four basic quantities 
that are used extensively in the literature. For example, in information retrieval applications, 
systems are often evaluated using accuracy ((TP+TN)/(TP+FN+TN+FP)), precision 
(TP/(TP+FP)), recall (another term for sensitivity) and F1 score ((2•Precision•Recall)/(Precision 
+ Recall)). However, none of these measures address the time scale on which the scoring must 
occur or how you score situations where the mapping of hypothesized events to reference events 
is ambiguous. These kinds of decisions are critical in the interpretation of scoring metrics such as 
sensitivity for many sequential decoding tasks such as automatic seizure detection. 

In some applications, it is preferable to score every unit of time. With multichannel signals, such 
as EEGs, scoring for each channel for each unit of time might be appropriate since significant 
events such as seizures occur on a subset of the channels present in the signal. However, it is more 
common in the literature to simply score a summary decision per unit of time, such as every 1 sec, 
that is based on an aggregation of the per-channel inputs (e.g., a majority vote). We refer to this 
type of scoring as epoch-based. An alternative, that is more common in speech and image 
recognition applications, is term-based, in which we consider the start and stop time of the event, 
and each event identified in the reference annotation is counted once. There are fundamental 
differences between the two conventions. For example, one event containing many epochs will 
count more heavily in an epoch-based scoring scenario. Epoch-based scoring generally weights 
the duration of an event more heavily since each unit of time is assessed independently. 

Term-based metrics score on an event basis and do not count individual frames. A typical approach 
for calculating errors in term-based scoring is the Any-Overlap Method (OVLP). This approach is 
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illustrated in Fig. 11. TPs are counted when the hypothesis overlaps with the reference annotation. 
FPs correspond to situations in which a hypothesis does not overlap with the reference. 

OVLP is a more permissive metric that tends to produce much higher sensitivities. If an event is 
detected in close proximity to a reference event, the reference event is considered correctly 
detected. If a long event in the reference annotation is detected as multiple shorter events in the 
hypothesis, the reference event is also considered correctly detected. Multiple events in the 
hypothesis annotation corresponding to the same event in the reference annotation are not typically 
counted as FAs. Since the FA rate is a very important measure of performance in critical care 
applications, this is another cause for concern. However, since OVLP metric is the most popular 
choice in the neuroengineering community, we present our results in terms of OVLP. 

Note that results are still reported in terms of sensitivity, specificity and false alarm rate. But, as 
previously mentioned, how one measures the errors that contribute to these measures is open for 
interpretation. Shah et al. studied this problem extensively and showed that many of these 
measures correlate and are not significantly different in terms of the rank ordering and statistical 
significance of scoring differences for the TUSZ task. We provide a software package that allows 
researchers to replicate our metrics and reports on many of the most popular metrics.  

1.5.2. Postprocessing with Heuristics Improves Performance 

Because epoch-based scoring produces a hypothesis every epoch (1 sec in this case), and these are 
scored against annotations that are essentially asynchronous, there is an opportunity to improve 
performance by examining sequences of epochs and collapsing multiple events into a single 
hypothesis. We have experimented with heuristic approaches to this as well as deep learning-based 
approaches and have found no significant advantage for the deep learning approaches. As is well 
known in machine learning research, a good heuristic can be very powerful. We apply a series of 
heuristics, summarized in Fig. 12, to improve performance. These heuristics are very important in 
reducing the false alarm rate to an acceptable level. 

The first heuristic we apply is a popular method that focuses on a model’s confidence in its output. 
Probabilistic filters are implemented to only consider target events which are detected above a 

 

Fig. 11. OVLP scoring is very permissive about the degree of overlap between the reference and 
hypothesis. For example, in Example 1, the TP score is 1 with no false alarms. In Example 2, 
the system detects 2 out of 3 seizure events, so the TP and FN scores are 2 and 1 respectively. 
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specified probability threshold. This method tends to suppress spurious long duration events (e.g., 
slowing) and extremely short duration events (e.g., muscle artifacts). This decision function is 
applied on the seizure (target) labels only. We compare each seizure label’s posterior with the 
threshold value. If the posterior is above the threshold, the label is kept as is; otherwise, it is 
changed to the non-seizure label, which we denote “background.” 

Our second heuristic was developed after performing extensive error analysis. The most common 
types of errors we observed were false detections of background events as seizures (FPs) which 
tend to occur in bursts. Usually these erroneous bursts occur for a very small duration of time (e.g., 
3 to 7 seconds). To suppress these, any seizure event whose duration is below a specified threshold 
is automatically considered as a non-seizure, or background, event. 

Finally, we also implement a smoothing method that collapses sequences of two seizure events 
separated by a background event into one long seizure event. This is typically used to eliminate 
spurious background events. If seizures are observed in clusters separated by small intervals of 
time classified as background events, these isolated events are most likely part of one longer 
seizure event. In this method, we apply a nonlinear function that computes a pad time to extend 
the duration of an isolated event. If the modified endpoint of that event overlaps with another 
seizure event, the intervening background event is eliminated. We used a simple regression 
approach to derive a quadratic function that produces a padding factor: 𝑤(𝑥) = −0.0083𝑑- +
0.45𝑑 − 0.66, were 𝑑 is the duration of the event. This method tends to reduce isolated 
background events when they are surrounding by seizure events, thereby increasing the specificity. 

The combination of these three postprocessing methods tends to decrease sensitivity slightly and 
reduce false alarms by two orders of magnitude, so their impact is significant. The ordering in 
which these methods is applied is important. We apply them in the order described above to 
achieve optimal performance. 

1.5.3. A Comprehensive Evaluation of Hybrid Approaches 

A series of experiments was conducted to optimize the feature extraction process. Subsequent 
attempts to replace feature extraction with deep learning-based approaches have resulted in a slight 

 

Fig. 12. An illustration of the postprocessing algorithms used to reduce the FA rate 
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degradation in performance. A reasonable tradeoff between computational complexity and 
performance was to split the 10 sec window, popular with neurologists who manually interpret 
these waveforms, into 1 sec epochs, and to further subdivide these into 0.1 sec frames. Hence, 
features were computed every 0.1 sec using a 0.2 sec overlapping analysis window. The output of 
the feature extraction system is 22 channels of data, where in each channel, a feature vector of 
dimension 26 corresponds to every 0.1 secs. This type of analysis is very compatible with the way 
HMM systems operate, so it was a reasonable starting point for this work. 

We next evaluated several architectures using these features as inputs on TUSZ. These results are 
presented in Table 2. The related DET curve is illustrated Fig. 13. An expanded version of the 
DET curve in Fig. 13 that compares the performance of these architectures in a region of the DET 
curve where the false positive rate, also known as the false alarm (FA) rate, is low is presented in 
Fig. 14. Since our focus is achieving a low false alarm rate, behavior in this region of the DET 
curve is very important. As previously mentioned, these systems were evaluated using the OVLP 
method, though results are similar for a variety of these metrics. 

It is important to note that the accuracy reported here is much lower than what is often published 
in the literature on other seizure detection tasks. This is due to a combination of factors including 
(1) the neuroscience community has favored a more permissive method of scoring that tends to 
produce much higher sensitivities and lower false alarm rates; and (2) TUSZ is a much more 
difficult task than any corpus previously released as open source. The evaluation set was designed 
to be representative of common clinical issues and includes many challenging examples of 
seizures. We have achieved much higher performance on other publicly available tasks, such as 
the Children’s Hospital of Boston MIT (CHB-MIT) Corpus, and demonstrated that the 
performance of these techniques exceeds that of published or commercially-available technology. 
TUSZ is simply a much more difficult task and one that better represents the clinical challenges 
this technology faces. 

 Also, note that the HMM baseline system, which is shown in the first row of  Table 2, and channel-
based LSTM, which is shown in the last row of Table 2, operate on each channel independently. 
The other methods consider all channels simultaneously by using a supervector that is a 
concatenation of the feature vectors for all channels. The baseline HMM system only classifies 
epochs (1 sec in duration) using data from within that epoch. It does not look across channels or 
across multiple epochs when performing epoch-level classification. 

Table 2. Performance of the proposed architectures on TUSZ 

System Sensitivity Specificity FA/24 Hrs. 

HMM 30.32% 80.07% 244 
HMM/SdA 35.35% 73.35% 77 

HMM/LSTM 30.05% 80.53% 60 

IPCA/LSTM 32.97% 77.57% 73 

CNN/MLP 39.09% 76.84% 77 

CNN/GRU 30.83% 91.49% 21 

ResNet 30.50% 94.24% 13 

CNN/LSTM 30.83% 97.10% 6 
Channel-Based LSTM 39.46% 95.20% 11 
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From Table 2 we can see that adding a deep learning structure for temporal and spatial analysis of 
EEGs can decrease the false alarm rate dramatically. Further, by comparing the results of 
HMM/SdA with HMM/LSTM, we find that a simple one-layer LSTM performs better than 3 layers 
of SdA due to LSTM’s ability to explicitly model long-term dependencies. Note that in this case 
the complexity and training time of these two systems is comparable. 

The best overall systems shown in Table 2 are CNN/LSTM and channel-based LSTM. 
CNN/LSTM is a doubly deep recurrent convolutional structure that models both spatial 
relationships (e.g., cross-channel dependencies) and temporal dynamics (e.g., spikes). For 
example, CNN/LSTM does a much better job rejecting artifacts that are easily confused with 
spikes because these appear on only a few channels, and hence can be filtered based on correlations 
between channels. The depth of the convolutional network is important since the top convolutional 
layers tend to learn generic features while the deeper layers learn dataset specific features. 
Performance degrades if a single convolutional layer is removed. For example, removing any of 
the middle convolutional layers results in a loss of about 4% in the sensitivity. However, it is 
important to note that the computational complexity of the channel-based systems is significantly 
higher than the systems that aggregate channel-based features into a single vector, since the 
channel-based systems are decoding each channel independently. 

 

Fig. 14. An expanded comparison of performance in a region where the FP rate is low. 

 

 

Fig. 13. A DET curve comparison of the proposed architectures on TUSZ. 
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As shown in Fig. 13 and Fig. 14, we find that CNN/LSTM has a significantly lower FA rate than 
CNN/GRU. We speculate that this is due to the fact that while a GRU unit controls the flow of 
information like the LSTM unit, it does not have a memory unit. LSTMs can remember longer 
sequences better than GRUs. Since seizure detection requires modeling long distance relationships, 
we believe this explains why there is a difference in performance between the two systems. 

 The time required for training for CNN/GRU was 10% less than CNN/LSTM. The training time 
of these two systems is comparable since most of the cycles are spent training the convolutional 
layers. We also observe that the ResNet structure improves the performance of CNN/MLP, but the 
best overall system is still CNN/LSTM. 

We have also conducted an open-set evaluation of the best systems, CNN/LSTM and channel-
based LSTM, on a completely different corpus – DUSZ. These results are shown in Table 3. A 
DET curve is shown in Fig. 15. This is an important evaluation because none of these systems 
were exposed to DUSZ data during training or development testing. Parameter optimizations were 
performed only on TUSZ data. As can be seen, at high FA rates, performance between the two 
systems is comparable. At low FA rates, however, CNN/LSTM performance on TUSZ is lower 
than on DUSZ. For channel-based LSTM, in the region of low FA rate, performance on TUSZ and 
DUSZ is very similar. This is reflected by the two middle curves in Fig. 15. The differences in 
performance for channel-based LSTM when the data changes are small. However, for 
CNN/LSTM, which gives the best overall performance on TUSZ, performance decreases rapidly 
on DUSZ. Recall that we did not train these systems on DUSZ – this is true open set testing. Hence, 
we can conclude in this limited study that channel-based LSTM generalized better than the 
CNN/LSTM system. 

 

Fig. 15. Performance of CNN/LSTM and channel-based LSTM on TUSZ and DUSZ. 

 

Table 3. A comparison of several CNN and LSTM architectures on DUSZ 

System Data Sensitivity Specificity FA/24 Hrs. 

CNN/LSTM TUSZ 30.83% 97.10% 6 
CNN/LSTM DUSZ 33.71% 70.72% 40 
Channel-Based LSTM TUSZ 39.46% 95.20% 11 
Channel-Based LSTM DUSZ 42.32% 86.93% 14 

 

Page 29Final RPPR

                         B.2 (accomplishments_v01.pdf)



1.5.4. Optimization of Core Components 

Throughout these experiments, we observed that the choice of optimization method had a 
considerable impact on performance. The CNN/LSTM system was evaluated using a variety of 
optimization methods, including Stochastic gradient descent (SGD), RMSprop, Adagrad, 
Adadelta, Adam, Adamax and Nadam. These results are shown in Table 5. The best performance 
is achieved with Adam, a learning rate of α = 0.0005, a learning rate decay of 0.0001, exponential 
decay rates of β0 = 0.9	and	β- = 0.999	for the moment estimates and a fuzz factor of ϵ = 10/a. 
Table 5 also illustrates that Nadam delivers comparable performance to Adam. Adam combines 
the advantages of AdaGrad which works well with sparse gradients, and RMSProp which works 
well in non-stationary settings. 

Similarly, we evaluated our CNN/LSTM using different activation functions, as shown in Table 
4. ELU delivers a small but measurable increase in sensitivity, and more importantly, a reduction 
in false alarms. The ELU activation function is defined as: 

f(x) = �𝑥																												𝑥	 > 0
𝛼. (𝑒s − 1)									𝑥	 ≤ 0	,	 (8)	

where 𝛼 is slope of negative section. The derivative of the ELU activation function is: 

f�(x) =  1																												𝑥	 > 0
𝛼. 𝑒s																					𝑥	 ≤ 0	.	 (9)	

The ReLU activation function is defined as:  

f(x) =  𝑥																												𝑥	 > 0
0																												𝑥	 ≤ 0	.	 (10)	

The corresponding derivative is:  

Table 5. Comparison of optimization algorithms 

System Sensitivity Specificity FA/24 Hrs. 

SGD 23.12% 72.24% 44 
RMSprop 25.17% 83.39% 23 
Adagrad 26.42% 80.42% 31 
Adadelta 26.11% 79.14% 33 
Adam 30.83% 97.10% 6 
Adamax 29.25% 89.64% 18 
Nadam 30.27% 92.17% 14 

 
Table 4. A comparison of activation functions 

System Sensitivity Specificity FA/24 Hrs. 

Linear 26.46% 88.48% 25 
Tanh 26.53% 89.17% 21 
Sigmoid 28.63% 90.08% 19 
Softsign 30.05% 90.51% 18 
ReLU 30.51% 94.74% 11 
ELU 30.83% 97.10% 6 
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f�(x) =  1																												𝑥	 > 0
0																												𝑥	 ≤ 0	.	 (11)	

ELU is very similar to ReLU except for negative inputs. ReLUs and ELUs accelerate learning by 
decreasing the gap between the normal gradient and the unit natural gradient. ELUs push the mean 
towards zero but with a significantly smaller computational footprint. In the region where the input 
is negative (𝑥 < 0), since an ReLU’s gradient is zero, the weights will not get adjusted. Those 
neurons which connect into that state will stop responding to variations in error or input. This is 
referred to as the dying ReLU problem. But unlike ReLUs, ELUs have a clear saturation plateau 
in their negative region, allowing them to learn a more robust and stable representation. 

Determining the proper initialization strategy for the parameters in the model is part of the 
difficulty in training. Hence, we investigated a variety of initialization methods using the 
CNN/LSTM structure introduced in Fig. 8. These results are presented in Table 6. The related 
DET curve is illustrated in Fig. 16. In our experiments, we observed that proper initialization of 
weights in a convolutional recurrent neural network is critical to convergence. For example, 
initialization of tensor values to zero or one completely stalled the convergence process. Also, as 
we can see in Table 6, the FA rate of the system in the range of 30% sensitivity can change from 
7 to 40, for different initialization methods. This decrease in performance and deceleration of 
convergence arises because some initializations can result in the deeper layers receiving inputs 
with small variances, which in turn slows down back propagation, and retards the overall 
convergence process. 

Best performance is achieved using orthogonal initialization. This method is a simple yet effective 
way of combatting exploding and vanishing gradients. In orthogonal initialization, the weight 
matrix is chosen as a random orthogonal matrix, i.e., a square matrix 𝑊 for which 𝑊�𝑊 = 𝐼. 
Typically, the orthogonal matrix is obtained from the QR decomposition of a matrix of random 
numbers drawn from a normal distribution. Orthogonal matrices preserve the norm of a vector and 
their eigenvalues have an absolute value of one. This means that no matter how many times we 
perform repeated matrix multiplication, the resulting matrix doesn't explode or vanish. Also, in 
orthogonal matrices, columns and rows are all orthonormal to one another, which helps the weights 
to learn different input features. For example, if we apply orthogonal initialization on a CNN 
architecture, in each layer, each channel has a weight vector that is orthogonal to the weight vectors 
of the other channels. 

Table 6. A comparison of initialization methods 

System Sensitivity Specificity FA/24 Hrs. 

Orthogonal 30.8% 96.9% 7 
Lecun Uniform 30.3% 96.5% 8 
Glorot Uniform 31.0% 94.2% 13 
Glorot Normal 29.5% 92.4% 18 
Variance Scaling 31.8% 92.1% 19 
Lecun Normal 31.8% 92.1% 19 
He Normal 31.3% 91.1% 22 
Random Uniform 30.2% 90.0% 25 
Truncated Normal 31.6% 87.8% 31 
He Uniform 29.2% 85.1% 40 
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Overfitting is a serious problem in deep neural nets with many parameters. We have explored five 
popular regularization methods to address this problem. The techniques collectively known as L1, 
L2 and L1/L2 prevent overfitting by adding a regularization term to the loss function. The L1 
regularization technique, also known as Lasso regression, is defined as adding the sum of weights 
to the loss function:  

𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 	𝜆∑ |𝑤�|�
�20 	,(12)	

where 𝑤 is the weight vector and 𝜆 is a regularization parameter. The L2 technique, also known 
as ridge regression, is defined as adding the sum of the square of the weights to the loss function:  

𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 	𝜆∑ 𝑤�-�
�20 	.	(13)	

The L1/L2 technique is a combination of both techniques:  

𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝜆∑ |𝑤�|�
�20 + 𝜆 ∑ 𝑤�-�

�20 	.	 (14)	

In an alternative approach, we used dropout to prevents units from excessively co-adapting by 
randomly dropping units and their connections from the neural network during training. 

We also studied the impact of introducing zero-centered Gaussian noise to the network. In this 
regularization method, which is considered a random data augmentation method, we add zero-
centered Gaussian noise with a standard deviation of 0.2 to all hidden layers in the network as well 
as the visible or input layer. The results of these experiments are presented in Table 7 along with 
a DET curve in Fig. 17. While L1/L2 regularization has the best overall performance, in the region 
where FA rates are low, the dropout method delivers a lower FA rate. The primary error modalities 
observed were false alarms generated during brief delta range slowing patterns such as intermittent 
rhythmic delta activity. Our closed-loop experiments demonstrated that all regularization methods 
presented in Table 7, unfortunately, tend to increase the false alarm rate for slowing patterns. 

Finally, in Fig. 18, an example of an EEG that is generated by the DCGAN structure of  Fig. 6 is 
shown. Note that to generate these EEGs, we use a generator block in DCGAN in which each EEG 
signal has a 7 sec duration. We apply a 25 Hz low pass filter on the output of DCGAN, since most 
of the cerebral signals observed in scalp EEGs fall in the range of 1–20 Hz (in standard clinical 
recordings, activity below or above this range is likely to be an artifact). Unfortunately, in a simple 

 

Fig. 16. A comparison of different initialization methods for CNN/LSTM 
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pilot experiment in which we randomly mixed actual EEGs with synthetic EEGs, expert annotators 
could easily detect the synthetic EEGs, which was a bit discouraging. Seizures in the synthetic 
EEGs were sharper and more closely resembled a slowing event. Clearly, more work is needed 
with this architecture. 

However, our expert annotators also noted that the synthetic EEGs did exhibit focality. An 
example of focality is when activity is observed on the CZ-C4 channel, we would expect to observe 
the inverse of this pattern on the C4-T4 channel. As can be seen in Fig. 18, in last two seconds of 
the generated EEG, we observe slowing activity on the CZ-C4 channel and the inverse pattern of 
the same slowing activity on the C4-T4 channel. Hence, it is possible to generate synthetic multi-
channel EEG signals with DCGAN that resemble clinical EEGs. However, DCGAN is not yet at 
the point where it is generating data that is resulting in an improvement in the performance of our 
best systems. 

1.6. Summary 

EEGs remain one of the main clinical tools that physicians use to understand brain function. New 
applications of EEGs are emerging including diagnosis of head trauma-related injuries which offer 
the potential to vastly expand the market for EEGs. A board-certified EEG specialist is required 
by law to interpret an EEG and produce a diagnosis. Since it takes several years of additional 
training post-medical school for a physician to qualify as a clinical specialist, the ability to generate 
data far exceeds the available expertise to interpret these data, creating a critical bottleneck. 
Despite rapid advances in deep learning in recent years, automatic interpretation of EEGs is still a 
very challenging problem. 

 

Fig. 17. A comparison of different regularization methods for CNN/LSTM 

Table 7. A comparison of performance for different regularizations 

System Sensitivity Specificity FA/24 Hrs. 

L1/L2 30.8% 97.1% 6 
Dropout 30.8% 96.9% 7 
Gaussian 30.8% 95.8% 9 
L2 30.2% 95.6% 10 
L1 30.0% 43.7% 276 
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We have introduced a variety of deep learning architectures for automatic classification of EEGs 
including a hybrid architecture that integrates CNN and LSTM technology. Two systems are 
particularly promising: CNN/LSTM and channel-based LSTM. While these architectures deliver 
better performance than other deep structures, their performance still does not meet the needs of 
clinicians. Human performance on similar tasks is in the range of 75% sensitivity with a false 
alarm rate of 1 per 24 hours. The false alarm rate is particularly important to critical care 
applications since it impacts the workload experienced by healthcare providers. 

The primary error modalities for our deep learning-based approaches were false alarms generated 
during brief delta range slowing patterns such as intermittent rhythmic delta activity. A variety of 
these types of artifacts have been observed during inter-ictal and post-ictal stages. Training models 
on such events with diverse morphologies is potentially one way to reduce the remaining false 
alarms. This is one reason we are continuing our efforts to annotate a larger portion of TUSZ. 

We are also exploring the potential of supervised GAN frameworks for spatio-temporal modeling 
of EEGs. Most of the research on GANs is focused on either unsupervised learning or supervised 
learning using conditional GANs. Given that the annotation process to produce accurate labels is 
expensive and time-consuming, we are exploring semi-supervised learning in which only a small 
fraction of the data has labels. GANs can be used to perform semi-supervised classification by 
using a generator-discriminator pair to learn an unconditional model of data and then tune the 
discriminator using the small amount of labeled data for prediction. 

We are also continuing to manually label EEG data. We invite you to register at our project web 
site, www.isip.piconepress.com/projects/tuh_eeg, to be kept aware of the latest developments. 

 

 

 

 

Fig. 18. Synthetic EEG waveforms generated using DCGAN. 
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2. Automatically recognize critical concepts in an EMR 

Goals Specific to Aim 2 in the main project: Automatically recognize critical concepts in an 
EMR: (1) EEG activities and their attributes, (2) EEG events, (3) medical problems, (4) medical 
treatments and (5) medical tests mentioned in the narratives of the EEG reports, along with their 
inferred forms of modality and polarity. When we considered the recognition of the modality, we 
took advantage of the definitions used in the 2012 i2b2 challenge on evaluating temporal relations 
in medical text. In that challenge, modality was used to capture whether a medical event discerned 
from a medical record actually happened, is merely proposed, mentioned as conditional, or 
described as possible. We extended this definition such that the possible modality values of 
“factual”, “possible”, and “proposed” indicate that medical concepts mentioned in the EEGs are 
actual findings, possible findings and findings that may be true at some point in the future, 
respectively. For identifying polarity of medical concepts in EEG reports, we relied on the same 
definition used in the 2012 i2b2 challenge, considering that each concept can have either a 
“positive” or a “negative” polarity, depending on any absent or present negation of its finding. 
Through the identification of modality and polarity of the medical concepts, we aimed to capture 
the neurologist’s beliefs about the medical concepts mentioned in the EEG report. Some of the 
medical concepts mentioned in the EEG reports that describe the clinical picture of a patient are 
similar to those evaluated in the 2010 i2b2 challenge, as they represent medical problems, tests 
and treatments, thus we could take advantage of our participation in that challenge and use many 
of the features we have developed for automatically recognizing such medical concepts. However, 
EEG reports also contain a substantial number of mentions of EEG activities and EEG events, as 
they discuss the EEG test. 

In the third year of the project, the team from the University of Texas at Dallas has developed the 
ability to automatically infer missing and unspecified information from the EEG reports. More 
specifically, we developed inference methods capable to generate the impression sections and the 
clinical correlations sections. When these sections are absent from the EEG report, critical 
concepts are missing and cannot be indexed in the patient cohort retrieval system. After we 
generated the missing information, we used the Multi-task Active Deep Learning (MTADL) 
framework for annotating (1) EEG activities and their attributes, (2) EEG events, (3) medical 
problems, (4) medical treatments and (5) medical tests mentioned in the narratives of the reports, 
along with their inferred forms of modality and polarity. The MTDADL framework was developed 
in the second year of the project. 

Inferring the over-all impression from EEG reports is a challenging problem because the over-all 
impression is informed by the neurologist’s subjective interpretation of the EEG recording as well 
as his or her neurological expertise and accumulated experience. In fact, automatically inferring 
the over-all impression requires accounting for the role of neurological knowledge and experience. 
Our deep learning model is able to automatically infer such knowledge by processing the natural 
language within EEG reports. The model operates in the following steps: 

[Step 1] word-level features are automatically extracted based on their context by incorporating the 
skip-gram model popularized by the Word2Vec framework; 
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[Step 2] report-level features are automatically extracted using either (i) a deep averaging network 
(DAN), or (ii) a recurrent neural network (RNN); and 

[Step 3] the most likely over-all impression is predicted from word- and report-level features through 
densely-connected “deep” neural layers. 

When writing an EEG report, the neurologist typically documents their over-all impression of the 
EEG: whether it indicates normal or abnormal brain activity. However, this information is not 
always explicitly stated in the impression section of an EEG report and must sometimes be inferred 
by the reader. Figure 1 illustrates three EEG reports indicating (a) an over-all impression of 
NORMAL, (b) an over-all impression of ABNORMAL, and (c) an underspecified over-all impression. 
Note, in Figure 1, we have normalized the order and titles of the sections in each EEG report; in 
reality, however, we observed a total of 1,176 unique section titles in our collection.  
INTRODUCTION: The EEG was 
performed using the standard 10/20 
electrode placement system with an EKG 
electrode and anterior temporal electrodes. 
The EEG was recorded during wakefulness 
and photic stimulation, as well as 
hyperventilation, activation procedures 
were performed. 

MEDICATIONS: Depakote ER 
 

HISTORY: A 21-year-old man with a 
history of seizures since age 15. Has had 
five episodes since 2005, all tonic-clonic 
seizures with loss of consciousness lasting 
one to two minutes and postictal confusion.  

 
DESCRIPTION: The EEG opens to a 
well-formed 9 to 10Hz posterior dominant 
rhythm, which is symmetrically reactive to 
eye opening and eye closing. There is a 
normal amount of frontal central beta 
rhythm seen. The recording is only seen 
during wakefulness and he has normal 
response to hyperventilation and photic 
stimulation. 

 
 
 
IMPRESSION: Normal EEG in 
wakefulness. 

 
 
 
 
CLINICAL CORRELATION: This 
awake EEG is normal. Please note that a 
normal EEG does not exclude the diagnosis 
of epilepsy. 

INTRODUCTION: Digital video 
EEG is performed at the bedside using 
standard 10-20 system of electrode 
placement with one channel of EKG. 
The patient is sitting out of her bed. 
She is very confused and poorly 
cooperative. 
 

MEDICATIONS: Keppra. 
 

HISTORY:  An elderly woman with 
change in mental status, waxing and 
waning mental status, COPD, morbid 
obesity, and markedly abnormal EEG. 
Digital 3EG was done on June 27, 
2011. 

DESCRIPTION: Much of the EEG 
includes muscle artifact. When she Is 
cooperative, there is a theta pattern 
with bursts of frontal delta. Muscle 
artifact is remarkable when the patient 
becomes a bit more agitated. As she 
goes off to sleep, the deltas slowed 
considerably. There are handful of 
triphasic waves noted. Heart rate 84 
BPM. 

 
 
IMPRESSION: This is an abnormal 
EEG due to 1. Prominent versus 
frontally predominant rhythmic delta. 
2 Excess beta. 3. Excess theta. 

INTRODUCTION: Digital video EEG is performed at 
bedside using standard 10-20 system of electrode 
placement with 1 channel of EKG. The patient is agitated. 
 
 
 
 
 

MEDICATIONS: Keppra, Aricept, Senna, Aricept, 
ASA, famotidine 

HISTORY: 84-year-old woman of unknown handedness 
with advanced dementia, failure to thrive, change in 
mental status, TIA, dementia. 

 
 
 
DESCRIPTION: As the tracing opens, the patient has a 
lot of muscle activity. She seems to have facial twitching 
and grimacing and it almost looks like she has a suck or 
snout reflexes. Although the patient does not appear to 
interact with the physician in any way, this produces an 
alerting response with an increase in 5-7 hertz theta 
activity in the background. The overall background is 1 of 
shifting asymmetries with theta from side as with beta 
sometimes better represented on either side, shifting 
arrhythmic delta and intermittent, subtle attenuations in 
the background.  Following admission of the Ativan, the 
EEG becomes somewhat more discontinuous. 

IMPRESSION: This EEG is similar to the 2 previous 
studies this year which demonstrated a slow background. 
Each recording seems to demonstrate an increase in 
slowing. The administration of Ativan produced a 
somewhat discontinuous pattern as may be anticipated in 
a patient with advanced dementia. 

CLINICAL CORRELATION: No epileptiform features 
were seen. 

(a) (b) (c) 

Figure 1. Examples of EEG reports with (a) an over-all impression of NORMAL, (b) an over-all impression 
of ABNORMAL, and (c) an underspecified over-all impression which does not state whether the EEG was 
normal or abnormal. 

When producing an over-all impression, the neurologist interprets the EEG signal as well as the 
patient’s clinical history, medications, and the setting of the EEG. For example, consider report 
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(b) from Figure 1: determining that the EEG was abnormal required identifying, among other 
findings, the frontal delta rhythm, while in report (c) the impression involves the drug Ativan and 
the patient’s prior diagnoses of dementia. These examples show that automatically inferring the 
over-all impression requires accounting for high-level semantic information in EEG reports 
capturing the characteristics of the patient and the described EEG signal. Moreover, we observed 
that not all EEG reports included an impression section. 

The UTD team developed an approach for automatically inferring the overall impression from an 
EEG report even when the impression section is omitted. To accomplish this, we combined deep 
neural learning with the largest collection of publicly available EEG reports – the Temple 
University Hospital (TUH) EEG Corpus. The TUH EEG Corpus contains 16,495 de-identified 
EEG reports generated at TUH between 2002 and 2013. We found that 15,313 reports contained a 
clear over-all impression, while 1,029 reports had a missing or underspecified over-all impression. 
To train and evaluate our model, we considered only the reports with a clear over-all impression 
and (1) identified the over-all impression (which was used as the gold-standard) and (2) removed 
the impression section from the report. This allowed us to design a deep neural network to predict 
the over-all impression for EEG reports without relying on the impression section. We used a 
standard 3:1:1 split for training, development, and testing.  

When designing our deep neural network, we noticed that the natural language content of each 
EEG report was far from uniform. The number of sections, the title of sections, the number of 
sentences in each section, and the lengths of each sentence all varied between individual 
neurologists and individual reports. Moreover, when describing an EEG recording, each 
neurologist wrote in a different style: while some neurologists preferred terse economical 
language, others provided meticulous multi-paragraph discussions. Thus, it was necessary to 
design the deep neural network to be independent of the length (and style) of the language used by 
the neurologist. Our approach for determining the over-all impression from EEG reports takes 
advantage of recent advances in deep learning in order to (1) automatically preform high-level 
feature extraction from EEG reports and (2) determine the most likely overall impression based on 
trends observed in a large collection of EEG reports. High-level feature extraction was performed 
automatically and was accomplished in two steps. In the first step, we learned word-level features 
for every word used in any EEG report. In the second step, we learned how to combine and 
compose the word-level features to produce high-level features characterizing the report itself. 

Formally, we represent each EEG report as a tensor, 𝑹 ∈ ℝ¨×ª	, where 𝑁 is the number of words 
in the report and 𝑉 is the size of the vocabulary or number of unique words across all EEG reports 
in the training set (in our case, 𝑉 = 39,131). Each row 𝑹� is known as a one-hot vector which 
indicates that the 𝑖¬ word in the report corresponds to the 𝑗¬ word in the vocabulary in by 
assigning a value of one to 𝑹�¯ and a value of zero to all elements. The overall impression of an 
EEG report (obtained from the removed impression section) is represented as 𝑐 ∈ 𝐶 where 𝐶 =
{NORMAL, ABNORMAL}. The goal of the deep neural network presented in this paper is to determine 
the optimal parameters 𝜃 which are able to predict the correct assignment of 𝑐 for a report 𝑹: 

𝜃 = argmax
»¼

½ log𝑃(𝑐	|	𝑹; 𝜃¾)
(G,𝑹)	∈	𝒳

(1) 
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where 𝒳 indicates the training set of EEG reports. Unfortunately, determining the over-all 
impression directly from the words in each report is difficult. For example, spikes and sharp waves 
typically indicate abnormal brain activity but can be non-pathologic if they occur in the temporal 
regions of the brain during sleep: small sharp spikes in the temporal region of the brain during 
sleep are known as benign epileptiform transients of sleep (BETS) and do not indicate an abnormal 
EEG. Consequently, to correctly predict the overall impression 𝑐, it is important to consider high-
level features characterizing the content each report rather than individual words. We extract these 
features automatically as part of our deep learning architecture. Specifically, we factorize the 
distribution used in Equation 1 into three factors:  

	𝑃(𝑐	|	𝑹; 𝜃) = 𝑃(𝑾	|	𝑹) ⋅ 𝑃(𝒆	|	𝑾) ⋅ 𝑃(𝑐	|	𝒆; 𝜃) (2) 

The three factors in Equation 2 correspond to the three steps used to train our deep learning model: 

(1) produce a high-level feature representation 𝑾 of 
every word in 𝑹, i.e. 𝑃(𝑾	|	𝑹); 

(2) create a single high-level feature representation 𝒆 for 
the report itself by combining and composing the high-
level feature representations of every word in the 
report,	i.e. 𝑃(𝒆	|	𝑾); and  

(3) determine the most likely over-all impression 𝑐 for 
the report based on its high-level feature representation 
𝒆, i.e. 𝑃(𝑐	|	𝒆; 𝜃).  

Next, we will describe each of these steps in detail 
followed by a description of the training and application 
of our model to infer underspecified over-all 
impressions from EEG reports, as well as details on how 
model parameters were selected and the model 
parameters used in our experiments. 

Learning Word-Level Features from EEG Reports 

We determined a high-level feature representation for each possible word 𝑣 ∈ [1, 𝑉] by examining 
the context around that word in each report, where 𝑉 is the size of the vocabulary (described 
above). To do this, we adapt the skip-gram model. The skip-gram model learns a single feature 
representation for every word in the vocabulary based on all of its contexts across all EEG reports 
in the training set. Specifically, we learn the projection matrix 𝑼 ∈ ℝª×Å where each row 𝑼Æ is 
the high-level feature representation of the 𝑣¬ word in the vocabulary. Figure 2 shows the 
architecture of the skip-gram model when considering the word EEG from the context Digital 
video EEG is performed (from report (c) in Figure 1). The goal of the skip-gram model is to learn 
the projection matrix 𝑼 which, when multiplied with the one-hot vector for EEG, is best able to 
predict the one-hot vectors associated with each context word, e.g., Digital, video, is, and 
performed. In this way, the skip-gram model is able to learn a representation for the word EEG 
which captures the facts that (1) an EEG can be performed and that (2) digital video is a type of 

Figure 2. The skip-gram model used to learn 
word-level features for each word in an EEG 
report, shown on report (c) from Figure 1. 
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EEG. We learn the optimal project matrix 𝑼 by training a separate neural network in which the 
input is every word 𝑹� ∈ 𝑹 in every report 𝑹 ∈ 𝒳, and the goal is to predict the 𝑛 previous and 𝑛 
following words using the projection matrix 𝑼:  

 𝑼 = max
𝑼¾

½½Ç½ 𝑃(𝑹��E|𝑹�; 𝑼′)
/0

E2/F

+½𝑃(𝑹��E|𝑹�; 𝑼′)
E2F

E20

É
¨

�20𝑹∈𝒳

 (3) 

where 

 𝑃(𝑹��E|𝑹�; 𝑼′) =
exp(𝑹��E𝑼′ ⋅ 𝑹�𝑼′)
∑ exp(𝑹�𝑼′Æ)ª
Æ20

 (4) 

In our experiments, we used 𝑛 = 2. Learning the optimal projection matrix 𝑼 allows the model to 
produce a high-level feature representation of every word in the report, 𝑾 ∈ ℝ¨×Å, by simply 
multiplying 𝑹 with 𝑼:  

 𝑾 = 𝑹𝑼 (5) 

where each 𝑾� indicates the word-level feature vector associated with 𝑹�. The word-level feature 
vectors (𝑾) learned by the skip-gram model have a number of useful algebraic properties. Of 
particular note is their ability to capture semantic similarity, for example, closest feature vector to 
the word generalized is that of the word diffuse, and the closest feature vector to focal is that of 
the word localized. This highlights the ability of the skip-gram model to capture the fact that both 
generalized and diffuse refer to activity spread across a large area of the brain (e.g. both 
hemispheres, multiple lobes), while focal and localized describe activity concentrated in one or 
two regions of the brain. 

Learning EEG Report-Level Features 

Representing each word in a report as an independent feature vector is not sufficient to predict the 
overall impression. Instead, it is necessary to learn how to combine and compose the word-level 
feature vectors 𝑾 to create a single high-level feature vector for the report, 𝒆. We considered two 
different neural architectures for learning 𝒆. The first model is based on a Deep Averaging Network 
(DAN), while the second uses a Recurrent Neural Network (RNN). Both architectures enable the 
model to learn a semantic composition but in different ways. Specifically, a DAN learns an un-
ordered composition of each word in the document, while an RNN learns an ordered composition. 
However, the representation learned by an RNN often struggles to account for long-distance 
interactions and favors the latter half of each document. Consequently, we evaluated both models 
in order to determine the most effective architecture for learning report-level features from EEG 
reports. 

Deep Averaging Network for Inferring Underspecified Information. The Deep Averaging 
Network (DAN) learns the report-level feature representation 𝒆 of a report based on its word-level 
features 𝑾. To understand the need for report-level features, consider the excerpt: 

Ex0: …a well-formed 9 to 10Hz posterior dominant rhythm, which is symmetrically reactive to eye 
opening and eye closing.  
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Interpreting Ex0 requires understanding (1) that the words posterior dominant rhythm describe a 
single EEG activity, and (2) that the posterior dominant rhythm is well-formed. Clearly, word-
level features are not sufficient to capture this information. Instead we would like to extract high-
level semantic features encoding information across words, sentences, and even sections of the 
report. The DAN used in our model accomplishes these goals using five layers, as shown in Figure 
3. The first two layers learn an encoding of each word 𝑾� associated with the report, and the third 
layer combines the resulting encodings to produce an encoding for the report itself. The final two 
layers refine this encoding to produce 𝒆.  To learn an encoding for each word, we apply two 
densely-connected Rectified Linear Units (ReLUs). The rectifying activation functions used in 
ReLUs have several notable advantages, in particular the ability to allow for sparse activation. This 
enables learning which words in an EEG report have the largest impact the over-all impression. 
By using a ReLU for the first layer of our encoder, each word represented by feature vector 𝑾� is 
projected onto an initial encoding vector 𝒓�

(0). The ReLU used in the second layer of the encoder 
produces a more expressive14 encoding 𝒓�

(-). Both encodings are generated as: 

 𝒓�
(0) = max(𝑺0 ⋅ 𝑹� + 𝒃0, 0) (6) 

 𝒓�
(-) = maxÏ𝑺- ⋅ 𝒓�0 + 𝒃-, 0Ð (7) 

where 𝑺0, 𝑺- 	∈ 𝜃 are the learned weights of the connections between the neurons in layers 1 and 
2, and 𝒃0, 𝒃- ∈ 𝜃 are bias vectors. While the encoding 𝒓�

(-) represents information obtained from 
each word vector 𝑾� ∈ 𝑾, we are interested in producing a single representation that captures the 
information about the entire EEG report. This is accomplished by layers 3 through 5. In layer 3, 
the piece-wise average of all word vector encodings is produced: 

 𝒂 =
1
𝑁
½𝒓�

(-)
¨

�23

 (8) 

Figure 3. Architecture of the Deep Averaging Network (DAN) used to combine and compose 
word-level features 𝑾0⋯𝑾¨ extracted from the EEG Report shown in Figure 1(c). 
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Layers 4 and 5 act as additional “deep” layers which enhance the quality of the encoding. To 
implement layers 4 and 5 we used two additional ReLUs: 

 𝒓(Ó) = max(𝑺Ó ⋅ 𝒂 + 𝒃Ó, 0) (9) 

 𝒆 = maxÏ𝑺Ô ⋅ 𝒓(Ó) + 𝒃Ô, 0Ð (10) 

where 𝑺Ó, 𝒃Ó, 𝑺Ô, 𝒃Ô ∈ 𝜃 are the learned weights and biases used by each ReLU layer. Equations 6 
through 10 enable our model to generate a fixed-length high-level vector, 𝒆, which encodes 
semantic information about the entire EEG report. 

Recurrent Neural Network for Inferring Underspecified Information. In contrast to the DAN, 
the recurrent neural network (RNN) used in our model jointly learn how to (1) map a sequence of 
word-feature vectors (𝑾0,⋯𝑾¨)	to a sequence of hidden memory states (𝒎0,⋯𝒎¨) as well as 
to (2) map the hidden memory states to a sequence of output vectors (𝒚0,⋯ , 𝒚¨), as illustrates in 
Figure 4. Formally, for each word 𝑖 ∈ [1, 𝑁] where 𝑁 is the length of the EEG report: 

 𝒎� = 𝜎(𝑺< ⋅ [𝑾� +𝒎�/0]) (11) 

 𝒚� = 𝜎Ï𝑺� ⋅ 𝒎�Ð (12) 

where 𝑺<, 𝑺� ∈ 𝜃 are the learned weights connecting 
the neurons in each layer. Unfortunately, RNNs are 
known to have difficulties learning long-range 
dependencies between words. For example, consider the 
excerpt: 

Ex-: periodic delta with associated periodic paroxysmal fast 
activity identified from the left hemisphere with a generous 
field of spread including the centrotemporal and 
frontocentral region.   

A standard RNN would be unlikely to infer that the 
periodic delta activity was observed in the 
centrotemporal and frontocentral regions of the brain 
due to the significant number of words between them. In 
order to enable our RNLM to overcome this barrier, we 
implement each of our RNNs as a stacked series of long 
short-term memory units (LSTMs) which are able to 
learn long-range dependencies by accumulating an 
internal memory. 

Inferring the Over-all Impression from EEG 
Reports 

The learned high-level feature vector 𝒆 is used to 
determine the most likely over-all impression 
associated with the EEG report. Given 𝒆, we 

Figure 4. Architecture of the Recurrent 
Neural Network (RNN) used to combine 
and compose word-level features W0⋯W. 
extracted from an EEG Report, shown on 
report (c) from Figure 1. 
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approximated the likelihood of assigning the over-all impression 𝑐 to the EEG report associated 
with 𝒆, i.e. 𝑃(𝑐	|	𝒆; 	𝜃), with a densely connected logistic sigmoid layer. The sigmoid layer 
computes a floating point number �̃� ∈ [0, 1] such that �̃� ≤ 0.5 if 𝑐 = NORMAL, and �̃� > 0.5 if 𝑐 =
ABNORMAL: 

 �̃� = 𝜎(𝑺G ⋅ 𝒆 + 𝒃G) (13) 

where 𝑺G, 𝒃G ∈ 𝜃 are the learned weights and bias vector for the sigmoid layer, and 𝜎 is the standard logistic 
sigmoid function, 𝜎(𝑥) = 𝑒s

𝑒s�0Ú . Equation 19 allows us to approximate the likelihood of the over-all 
impression 𝑐 ∈ 𝐶 being assigned to the report associated with 𝒆 as: 

 𝑃(𝑐	|	𝒆; 𝜃) = �1 − �̃�, if	𝑐 = NORMAL
�̃�, if	𝑐 = ABNORMAL

 (14) 

Training the Model with EEG Reports 

We trained our model by learning the parameters 𝜃 which minimize the loss when computing the 
over-all impression 𝑐 for each report 𝑹 in the training set 𝒳. In our experiments, we used the cross-
entropy loss between the predicted over-all impression 𝑐 and the gold-standard value �̂� indicated 
by the neurologist (in the removed impression section). Formally: 

 ℒ(𝜃) ∝ ½ [𝑃(𝑐	|	𝒆; 𝜃) ⋅ 𝑃(𝒆	|	𝑾) ⋅ 𝑃(𝑾	|	𝑹)] ⋅ log 𝑃(�̂�)
(𝑹,Ĝ)	∈𝒳

 (15) 

where 𝑃(�̂�) = 1 if 𝑐 = ABNORMAL, and zero otherwise. We trained our model using adaptive moment 
estimation (ADAM). 

Inferring Underspecified Information from EEG Reports 

The optimal over-all impression 𝑐 for a new EEG report 𝑹 can be determined in three steps: (1) 
transform 𝑹 into a word-level feature matrix, 𝑾 = 𝑼𝑹, using the projection matrix 𝑼 learned from 
the training data; (2) transform the word-level feature matrix 𝑾 into a single report-level feature 
vector 𝒆 using either the DAN or the RNN; and (3) determine the over-all impression 𝑐 from the 
report-level feature vector 𝒆. 

Implementation Details 

In our experiments, we implemented our model using Tensorflow (version 0.8). Because ADAM 
tunes the learning rate as it trains, we initialized ADAM using the default parameters in Tensorflow 
(learning rate = 0.001, 𝛽0 = 0.9, 𝛽- = 0.999, and 𝜖 = 𝑒/a). For the purposes of our experiments, 
gradient clipping was not applied, and no regularization terms were added. Model parameters were 
determined using a grid-search as follows: skip-gram, ReLU. and LSTM dimensionality were 
chosen from {100, 200, 500, 1000}. When performing grid search, we constrained all ReLUs 
to share the same dimensionality. We found the optimal dimensionality for the skip-gram 
embeddings, ReLU layers, and LSTM to each be 200 dimensions/units.  

For Aim 2 of the project, the UTD team has also developed a novel Deep Section Recovery Model 
(DSRM) which applies deep neural learning on a large body of EEG reports in order to infer the 
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expected clinical correlations for a patient based solely on the natural language content in his or 
her EEG report. The paper that reported on the DSRM approach received the Homer Warner 
award at the 2017 AMIA Symposium. The DSRM was trained and evaluated using the Temple 
University Hospital (TUH) EEG Corpus5 by (a) identifying and removing the clinical correlation 
section written by the neurologist and (b) training the DSRM to infer the entire clinical correlation 
section from the remainder of the report. At a high level, the DSRM can be viewed as operating 
through two general steps: 

Step 1: word- and report- level features are automatically extracted from each EEG report to 
capture contextual, semantic, and background knowledge; and 

Step 2: the most likely clinical correlation section is jointly (a) inferred and (b) expressed 
through automatically generated natural language. 

 

 

Figure 5: Simplified Architecture of the Deep Section Recovery Model (DSRM). 

Inferring the Clinical Correlation Section 

When writing the clinical correlation section of an EEG report, the neurologist considers the 
information described in the previous sections, such as relevant clinical history or notable 
epileptiform activities, as well as their accumulated medical knowledge and experience with 
interpreting EEGs. This type of background knowledge is difficult to capture with hand-crafted 
features because it is rarely explicitly stated; rather, it is implied through the subtlety, context, and 
nuance afforded the neurologist by natural language. Consequently, to approach this problem, we 
present a deep neural network architecture which we refer to as the Deep Section Recovery Model 
(DSRM). Illustrated in Figure 5, the DSRM consists of two major components: 

• the Extractor which learns how to automatically extract (a) feature vectors representing 
contextual and background knowledge associated with each word in a given EEG report 
as well as (b) a feature vector encoding semantic, background, and domain knowledge 
about the entire report; and 

• the Generator which learns how to use the feature vectors extracted by the Extractor to 
produce the most likely clinical correlation section for the given report while also 
considering the semantics of the natural language it is generating. 

𝑺

𝑹 Extractor 𝒉𝟏,𝒉𝟐,⋯ , 𝒉𝑵
𝒆 Generator 𝑺′

EEG Report

Clinical Correlation 
Section

Extracted Feature Vectors

Deep Section Recovery Model

(only while training)
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In order to train and evaluate the DSRM, we identified all EEG reports in the TUH EEG Corpus 
which contained a CLINICAL CORRELATION section and removed that section from the report. 
The model was trained to recover the missing clinical correlation section in the training set and 
evaluated based on the clinical correlation sections it inferred for reports in the test set. In the 
remainder of this section, we describe (1) the natural language pre-processing steps applied to the 
data, (2) the mathematical problem formulation, (3) the Extractor, (4) the Generator, (5) how the 
parameters of the model are learned from the training set, and (6) how the learned parameters are 
used to infer the most likely clinical correlation section for a (new) EEG report. 

Natural Language Pre-processing 

Before applying the Deep Section Recovery Model, we pre-processed each EEG report with 
three basic natural language processing steps: (1) sentence boundaries were identified using the 
OpenNLP sentence splitter; (2) word boundaries were detected using the GENIA tokenizer, and 
(3) section boundaries were identified using a simple regular expression search for capitalized 
characters ending in a colon. These three pre-processing steps allowed us to represent each 
section of an EEG report as a sequence of words in which the symbols 〈𝑠〉 and 〈/𝑠〉 were used to 
indicate the start and end of each sentence, 〈𝑝〉 and 〈/𝑝〉 were used to indicate the start and end of 
each section, and 〈𝑑〉 and 〈/𝑑〉 were used to indicate the start and end of each report. 

Problem Formulation 

In order to formally define the problem, it is necessary to first define the vocabulary as the set of 
all words observed at least once in any section (including the clinical correlation section) of any 
EEG report in the training set. Let V indicate the size or number of words in the vocabulary. This 
allows us to represent an EEG report as sequence of V -length one-hot vectors corresponding to 
each word in the report, i.e., R∈{0,1}N×V where N is the length or number of words in the report. 
Likewise, we also represent a clinical correlation section as a sequence of V -length one-hot 
vectors; in this case, S∈{0,1}M×V where M is the number of words in the clinical correlation 
section. The goal of the Deep Section Recovery Model is to infer the most likely clinical 
correlation section for a given EEG report. Let θ be the learn-able parameters of the model. 
Training the model equates to finding the values of θ which assign the highest probabilities to the 
gold-standard (neurologist-written) clinical correlation sections for each EEG report in the training 
set; formally: 

 𝜽 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽¼

	Pr	(𝑺|𝑹; 𝜽¾)	 (16) 

We decomposed the probability of a particular clinical correlation section being produced for a 
given EEG report (i.e., correctly identifying and describing the clinical correlations in the report) 
into two factors: 

	 𝑃𝑟(𝑺|𝑹; 𝜽) ≈ 	𝑃𝑟	(𝒆, 𝒉𝟏,⋯ , 𝒉𝑵|𝑹; 𝜽)èééééééêééééééë
ìsEíîGEïí

∙ 𝑃𝑟	(𝑺|𝒆, 𝒉𝟏,⋯ , 𝒉𝑵; 𝜽)èééééééêééééééë
pÔFÔíîEïí

	 (17) 

where the first factor is implemented by the Extractor and the second factor is implemented by 
the Generator. 
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The Extractor 

The language in the clinical correlation section is intended to relate findings and observations 
described in the previous sections of the record to the over-all clinical picture of the patient. 
Consequently, in order to automatically produce the clinical correlation section, the goal of the 
Extractor is to automatically (1) identify important neurological findings and observations (e.g., 
“background slowing”); (2) identify descriptions of the patient’s clinical picture (e.g., “previous 
seizure”); and (3) determine the inferred relationship(s) between each finding and the clinical 
picture as described by the EEG report or implied by medical knowledge and experience (e.g., 
“observed epileptiform activity is consistent with head trauma”). It should be noted that the length 
and content of each EEG report varies significantly throughout the collection, both in terms of the 
sections included in each report as well as the content in each section. Moreover, when producing 
an EEG report, each neurologist writes in a different style, ranging between terse 12-word sections 
to 600-word sections organized into multiple paragraphs. Consequently, the role of the Extractor 
is to overcome these barriers and extract meaningful feature vectors which characterize semantic, 
contextual, and domain knowledge. To address these requirements, we implemented the Extractor 
using the deep neural architecture illustrated in Figure 6. The Encoder relies on five neural layers 
to produce feature vectors for each word in the report (h1,···,hN) as well as a feature vector 
characterizing the entire report (e): 

Layer 1: Embedding. The role of the 
embedding layer is to embed each word in the 
EEG report 𝑹� (represented as a V-length 1-
hot vector) into a K-length continuous vector 
𝒓�
(0)(where 𝐾 ≪ 𝑉). This is accomplished by 

using a fully connected linear projection layer, 
𝒓�
(0) = 𝑹�𝑾Ô + 𝒃Ô, where (𝑾Ô ∈ ℝóôÅ, 𝒃Ô ∈
ℝªs0) ∈ 𝜽 correspond to the vocabulary 
projection matrix and bias vector learned by 
the Extractor. 

Layer 2: Bidirectional Recurrent Neural 
Network. Layer 2 implements a bidirectional 
recurrent neural network (RNN) using two 
parallel RNNs trained on the same inputs: (1) 
a forward RNN which processes words in the 
EEG report in left-to-right order and (2) a 
backward RNN which processes words in the 
EEG report in right-to-left order. This allows 
the forward RNN to extract features capturing 
any short- or long-range contextual 
information about each word in R provided by 
any preceding words in the EEG report (e.g. 
that “slowing” is negated in “no background 
slowing”). Likewise, the backward RNN 
extracts features capturing any short- or long-

c c 𝒉𝑵

𝒇𝟏 𝒇𝟐
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Figure 6: Detailed Architecture of the 
Extractor 
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range contextual information provided by successive words in the EEG report (e.g. that 
“hyperventilation” described in the introduction section may influence the inclusion of “spike and 
wave discharges” in the EEG impression or description sections). Formally, the forward RNN 
maps the series word embeddings 𝒓0

(0), … , 𝒓¨
(0) to a series of “forward” word-level feature vectors 

𝒓0
(->), … , 𝒓¨

(->), while the backward RNN maps 𝒓0
(0), … , 𝒓¨

(0) to a series of “backward” word-level 
feature vectors 𝒓0

(-ö), … , 𝒓¨
(-ö). In our model, the forward and backward RNNs were implemented 

as a series of shared Gated Recurrence Units (GRUs). 

Layer 3: Concatenation. The concatenation layer combines the forward and backward word-
level feature vectors to produce a single feature vector for each word, namely, 𝒓¨

(Ó) =
÷𝒓¨
(->); 𝒓¨

(-ö)ø where [x;y] indicates the concatenation of vectors x and y 

Layer 4: 2nd Bidirectional Recurrent Neural Network. In order to allow the model to extract 
more expressive features, we use a second bidirectional RNN layer. This layer operates identically 
to the bidirectional RNN in Layer 2, except that the word-level feature vectors produced in Layer 
3, i.e., 𝒓0

(Ó), … , 𝒓¨
(Ó), are used as the input to the bidirectional RNN (instead of  𝒓0

(0), … , 𝒓¨
(0)	used in 

Layer 2). Likewise, the memory states produced in Layer 4 are denoted as  𝒇𝟐 and 𝒃𝟐, 
corresponding to the forward RNN and the backward RNN, respectively. Unlike the bidirectional 
RNN used in Layer 2, we use the final memory of the forward RNN (i.e. 𝒇𝟐) as the report-level 
feature vector e which will be used by the Generator. 

Layer 5: 2nd Concatenation. As in Layer 3, the second concatenation layer combines the forward 
and backward word-level features vectors produced in the previous layer. In the case of Layer 5, 
however, we used the resulting feature vectors 𝒉𝟏,… , 𝒉𝑵 as the word-level feature vectors which 
will be provided to the Generator. 

The Generator 

The role of the Generator is to generate the most likely clinical correlation section for a given EEG 
report using the feature vectors extracted by the Extractor. It is important to note that because the 
clinical correlation sections vary both in terms of their length and content, the number of possible 
clinical correlations sections that could be produced is intractably high (V MMAX where MMAX is 
the maximum length of a clinical correlation section). Consequently, we substantially reduce the 
complexity of the problem by modeling the assumption that each word in the clinical correlation 
section can be determined based solely on (1) the word-level feature vectors ℎ0,···,	ℎ¨  extracted 
by the Extractor, (2) the report-level feature vector e extracted by the Extractor, and (3) any 
preceding words produced by the Generator. This assumption allows us to define the probability 
of any clinical correlation section, S0, having been produced by a neurologist for a given EEG 
report (i.e., the second factor in Equation 2) as: 

 Pr(𝑺¾|𝑹) = ∏
ü

¯20
Pr	(𝑺𝒋¾|𝑺 /0

¾ , … , 𝑺0¾ , 𝒆, 𝒉0, … , 𝒉¨; 𝜽)	 (18) 

To compute Equation 18, we designed the Generator to act as a type of Recurrent Neural Language 
Model (RNLM) which incorporates a Recurrent Neural Network (RNN) to produce one word in 
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the clinical correlation section at-a-time while maintaining and updating an internal memory of 
which words have already been produced.  

 

 (a) Training Configuration (b) Inference Configuration 

Figure 7: Detailed Architecture of the Generator under (a) Training and (b) Inference Configurations. 

To improve training efficiency, the Generator has two similar but distinct configurations: one for 
training, and one for inference (e.g. testing). Figure 7 illustrates the architecture of the Generator 
under both configurations. The primary difference between each configuration is the input to the 
RNN: when training, the model embeds the previous word from the gold-standard clinical 
correlation section (e.g. 𝑆 /0

¾ ) to predict 𝑆¾ while during inference the RNN operates on the 
embedding of the previously generated word (e.g. 𝑆 /0

¾ ) to predict 𝑆¾. The Generator produces the 
natural language content of a clinical correlation section for a given EEG report using four layers 
(with the preliminary embedding layer in the training configuration acting as an extra “zero”-th 
layer): 

• Layer 0: Embedding. The embedding layer, which is only used when the Generator is in 
training configuration, embeds each word in the gold-standard clinical correlation section 𝒔  

(represented by V-length 1-hot vectors) into an L-length continuous vector space, 𝒔(3), where 
𝐿 ≪ 𝑉. This is accomplished by using a fully connected linear projection layer, 𝒔(3) =
𝑺 𝑾p + 𝒃p  where (𝑾p ∈ ℝªs! , 𝒃p ∈ ℝªs0) ∈ 𝜽 correspond to the vocabulary projection 
matrix and vocabulary bias vector learned by the Generator. 

• Layer 1: Concatenation. The first layer used in both configurations of the Generator is a 
concatenation layer which combines the embedded representation of the previous word with 
e, the report-level feature vector extracted by the Extractor, 𝒔(0) = ÷𝒔 /0

(3) ; 𝒆ø where [𝑥, 𝑦] 

indicates the concatenation of vectors x and y and 𝒔3
(3) is defined as a zero vector. 

⋮
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• Layer 2: Gated Recurrent Unit. The second layer used by both configurations is a Gated 
Recurrent Unit (GRU). The GRU allows the model to accumulate memories encoding long-
distance relationships between each produced word of the clinical correlation section, 𝑺¾, and 
any words previously produced by the model. This is performed by updating and maintaining 
an internal memory within the GRU which is shared across all words in the clinical 
correlation section. We denote the output of the GRU as 𝒔(-). 

• Layer 3: Attention. In order to improve the quality and coherence of natural language 
produced by the Generator, an attention mechanism was introduced. The attention 
mechanism allows the Generator to consider all of the world-level feature vectors 𝒉0,… , 𝒉¨  
produced by the Extractor for the given report, and learns the degree that each word in the 
EEG report influences the selection of (or aligns with) 𝑺¾; formally: 	

𝑠(Ó) = ∑
¨

�20
𝛼�¯ℎ�									𝛼�¯ =

exp	(𝛽�¯)
∏ exp	(𝛽"�)¨
"20

									𝛽�¯ = 𝜎(𝑊#𝒔
(-) + 𝑈#𝒉� + 𝒃#)	 

such that 𝜶�,¯ is an alignment vector used in the alignment model βij which determines the 
degree that the ith word in the EEG report R (represented by hi) influences the jth word of the 
clinical correlation section 𝑺¾ (represented by 𝒔(-)). 

• Layer 4: Addition. The role of the fourth layer is to combine the result of the previous 
attention layer with the result of the GRU in Layer 2, i.e., 𝒔�

(&) = 	 𝒔�
(Ó) + 𝒔�

(-) 

• Layer 5: Softmax Projection. In order to measure the probability of each word 𝑺¾  being 
produced for the given EEG report, we use a final softmax projection layer to produce a 
vocabulary-length vector sj(5) in which the vth element indicates the probability that 𝑺¾ should 
be generated as the vth word in the vocabulary, 𝒔�

(') = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒔�
(&)𝑾u + 𝒃u) where 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) = 	 (ô�	(s)
∑ (ô�	(s))*
)MN

, and 𝑣 ∈ [1, 𝑉]. This allows us to complete the definition of 
Equation 3: 

 PrÏ𝑺¾ = 𝑣+𝑺¾, … , 𝑺0¾ , 𝒆, 𝒉0, … , 𝒉¨; 𝜃Ð = 𝒔 Æ
(') (19) 

Training the Deep Section Recovery Model 

Training the Deep Section Recovery Model (DSRM) is achieved by finding the parameters 𝜽 
which are most likely to produce the gold-standard clinical correlation sections for each EEG 
report in the training set T. Formally, we model this by minimizing the cross-entropy loss between 
the vocabulary-length probability vectors produced by the model (𝒔(')) and the one-hot vectors 
corresponding to each word in the gold-standard clinical correlation section (𝑺 ). 

 L(θ) ∝ ∑ ÷∑ [𝒔(')𝑙𝑜𝑔𝑺 + (1 − 𝒔('))log	(1 − 𝒔('))]ü
¯20 ø(𝑹,𝑺)∈�  (20) 

The model was trained using Adaptive Moment Estimation (ADAM) (with an initial learning 
rate η=0.001). 
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Inferring Clinical Correlations 

Given 𝜽 learned from the training set, the clinical correlation section S can be generated for a new 
EEG report R using the inference configuration illustrated in Figure 3b. In contrast to the training 
configuration in which 𝑺¾	is selected using the previous word from the gold-standard clinical 
correlation section (𝑺 /0), during inference, the model predicts 𝑺¾  using the word previously 
produced by the model (𝑺 /0

¾ ). It is important to note that, unlike training, we do not know the 
length of the clinical correlation section we will generate. Consequently, the model continually 
generates output until it produces the END-OF-SECTION symbol 〈/𝑝〉. Thus, the length of the 
inferred clinical correlation section M is determined dynamically by the model. When inferring 
the most likely clinical correlation section, it is necessary to the convert the vocabulary probability 
vectors 𝒔0

('), … , 𝒔ü
(') to one-hot vocabulary vectors 𝑺¾  that can be directly mapped to natural 

language.1 

3. Retrieve Patient Cohorts From the EMRs That Document Their Hospital Visits 

In the third year of the project, the team from the University of Texas at Dallas has enhanced the  
Multi-Modal EEG Patient Cohort Retrieval system called MERCuRY  ( and acronym for Multi-
modal EncephalogRam patient Cohort discoverY),  by incorporating a learning-to-rank 
methodology. 

In the third year of the project, the team from the University of Texas at Dallas has enhanced the 
MERCuRY system with learning-to-rank capabilities. Ranking of the patients in the cohort was 
essential in the usability studies performed with the MERCuRY system, as it enabled neurologist 
researchers to rapidly identify effective interventions for epilepsy accompanied by mental health 
comorbidities. However, not all the patients from the cohorts discovered by MERCuRY were 
relevant to the cohort criteria. Relevance judgements produced by neurologists indicated 
limitations of the system, but also provided important lessons that can be used for learning how to 
rank patients. Inspired by this observation, we designed a learning patient cohort retrieval (L-
PCR) system using the publicly-available collection of electroencephalography (EEG) reports 
from the Temple University Hospital (TUH) EEG Corpus. Patient cohorts were recognized from 
the TUH EEG Corpus based on descriptions provided by practicing neurologists. Specifically, we 
trained and evaluated the L-PCR system using 30 cohort descriptions generated by four practicing 
neurologists.  

Unlike traditional patient cohort retrieval systems, such as MERCuRY, the L-PCR system uses a 
learning-to-rank approach for identifying patient cohorts that takes advantage of physician 
feedback. The learning-to-rank paradigm allows the L-PCR system to consider relevance 
judgments performed by clinicians to learn an improved patient relevance model used for 
retrieving and ranking patients for any given cohort descriptions. 

The L-PCR system illustrated in Figure 8 includes five main components:  

 
1 Let 𝒔-𝒋 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝒔¯

(')); 𝑺¾  is defined as the one-hot vector in which the 𝒔-¯E. value is 1 and all other values are zero. 
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• a query processing component processes a given cohort description 𝑑� to produce a 
machine-readable query, 𝑞�

G,Ô;  
• an EHR processing component produces an index of the narratives from the EHR 

collection;  
• a visit retrieval component retrieves a sub-set of “candidate” visits from the EHR 

collection, [𝑣0,⋯ , 𝑣ü], to be ranked by the learning relevance model;  
• a feature extraction component extracts features vectors [𝒙0� ,⋯ ,𝒙ü� ] corresponding to 

each candidate visit the relationship between the visit and the cohort description; and 
• the learning relevance model uses a Random Forest (RF) classifier to infer the relevance 

scores 1𝑠0� ,⋯ , 𝑠ü� 2 for each candidate visit 1𝑣0� ,⋯ , 𝑣ü� 2 based on their associated feature 
vectors 1𝒙0� ,⋯ ,𝒙¨� 2; the RF is trained using the relevance judgments 1𝑦0� ,⋯ , 𝑦ü� 2 provided 
by physicians. 	

 

Figure 8: Architecture of the learning patient cohort retrieval (L-PCR) system. 

While the query processing was already developed for the MERCuRY in the previous years of the 
project, novel methods had tp be developed for the Electronic Health Record (HER) processing 
used by the L-PCR system. 

Electronic Health Record Processing 

Stream Processing. We unified indexing, searching, and feature extraction across the TUH EHR 
collection, by representing the EHR as a set of multiple, abstract streams of unstructured 
information. Each stream corresponds to one or more sections in the EHR collection. 
Conceptually, each stream acts as a “lens” that determines which sections of the EHR are 
considered during feature extraction and retrieval. The stream representation allows the L-PCR 
system to automatically account for the semantics of each stream, without the semantics being 
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explicitly encoded. Figure 9 illustrates the streams used for each EHR collection available from 
the Temple University Hospital in the form of a big data EEG data. Processing streams of 
narratives from the EEG reports is important, because identifying patient relevant to a cohort 
description needs to take into account that a patient may have multiple hospital visits, which need 
to be assembled to determine the relevance of the patient to the cohort description. 

Stream Indexing. To expedite feature extraction from the EHRs associated with each hospital 
visit, we separately indexed the content of each EHR collection using Apache Lucene. We used a 
tiered indexing approach in which each stream was indexed independently, allowing individual 
streams of each EHR to be retrieved during feature extraction and retrieval. No pre-processing was 
applied beyond tokenization with Lucene’s English Analyzer.  

 

 
Figure 9. Indexed Streams from EEG Reports (left) and Hospital Records (right). 

Visit Retrieval 

To reduce complexity and improve scalability of the L-PCR system, rather than extracting features 
from every EHR in the collection, we rely on a basic retrieval step to identify a high-recall set of 
“candidate’’ visits likely to be relevant to the cohort description. These candidate visits are 
obtained by constructing a query with Bag-of-Words (𝐶0), expanding by All Expansions (𝐸'), and 
identifying the top 𝑀 ranked EHRs by the All Text stream (𝑆&/𝑆') with the BM25 ranking function 
(in our experiments we used 𝑀 = 2,000). This allowed the set of “candidate” visits to be obtained 
by mapping the retrieved EHRs to their corresponding patient visits. 

Feature Extraction  

Determining whether a “candidate” patient visit 𝑣  is relevant to (i.e., satisfies the criteria from) a 
given cohort description 𝑑� requires access to a rich set of features derived from (a) the cohort 
description 𝑑�, (b) the patient visit 𝑣  and (c) the interactions between 𝑑� and 𝑣 . To account for 
the variation between cohort descriptions, we considered multiple strategies for transforming 𝑑� 
into queries. Let 𝑞�

G,Ô represent the query obtained when using query construction method 𝑐 and 
query expansion method 𝑒. Likewise, we considered multiple strategies for representing the 
information encoded in each visit 𝑣 . Hence, we considered 𝑟�4 the textual content provided by 
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stream 𝑠 of the electronic health record 𝑟�, and define 𝑣4 =  𝑟04, 𝑟-4, ⋯ , 𝑟 5
4 6 as the content of stream 

𝑠 from each report associated with visit 𝑣 . We produced a single feature vector 𝒙� encoding 
information about 𝑑� and 𝑣  by extracting the 14 high-level multi-valued features listed in Table 
1.  

Table 1: Features extracted for a cohort description 𝒅𝒊 and hospital visit 𝒗𝒋. Additional details for each 
feature are provided in Appendix E.	ℕ represents the natural numbers, ℝ represents the real numbers, and 
the exponent (if provided) indicates the dimensionality, or number of values produced by that feature in 
the resultant feature vector). 

 Feature Description Domain of 
Values 

𝑭𝟏 number of criteria detected in cohort description 𝑑� with each construction method 𝑐 ℕ|<| 

𝑭𝟐 number of terms in 𝑞�
G,Ô for each  𝑐 ∈ 𝐶, and each expansion method 𝑒 ∈ 𝐸 ℕ(|<|×|ì|) 

𝑭𝟑 statistics of the normalized inverse document frequency (IDF) of 𝑞�
G,Ô in each stream 

𝑠 ∈ 𝑆 for each 𝑐, 𝑒. 
ℝ(|>|×|<|×|ì|×|?|) 

(features encoding information about the cohort description	𝒅𝒊) 

 

𝑭𝟒 number of reports associated with 𝑣  ℕ 

𝑭𝟓 distribution of report types associated with 𝑣  ℝ|�| 

𝑭𝟔 statistics of the number of words in each 𝑟4 ∈ 𝑣4 for every 𝑠 ℕ(|>|×|?|) 

Ïfeatures encoding information about the candidate visit	𝒗𝒋Ð 

 

𝑭𝟕 whether the age (if any) specified in cohort description 𝑖 matches the age in any stream 
of any report 𝑟4 ∈ 𝑣  

{0,1} 

𝑭𝟖 whether the gender (if any) specified in cohort description 𝑖 matches the most 
frequently-mentioned gender in any stream of any report 𝑟4 ∈ 𝑣  

{0,1} 

𝑭𝟗 whether the hospital status in cohort description 𝑖 matches the hospital status in any 
stream of any report 𝑟4 ∈ 𝑣  

{0, 1} 

𝑭𝟏𝟎 statistics of the Dirichlet-smoothed language model similarity[37] (LM:Dir) between 
𝑞�
G,Ô and each 𝑟4 ∈ 𝑣  for every 𝑐, 𝑒, 𝑠 

ℝ(|>|×|<|×|ì|×|?|) 

𝑭𝟏𝟏 statistics of the Jelinek-Mercer-smoothed language model similarity[37] (LM:JM) 
between 𝑞�

G,Ô and each 𝑟4 ∈ 𝑣  for every 𝑐, 𝑒, 𝑠 
ℝ(|>|×|<|×|ì|×|?|) 

𝑭𝟏𝟐 statistics of the BM25 similarity[38] between 𝑞�
G,Ô and each 𝑟4 ∈ 𝑣  for every 𝑐, 𝑒, 𝑠 ℝ(|>|×|<|×|ì|×|?|) 

𝑭𝟏𝟑 statistics of the TF-IDF similarity[7] between 𝑞�
G,Ô and each 𝑟4 ∈ 𝑣  for every 𝑐, 𝑒, 𝑠 ℝ(|>|×|<|×|ì|×|?|) 

𝑭𝟏𝟒 statistics of the term frequency (TF) between 𝑞�
G,Ô and each 𝑟4 ∈ 𝑣  for every 𝑐, 𝑒, 𝑠 ℝ(|>|×|<|×|ì|×|?|) 

Ïfeatures encoding the relationship between the cohort description	𝒅𝒊	and candidate visit	𝒗𝒋Ð 

As shown, 10 of the 14 features illustrated in Table 1 are multivalued, i.e., consist of distinct values 
for each possible query representation 𝑞�

G,Ô of 𝑑� and each stream 𝑠 of 𝑣4 (where applicable). Each 
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of these values corresponds to a single entry in the resultant feature vector – i.e., 𝐹0 corresponds 
to five entries in the generated feature vector. Moreover, Features 𝐹Ó, 𝐹G and 𝐹03-𝐹0& capture the 
distribution of feature values extracted for each component of the query (𝐹0) or for each report 
associated with the hospital visit (𝐹G, 𝐹03-𝐹0&) using five aggregation methods (described below). 
Of note are features 𝐹03-𝐹0& which incorporate standard relevance models from information 
retrieval to measure the relevance between the criteria in  𝑞�

G,Ô and each stream of visit 𝑣4. 

Aggregation Methods. To capture the distribution of feature values obtained using different 
streams or for each report associated with a candidate visit, we considered five aggregating statics 
𝐴 =	{mean, minimum, maximum, variance, sum}.  

The Learning Relevance Model 

The role of the learning relevance model (LRM) is to infer a relevance score 𝑠�	between every 
candidate visit 𝑣  and the cohort description 𝑑� using the feature vector 𝒙� extracted above. This is 
accomplished by using the pairwise strategy of learning-to-rank. Given (1) feature vectors 
1𝒙0� ,⋯ ,𝒙¨� 2 associated with candidate visits [𝑣0,⋯ , 𝑣¨] and (2) “gold-standard” relevance 
judgments 1𝑦0� ,⋯ , 𝑦¨� 2 indicating the relevance of each candidate visit to 𝑑�, the Random Forest is 
trained to infer the scores 1𝑠0� ,⋯ , 𝑠¨� 2 which result in the optimal ordering of hospital visits as 
indicated by 1𝑦0� ,⋯ , 𝑦¨� 2. We investigated multiple learning-to-rank approaches when designing 
the Learning Relevance Model, including pointwise, pairwise, and listwise strategies. Specifically, 
we analyzed the performance of RankNet, RankBoost, AdaRank, Coordinate Ascent, 
LambdaMART, Multiple Additive Regression Trees (MART), ListNet, and Random Forests. We 
found Random Forests to obtain the best performance on a small held-out set of cohort 
descriptions. Although we investigated multiple sets of model parameters, we found no statistically 
significant change in performance when changing the ranking criterion (entropy vs Gini impurity), 
number of sampled features (√𝑥, log(𝑥), or 0.1𝑥), or maximum forest size (200, 500, or ∞).   

 

Goals Specific to Aim 4 in the main project: Validate the usefulness of the patient cohort 
identification system by collecting feedback from clinicians and medical students. For each query, 
medical experts shall examine the top ranked cohorts for common precision errors (false positives), 
and the bottom five ranked common recall errors (false negatives). In a very fruitful collaboration, 
both the Temple University team and the UTD team have participated in the evaluation and 
validation of the patient cohort identification system implemented in the MERCuRY system. We 
have assembled 250 clinically relevant queries that are used by neurologists to evaluate the quality 
of the EEG reports/records considered relevant by the patient cohort retrieval system in its current 
form.  In addition, we have collected judgements of the patient cohorts through a secure-interface 
generated at UTD. We primarily evaluated the MERCuRY system according to its ability to 
retrieve patient cohorts with and without learning to rank. To this end, we generated a set of 100 
evaluation queries. For each query, we retrieved the ten most relevant patients as well as a random 
sample of ten additional patients retrieved between ranks eleven and one hundred. We asked six 
relevance assessors to judge whether each of these patients belonged or did not belong to the given 
cohort. Moreover, the order of the documents (and queries) were randomized and judges were not 
told the ranked position of each patient. Each query and patient pair was judged by at least two 
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relevance assessors, obtaining an inter-annotator agreement of 80.1% (measured by Cohen’s 
kappa). 

This experimental design allowed us to evaluate not only the set of patients retrieved for each 
cohort, but also the individual rank assigned to them. Specifically, we adopted standard measures 
for information retrieval effectiveness, where patients labeled as belonging to the cohort were 
considered relevant to the cohort query, and patients labelled as not belonging to the cohort were 
considered as non-relevant the cohort query. Note that because our relevance assessments consider 
only a sample of the patients retrieved for each query, we adopted two measures of ranked retrieval 
quality: the Mean Average Precision (MAP) and the Normalized Discounted Cumulative Gain 
(NDCG). The MAP provides a single measurement of the quality of patients retrieved at each rank 
for a particular topic. Likewise, the NDCG measures the gain in overall cohort quality obtained 
by including the patients retrieved at each rank. This gain is accumulated from the top-retrieved 
patient to the bottom-retrieved patient, with the gain of each patient discounted at lower ranks. 
Lastly, we computed the “Precision at 10” metric (P@10), which measures the ratio of patients 
retrieved in the first ranks which belong to the patient cohort. 

4. Defining Hierarchical epileptiform Activity Descriptors (HAD) for EEGs 

After defining and designing a fine-grained hierarchy of activity descriptors last year, the team 
from the University of Texas at Dallas has proceeded to design an automatic methodology of 
discovering long-distance relations between concepts from the HAD identified in the same EEG 
report, e.g: 

CLINICAL HISTORY: 55 year old man admitted for [change in mental status ]MEDICAL PROBLEM, with a 
past medical history of [GI bleed]MEDICAL PROBLEM, [anemia]MEDICAL PROBLEM [encephalopathy]MEDICAL 

PROBLEM, and others. 

MEDICATIONS: [Pantoprazole]TREATMENT, [Folic Acid]TREATMENT , [Carvedilol]TREATMENT 

INTRODUCTION: Digital video EEG was performed at the bedside using standard 10-20 system of 
electrode placement with 1 channel EKG. 

DESCRIPTION OF THE RECORD: The background EEG is characterized by [slowing]EEG ACTIVITY  and 
[disorganization]EEG ACTIVITY. There is prominent shifting arrhythmic [delta activity ]1EEG ACTIVITY more 
prominent in the left mid to anterior temporal region. [Photic stimulation ]EEG EVENT generates 
scant [driving]EEG ACTIVITY. 

IMPRESSION: Abnormal EEG due to: 

1. Marked background [slowing]EEG ACTIVITY and [disorganization]EEG ACTIVITY 
2. Some arrhythmic [delta activity ]1

EEG ACTIVITY 
CLINICAL CORRELATION: These findings are supportive of a [bihemispheric disturbance of 
cerebral function ]MEDICAL PROBLEM. These are nonspecific findings which can be seen in a toxic and 
metabolic [encephalopathy]MEDICAL PROBLEM and/or underlying [cerebrovascular disease ]2MEDICAL 

PROBLEM. 

In the exemplified EEG report seven relations between HAD concepts need to be identified:  
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(R1) [delta activity]EEG ACTIVITY ®Evidences®[cerebrovascular disease]MEDICAL PROBLEM;  
(R2) [slowing]EEG ACTIVITY ®Evidences®[bihemispheric disturbance of cerebral function]MEDICAL 

PROBLEM;  
(R3) [disorganization]EEG ACTIVITY ®Evidences®[bihemispheric disturbance of cerebral 
function]MEDICAL PROBLEM;  
(R4) [bihemispheric disturbance of cerebral function]MEDICAL 

PROBLEM®Evidences![encephalopathy]MEDICAL PROBLEM;  
(R5) [Pantoprazole]TREATMENT®TREATMENT-FOR® [GI bleed]MEDICAL PROBLEM;  
(R6) [Folic acid]TREATMENT®TREATMENT-FOR®[anemia]MEDICAL PROBLEM and  
(R7) [photic stimulation]EEG EVENT®Evokes®[driving]EEG ACTIVITY.  
Thus, in addition to the hierarchical relations incorporated in the HAD, we found necessary to 
discover three forms of relations between the concepts of the hierarchy, namely: EVIDENCES, 
EVOKES, and TREATMENT-FOR.  
The EVIDENCES relation considers (a) EEG events, EEG activities, treatments, and medical 
problems as providing evidence for (b) medical problems mentioned in the EEG report. The 
EVOKES relation represents the relationship where a medical concept evokes an EEG activity. 
EEG events, other EEG activities, medical problems and treatments can all evoke EEG activities. 
The TREATMENT-FOR relation links treatments to the medical problems for which they are 
prescribed. In addition, we made the decision to annotate relations between medical concepts, and 
not between their mentions in the EEG report. Because the same concept can be mentioned 
multiple times in the same EEG report, the representation of concepts achieved while pre-
processing the EEG reports by (i) their normalized mention and (ii) their attributes made it possible 
to recognize co-referring mentions of the same concept by simply grouping concepts with the same 
normalized mention name and attribute values. Therefore, all co-referring mentions were 
considered a unique concept, and relations were annotated between unique concept pairs. 

5. Automated Tagging of HADs in Medical Texts  

We focused on the automatic identification of relations between pairs of HAD concepts 
automatically annotated in EEG reports, regardless of their presence in the same sentence, section 
or across sentences and sections of the report, has been made possible by a novel deep learning 
system that we designed and implemented in the previous year, namely the Multi-task Active Deep 
Learning (MTADL) paradigm. This year we developed the Memory-Augmented Active Deep 
Learning (MAADL) system, with the goal of identifying binary relations between HAD concepts, 
as designed in the Aim 3 of the supplement project. MAADL combines the strength of the Active 
Learning framework with the advantages of deep learning. While deep learning methods provide 
unprecedented performance in many tasks, active learning allows a deep learner to achieve this 
performance with less manually annotated training data, as it exposes the system to new examples 
on which its performance is still suffering. The paper that reported on the MTADL paradigm, 
authored by Ramon Maldonado, Travis Goodwin and Sanda Harabagiu, from the University of 
Texas at Dallas, received the AMIA Clinical Research Informatics Award at the 2018 AMIA 
Informatics Summit. 
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Figure 10: The Memory-Augmented Active Deep Learning (MAADL) system for automatically identifying 
relations between pairs of medical concepts in EEG reports 

The identification of relations between medical concepts in MAADL, illustrated in Figure 10, 
uses the following five steps: 

STEP 1: The development of an annotation schema for relations between medical concepts in 
EEG reports; 
STEP 2: Annotation of relations between medical concepts in the initial training data; 
STEP 3: Design of a deep learning method for detecting relations between medical concepts in 
the EEG reports; 
STEP 4: Development of sampling methods for the MAADL; 
STEP 5: Usage of the Active Learning system which involves: 

STEP 5.a: Accepting/Editing annotations of sampled examples of relations between 
medical concepts in EEG reports; 
STEP 5.b: Re-training the deep learning method and evaluating the re-trained system. 

STEP 1: Annotation Schema for relations between pairs of medical concepts in EEG reports: 
The annotation schema has been developed in the Aim 3 of the supplement project. 

STEP 2: Initial Relation Annotations: A set of 40 EEG reports with 198 EVIDENCES relations, 
146 EVOKES relations, and 72 TREATMENT-FOR relations were manually annotated and used as 
the initial training data for the relation detection system. This set of EEG reports had previously 
been manually annotated with medical concepts and their attributes to ensure errors in 
concept/attribute detection did not affect relation detection. 

STEP 3: Design of Deep Learning Architecture for the Memory-Augmented Active Deep 
Learning System: We designed a deep learning architecture, called EEG-RelNet, which provides 
an end-to-end detection of relations between medical concepts in each EEG report by using a 
neural network augmented with two types of memories: (i) a memory for each medical concept; 

Manual Annotation of 
Relations between 
Medical Concepts.
Relation types:
• EVIDENCES
• EVOKES
• TREATMENT-FOR

EEG Reports with Seed Annotations of
Relations between Medical Concepts

Initial Training Data

Deep Learning-Based 
Recognition of Relations

Automatically recognized 
Relations between medical concepts 

EEG Report Annotation
SAMPLING

Validation/
Editing of
Sampled
Annotations
of 
Relations
in 
EEG Reports

Re-Training Data

Active Learning Loop

Relational 
Memories

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

EEG Reports

Deep Learning-Based Identification of
medical concepts + their attributes 

Page 56Final RPPR

                         B.2 (accomplishments_v01.pdf)



and (ii) a memory for each relation between each pair of medical concepts. Moreover, the relational 
memory is dynamic as it changes to model the specific relations observed in each EEG report. 

STEP 4: Active Learning Sampling Method: To improve the quality of the identified relations 
between medical concepts in EEG reports, as illustrated in Figure 10, an active learning loop is 
designed. In an active learning framework, the sampling method is used to automatically select 
examples of relations for human validation. Since this work is focused on relation detection 
between pairs of medical concepts, we chose a sampling method that only prioritizes relation 
detection performance. Therefore, we selected standard uncertainty sampling whereby EEG 
reports containing relations for which the model is most uncertain are selected for manual 
validation. The uncertainty of a report is measured at the report level by averaging the uncertainty 
of each relation classification decision in the report. The uncertainty of a relation classification 
decision is calculated using Shannon Entropy, 𝐻(𝑅) = ∑ 𝑅EE × 𝑙𝑜𝑔𝑅E,  where 𝑅  is a vector 
representing the probability distribution over possible relation types. These probability 
distributions are derived by EEG-RelNet from the learned dynamic relation memory, as shown in 
Figure 10. 

STEP 5: Usage of the Memory-Augmented Active Deep Learning System: As shown in Figure 
4, each iteration of active learning involves using the EEG-RelNet to make automatic relation 
annotations on the unlabeled EEG reports, selecting the most informative examples for manual 
validation, and re-training the EEG-RelNet using the new set of validated training examples. 

EEG-RelNet: a Deep Learning Architecture for long-distance Relation Detection in EEG 
Reports While medical concepts (EEG activities, EEG events, medical problems, treatments and 
tests) are available in each EEG report, due to the preprocessing that was applied to the entire TUH 
EEG corpus, inference of the EVIDENCES, EVOKES, and TREATMENT-FOR relations between 
pairs of such concepts was produced through dynamic memories based on neural networks, 
capable to capture the implicit participation of each medical concept in a relation of interest. This 
was made possible because we developed the EEG-RelNet, a deep neural network architecture 
that operates on the full text of an EEG report considering all medical concepts identified in the 
report to detect relations of the type EVIDENCES, EVOKES, and TREATMENT-FOR between any 
pair of concepts. More specifically, given the full text of an EEG report and the set of medical 
concepts identified in that report, EEG-RelNet can predict whether there is relation of type 𝑡, 𝑅�¯E , 
between any pair of medical concepts 𝑐� and 𝑐  recognized in the report. To do so, EEG-RelNet 
processes the EEG report, one sentence at a time, reading its words, encoding the information from 
the sentence, processing the sentence information in the dynamic relational memory, and 
predicting each type of relation based on the dynamic memories after they have processed each 
sentence in the EEG report. The three modules of EEG-RelNet are: 

• the Input Encoding Module which encodes information from the report at concept- and 
sentence-level embedding vectors, which are used throughout the deep learning 
architecture; 

• the Dynamic Relational Memory Module which maintains and updates a set of hidden 
states called memories to capture accumulated information about each medical concept and 
potential relation in the EEG report; 
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• the Output Module which uses the updated memories to determine the most likely 
relations (and their types) between medical concepts in the EEG report. 

In the remainder of this section, we provide a detailed description of each module of EEG-RelNet. 

The Input Encoding Module. The role of this module is to learn (1) an embedding encoding each 
medical concept as well as each of its attributes and (2) an embedding encoding the information 
from each sentence in the EEG report. Formally, we represent an EEG report as a set of medical 
concepts, 𝐶 = {𝑐0, … , 𝑐8} and a sequence of sentences, [𝑠0, … , 𝑠F]. Each medical concept,	𝑐� is 
associated with several N-dimensional vectors called embeddings: (a) an embedding for the 
normalized concept name, 𝑐P	Q ∈ 	ℝ¨ and (b) separate embeddings for each of its A attributes values 
{𝑎0

G�, … , 𝑎>
G�}. Thus, the embedding 𝑐PRR⃗  for a medical concept is created by (1) concatenating the 

embedding for the name of the medical concept with the embedding for each of its attributes and 
(2) projecting this concatenated vector using a learned weight matrix 𝑊G ∈ ℝ¨×¨×(|>|�0), i.e. 𝑐PRR⃗ =
𝑊G × [𝑐PQ , 𝑎0

G�, … , 𝑎>
G�]. In this way, each medical concept is represented by an embedding, 𝑐PRR⃗  which 

is a vector in ℝ¨. 

Participation of medical concepts in relations is informed by the context of each concept in the text 
of the EEG report. Contextual information is provided by the words of the sentence where the 
concept is mentioned, hence a representation of words from each sentence as is also desirable. 
Therefore, we learn an embedding 𝑒� for each word 𝑤� in a sentence, enabling us to represent each 
sentence as a sequence of embeddings 𝐸 = [𝑒0, … , 𝑒<] such that the elements of 𝐸  occur in the 
same order as the words from the sentence. While the traditional choice for combining and 
composing the embeddings in 𝐸 into a single sentence embedding would be a Recurrent Neural 
Network (RNN), we instead adopt a more recent and significantly more efficient strategy, namely 
a positional mask, such that the k-th sentence from the EEG report is represented as: 𝑠�RRR⃗ =
∑ 𝑓�	⊙ 	 𝑒�<
�20 , given that the sentence had m words, and the vectors [𝑓0, … , 𝑓<] represent the 

learned positional mask while ⊙ is the element-wise product. It is important to note that the same 
vectors [𝑓0, … , 𝑓<]  are used when each new sentence is encoded and they are learned jointly with 
the other parameters of the deep learning model. 

The Dynamic Relational Memory Module. Because EEG reports often contain long-distance 
relations between concepts we relied on a Dynamic Relational Memory (DRM) Module to keep 
track of the interactions between medical concepts in each report. The DRM accumulates 
information about medical concepts and the relations between them by processing each sentence 
encoded by the Input Module and updating a set of hidden states, called memories. Specifically, 
given a sentence embedding, 𝑠�RRR⃗ , and the corresponding set of concept embeddings [𝑐0RRR⃗ , … , 𝑐8RRR⃗ 	], 
there are two scenarios for each 𝑐PRR⃗ : (scenario 1): the medical concept 	𝑐� has not been mentioned 
in any previous sentence, thus its Concept Memory needs to be accounted for using a single, shared 
Concept Memory Cell; and (scenario 2): the concept 	𝑐� has been previously mentioned, and thus 
its corresponding Concept Memory needs to be updated. Moreover, since each medical concept 
	𝑐� may participate in a relation, in (scenario 1), a unique Relation Memory needs to account for 
each relation in which the concept participates, whereas in (scenario 2) the corresponding Relation 
Memory needs to be updated. If an EEG report refers to d medical concepts, there will be d Concept 
Memory cells and 𝑑 × (𝑑 − 1) Relation Memory cells. The Dynamic Relational Memory (DRM) 
consists of the entire set of Concept and Relation Memories in an EEG report. 
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The Concept Memories are organized as a Key-Value Memory Network. Key-value paired 
memories are a generalization of the way context of concepts is stored in memory. In a Key-Value 
Memory Network, the lookup (addressing) stage is based on the key vector while the reading stage 
(giving the returned result) returns the value memory. Consequently, in EEG-RelNet, memory 
vectors are tied to so-called key vectors enabling the model to only update a memory vector when 
the input sentence has context that is relevant to the memory’s associated key vector. The dynamic 
relations memory model of EEG RelNet is illustrated in Figure 11. 

 

 

Figure 11: The Dynamic Relational Memory Module of EEG-RelNet. The Dynamic Relational Memory 
Module processes n sentences, updating a set of d Concept Memories and 𝑑 × (𝑑 − 1) Relation 
Memories for each sentence. 

 It is well known that when concept embeddings are used as key vectors, the associated memory 
vectors will accumulate information about those concepts. Consequently, in EEG-RelNet, 
concept embeddings are used as key vectors allowing the network to update each Concept 
Memory, ℎ�, if an input sentence is relevant to the concept, 𝑐�. 

The Concept Memory Cell, illustrated in Figure 12, is used to update a Concept Memory, ℎ�, given 
a medical concept embedding,	𝑐�, and a sentence encoding, 𝑠�RRR⃗ , via the following equations: 

𝑔�G = 𝜎(< 𝑠�RRR⃗ , ℎ� + 𝑐� >)              (21) 

ℎPU = 𝜙(𝑊Wℎ� +𝑊Æ𝑐� +𝑊4𝑠�RRR⃗ )				(22)  

	ℎ� 	← 	 ℎ� +	𝑔�G 	⊙ 	ℎPU 																			(23)	 

where 𝑊W; 𝑊Æ and 𝑊4 are trainable weight matrices in ℝ¨×¨, <	∙	, ∙	>is the inner product, 𝜎  is 
the sigmoid function and 𝜙  is a Parametric Rectified Linear Unit (PReLU). Equation 21 is a gating 
function that determines how much the k-th input sentence affects the i-th Concept Memory such 
that 𝑔�G 	∈ [0,1]  values close to 1 indicate sentence 𝑠� is relevant to medical concept 𝑐� and values 

Concept 
Memory Cell𝑐"	

𝑐$

𝑐%

Relational M
em

ory

𝑐"𝑐"

Concept 
Memory Cell

Concept 
Memory Cell

𝑐$

𝑐%

Concept 
Memory Cell

Concept 
Memory Cell

Concept 
Memory Cell

Concept 
Memory Cell

Concept 
Memory Cell

Concept 
Memory Cell

𝑐$

𝑐%

Relation 
Memory Cell

Relation 
Memory Cell

Relation 
Memory Cell

Relation 
Memory Cell

Relation 
Memory Cell

Relational M
em

ory

Figure 12: Concept Memory Cell  

𝑐"	
ℎ" +

𝑠&

ℎ'"
𝑔"𝜎

𝜙

Page 59Final RPPR

                         B.2 (accomplishments_v01.pdf)



close to 0 indicate the opposite. Equation 22 defines the candidate Concept Memory that will be 
used to update the existing Concept Memory, ℎ�, after it is scaled by 𝑔�Gas shown in equation 23. 

As illustrated in Figure 11, when each sentence 𝑠�  is processed, the DRM uses and updates not 
only concept memories, but also a much larger set of relation memories. This is explained by the 
fact that, unfortunately, maintaining a single memory vector for each concept is not sufficient for 
modeling concepts that participate in multiple relations, especially when those relations involve 
concepts that are mentioned at significant distance in the EEG report. Thus, to model the 
interactions each concept has with each other concept in the same EEG report, we maintain a set 
of Relation Memories corresponding to each pair of concepts from the EEG report, {𝑟�¯: 𝑖, 𝑗	 ∈
𝐶, 𝑖 ≠ 𝑗}, where 𝐶  is the set of medical concepts in the EEG report. Each Relation Memory is 
updated using the Relation Memory Cell illustrated in Figure 13 via the following equations: 

𝑔�¯í = 𝑔�G × 𝑔¯G × 𝜎Ï< 𝑠�RRR⃗ , 𝑟�¯ >Ð															(24) 

𝑟PZ[ = 𝜙Ï𝑊>𝑟�¯ +𝑊\𝑠�RRR⃗ 		Ð																											(25) 

𝑟�¯ 	← 	 𝑟�¯ +	𝑔�¯í 	⊙ 	 𝑟PZ[																														(26)	 

 

where  𝑊>	and 𝑊\ are trainable weight matrices in ℝ¨×¨. As in the Concept Memory Cell, the 
Relation Memory Cell uses a gating function (equation 24) and a candidate memory (equation 25) 
to update the Relation Memory in a way that reflects how relevant the input sentence, 𝑠�, is to the 
concept pair, (𝑐�, 𝑐 ). To compute the gate value 𝑔�¯í , the Relation Memory Cell uses the two 
concept gate values, 𝑔�G; and 𝑔¯G from the Concept Memory Cells for concepts 𝑐� and 𝑐 , ensuring 
that input sentences that are relevant to either concept can be used to update the Relation Memory. 
By maintaining a memory vector for each pair of concepts and updating that memory vector as the 
model accumulates information across each sentence in an EEG report, thus the EEG-RelNet can 
be interpreted as constructing a local latent knowledge graph for each EEG report, where each 
Relation Memory represents a possible relation in the graph. 

The Output Module. The output module makes use of the Dynamic Relational Memory updated 
after processing the last sentence in the EEG report to identify relations (and their types) between 
any pair of medical concepts from the report. The relation prediction, 𝑅PZ]  between medical 
concepts 𝑐� and 𝑐  is produced by passing the Concept Memories associated with concepts 𝑐� and 
𝑐  along with the Relational Memory 𝑟�¯ to two fully connected PReLU layers followed by a 
softmax layer:  

𝒒𝒊𝒋 = 𝜙Ï𝑊_[ℎ�, ℎ̄ , 𝑟�¯]		Ð																				(27)   

𝑹𝒊𝒋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	(		𝜙Ï𝑊z	𝒒𝒊𝒋	Ð											(28) 

where 𝑊_ ∈ 	ℝ¨×Ó¨ and 𝑊z 	∈ 	ℝ&×¨ are learned weight matrices, and 𝜙 is a Parametric Rectified 
Linear Unit. 𝑹𝒊𝒋 is a probability distribution over 4 possible relations: the 3 relation types described 
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Figure 13: Relation Memory Cell 
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in the annotation schema and a 4th type indicating no relation. Consequently, the relation (if any) 
detected between concepts 𝑐� and 𝑐  is given by 𝑅PZ] = 𝑎𝑟𝑔𝑚𝑎𝑥E	𝑅E

�¯. 
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Temple University: 
 
The Temple University team employed a large number of students and one postdoc on this project. There 
were four major labor categories: 

(1) Postdoc: Scott Yang was the sole postdoc recruited for this project. Since he joined the project with 
limited programming experience (primarily MATLAB), he received intensive training on a variety of 
software skills: Unix/Linux command line programming, C/C++ programming, Python programming 
and html/web programming. He was also introduced to a rigorous software engineering process 
including revision control software and GitHub/GitLab. Further, he received training on state-of-the-
art machine learning packages such as Theano, Kera, TensorFlow and HTK. 

With respect to professional development, in addition to learning how to a set of advanced features in 
Microsoft Office and Mendeley to develop and manage publications, he received significant training 
on proposal writing, technical presentations and technical writing. 

He was encouraged to publish and attend professional conferences. These are described in the 
extensive publication list presented later in this report. 

(2) Graduate Students: We have employed six graduate students on this project. Four were pursuing 
PhDs and two pursued MS degrees. Therefore, an important part of their training included normal 
graduate student training such as didactic graduate-level courses, thesis and dissertation proposals and 
PhD preliminary exams. 

As with (1), they also received significant amounts of programming training and professional 
development training through publications and conference presentations. Further, they led the 
development of several real-time demonstration systems and were trained how to develop and present 
technical demonstrations. 

Training was so successful that we lost two of these students to industry jobs before they graduated. 
Their marketability was a testament to their training, as students trained in machine learning are 
received very attractive job offers from industry these days. Both students will complete their PhDs 
remotely, but working full-time certainly slows the process down. 

(3) Undergraduate Students: We employ a large number of undergraduates on this project in four 
capacities: (1) data annotation, (2) software engineering, (3) web development and (4) IT support. 
The data annotators learn how to annotate EEGs in a manner similar to the way neurologists annotate 
the data. We have a well-developed process for training them and in a publication cited later we show 
that their annotation accuracy is excellent compared to clinically-trained neurologists. 

The software engineering training is similar to what was previously described. Our undergraduates 
become expert programmers in C/C++ and Python, which makes them very valuable. We assist them 
in obtaining summer internships and full-time employment once they are trained. It is very clear that 
they qualify for jobs they would not normally be able to get after this training. 

Several of the students work in positions we described as IT support, which involves maintaining our 
Linux cluster and server environment, and web support, which is the primary means by which we 
disseminate information and manage customer relationships. Needless to say, these skills, which 
typical ECE students at Temple don’t develop, make them extremely marketable in sectors ranging 
from defense to financial engineering. 
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Finally, all students involved in this project received extensive training on how to read and interpret 
EEGs. They worked closely with the Department of Neurology at Temple Hospital and attended many 
EEG readings sessions conducted by the hospital as part of their medical student training. 

University of Texas at Dallas: 
 
Six PhD students have been advised for their research conducted for this project at University of Texas at 
Dallas.  
 
Travis Goodwin has defended his PhD thesis in March 2018, after 6 years of PhD studies in Computer 
Science at UTD, advised by Prof. Sanda Harabagiu. He has accepted a fellowship at NIH starting in June 
2018. He participated in our project for the past three years, developing novel research in the area of multi-
modal indexing, inference of underspecified information in the EEG reports and interaction of various 
factors in the EEG reports. In November 2017, he received the Homer Warner award at the 2017 AMIA 
Symposium for the paper co-authored with his adviser, Dr. Sanda Harabagiu, entitled “Inferring Clinical 
Correlations from EEG Reports with Deep Neural Learning”. Travis has also been working on defining the 
HAD tags under the supplement project. He has also worked on using deep learning methods for the 
automatic annotation of HAD tags as well for generating data-driven neural knowledge representations of 
the knowledge discerned from the EEG reports. He is also the co-author of a paper that received the AMIA 
Clinical Research Informatics Award at the 2018 AMIA Informatics Summit, in March 2018. The paper 
is entitled “Memory-Augmented Active Deep Learning for Identifying Relations Between Distant Medical 
Concepts in Electroencephalography Reports” with the authors: Ramon Maldonado, Travis Goodwin and 
Sanda Harabagiu. Travis has successfully submitted 23 conference papers and has received in 2016 the 
Best Student Paper Award at the ACM International Conference in Information and Knowledge 
Management (CIKM-2016), a major conference on knowledge managements and information retrieval. In 
addition, he has published four journal papers. These accomplishments exceeded Travis’s Individual 
Development Plans (IDPs). 
 
 
Ramon Maldonado is a 3rd year PhD student in Computer Science at UTD, advised by Prof. Sanda 
Harabagiu, who has performed research on automatically identifying all medical concepts and recognizing 
the relations between them in the Temple University Hospital EEG data, in the form of EEG reports 
documenting 25,000 sessions and 15,000 patients collected over 12 years at Temple University Hospital. 
Ramon is a qualified PhD student, by passing a set of qualifying exams, while developing new techniques 
for his research, which is remarkable. He is the lead author on the paper entitled “Memory-Augmented 
Active Deep Learning for Identifying Relations Between Distant Medical Concepts in 
Electroencephalography Reports”, which has received the AMIA Clinical Research Informatics Award 
at the 2018 AMIA Informatics Summit, in March 2018. Ramon is also the lead authors of the paper entitled 
“Active Deep Learning-Based Annotation of Electroencephalography Reports for Cohort Identification”, 
which was nominated for Distinguished Paper Award at the 2017 American Medical Informatics 
Association Joint Summits on Clinical Research Informatics (AMIA-CRI).  Ramon has also been lead 
author on a paper published in the American Medical Informatics Association Annual Symposium (AMIA-
2017) which introduced a novel form of medical knowledge, called medical knowledge embeddings, 
developed from the TUH corpus, in the form of EEG-MKE. The EEG-MKE have been described in the 
paper entitled “Deep Learning Meets Biomedical Ontologies: Knowledge Embeddings for Epilepsy”.   
Moreover, Ramon was a co-author on a journal paper published this year in the Journal of Biomedical 
Informatics. These accomplishments meet Ramon’s Individual Development Plans (IDPs). 
 
 
Stuart Taylor is a 2nd year PhD student in Computer Science at UTD, advised by Prof. Sanda Harabagiu, 
who has worked on the initial development of the active deep learning for annotating EEG reports. Stuart 
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is a qualified PhD student, by passing a set of qualifying exams, while developing new techniques for his 
research, which is remarkable. He worked on the generation of queries for the evaluation of patient cohorts. 
Stuart has published a poster at the American Medical Informatics Association Annual Symposium (AMIA) 
in 2017 and submitted a full paper at the American Medical Informatics Association Annual Symposium 
(AMIA) in 2018. has plan on working on the recognition of HAD tags in biomedical texts.  These 
accomplishments meet Stuart’s Individual Development Plans (IDPs). 
 
Pracheta Sahoo, Shasha Jin and SaraRouhani, are qualified PhD students in Computer Science at UTD, 
advised by Prof. Vibhav Gogate, who have participated in the project a few months this year to help with 
machine learning frameworks for deep learning and for evaluation of the results as well as to produce 
relevance judgements. They are part of the Statistical Relational Artificial Intelligence and Machine 
Learning Lab, led by Prof. Gogate at UTD. They have published papers in the AAAI conference.  
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C. PRODUCTS

C.1 PUBLICATIONS 
 
Are there publications or manuscripts accepted for publication in a journal or other publication (e.g., book, one-time publication,
monograph) during the reporting period resulting directly from this award? 
 
Yes

Publications Reported for this Reporting Period

Public Access Compliance Citation

Complete Obeid I, Picone J. The Temple University Hospital EEG Data Corpus. Frontiers in
neuroscience. 2016;10:196. PubMed PMID: 27242402; PubMed Central PMCID:
PMC4865520; DOI: 10.3389/fnins.2016.00196.

Complete Obeid I, Picone J. The Temple University Hospital EEG Data Corpus. Frontiers in
neuroscience. 2016;10:196. PubMed PMID: 27242402; PubMed Central PMCID:
PMC4865520; DOI: 10.3389/fnins.2016.00196.

Complete Obeid I, Picone J. The Temple University Hospital EEG Data Corpus. Frontiers in
neuroscience. 2016;10:196. PubMed PMID: 27242402; PubMed Central PMCID:
PMC4865520; DOI: 10.3389/fnins.2016.00196.

N/A: Not Journal Obeid I, Picone J. Augmentation of Brain Function: Facts, Fiction and Controversy. 1 ed.
Lebedev M, editor. Lausanne, Switzerland. Frontiers Media S.A.; 2016. Chapter 8, The
Temple University Hospital EEG Data Corpus; 394-398p. 394-398p.

Non-Compliant Eva V, Ahsan T, Shah V, Jamshed D, Golmohammadi M, Obeid I, Picone J.
Electroencephalographic Slowing: A Primary Source of Error in Automatic Seizure
Detection. Proceedings of the IEEE Signal Processing in Medicine and Biology
Symposium. 2017 December 01:1-5. DOI: 10.1109/SPMB.2017.8257018.

Non-Compliant Golmohammadi M, Ziyabari S, Shah V, Obeid I, Picone J. Gated Recurrent Networks for
Seizure Detection. Proceedings of the IEEE Signal Processing in Medicine and Biology
Symposium. 2017 December 01:1-5. DOI: 10.1109/SPMB.2017.8257020.

Non-Compliant Shah V, Golmohammadi M, Ziyabari S, von Weltin E, Obeid I, Picone J. Optimizing
Channel Selection for Seizure Detection. Proceedings of the IEEE Signal Processing in
Medicine and Biology Symposium. 2017 December 06:1-5. DOI:
10.1109/SPMB.2017.8257019.

Complete Goodwin TR, Maldonado R, Harabagiu SM. Automatic recognition of symptom severity
from psychiatric evaluation records. Journal of biomedical informatics. 2017
November;75S:S71-S84. PubMed PMID: 28576748; PubMed Central PMCID:
PMC5705296; DOI: 10.1016/j.jbi.2017.05.020.

Complete Goodwin TR, Maldonado R, Harabagiu SM. Automatic recognition of symptom severity
from psychiatric evaluation records. Journal of biomedical informatics. 2017
November;75S:S71-S84. PubMed PMID: 28576748; PubMed Central PMCID:
PMC5705296; DOI: 10.1016/j.jbi.2017.05.020.

Complete Goodwin TR, Maldonado R, Harabagiu SM. Automatic recognition of symptom severity
from psychiatric evaluation records. Journal of biomedical informatics. 2017
November;75S:S71-S84. PubMed PMID: 28576748; PubMed Central PMCID:
PMC5705296; DOI: 10.1016/j.jbi.2017.05.020.

Non-Compliant Golmohammadi M, Ziyabari S, Shah V, Obeid I, Picone J. Deep Architectures for Spatio-
Temporal Modeling: Automated Seizure Detection in Scalp EEGs. Proceedings of the
IEEE International Conference on Machine Learning and Applications (ICMLA). 2018
July 01:1-6. DOI: 10.1109/ICMLA.2018.00118.

Complete Shah V, von Weltin E, Lopez S, McHugh JR, Veloso L, Golmohammadi M, Obeid I,
Picone J. The Temple University Hospital Seizure Detection Corpus. Frontiers in
neuroinformatics. 2018;12:83. PubMed PMID: 30487743; PubMed Central PMCID:
PMC6246677; DOI: 10.3389/fninf.2018.00083.

Complete Shah V, von Weltin E, Lopez S, McHugh JR, Veloso L, Golmohammadi M, Obeid I,
Picone J. The Temple University Hospital Seizure Detection Corpus. Frontiers in
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neuroinformatics. 2018;12:83. PubMed PMID: 30487743; PubMed Central PMCID:
PMC6246677; DOI: 10.3389/fninf.2018.00083.

Complete Shah V, von Weltin E, Lopez S, McHugh JR, Veloso L, Golmohammadi M, Obeid I,
Picone J. The Temple University Hospital Seizure Detection Corpus. Frontiers in
neuroinformatics. 2018;12:83. PubMed PMID: 30487743; PubMed Central PMCID:
PMC6246677; DOI: 10.3389/fninf.2018.00083.

Complete Golmohammadi M, Harati Nejad Torbati AH, Lopez de Diego S, Obeid I, Picone J.
Automatic Analysis of EEGs Using Big Data and Hybrid Deep Learning Architectures.
Frontiers in human neuroscience. 2019;13:76. PubMed PMID: 30914936; PubMed
Central PMCID: PMC6423064; DOI: 10.3389/fnhum.2019.00076.

Complete Golmohammadi M, Harati Nejad Torbati AH, Lopez de Diego S, Obeid I, Picone J.
Automatic Analysis of EEGs Using Big Data and Hybrid Deep Learning Architectures.
Frontiers in human neuroscience. 2019;13:76. PubMed PMID: 30914936; PubMed
Central PMCID: PMC6423064; DOI: 10.3389/fnhum.2019.00076.

Complete Golmohammadi M, Harati Nejad Torbati AH, Lopez de Diego S, Obeid I, Picone J.
Automatic Analysis of EEGs Using Big Data and Hybrid Deep Learning Architectures.
Frontiers in human neuroscience. 2019;13:76. PubMed PMID: 30914936; PubMed
Central PMCID: PMC6423064; DOI: 10.3389/fnhum.2019.00076.

N/A: Not Journal Golmohammadi M, Shah V, Obeid I, Picone J. Machine Learning Applications in
Medicine and Biology. 1 ed. Obeid I, Picone J, editors. New York, New York, USA.
Springer-Verlag; 2020. Chapter 1, Deep Learning Approaches for Automatic Analysis of
EEGs; TBDp. TBDp.

Non-Compliant Shah V, von Weltin E, Ahsan T, Ziyabari S, Golmohammadi M, Obeid I, Picone J. On
the Use of Non-Experts for Generation of High-Quality Annotations of Seizure Events.
Journal of Clinical Neurophysiology. Forthcoming. DOI: Not Available.

Non-Compliant Shah V, Golmohammadi M, Obeid I, Picone J. Objective evaluation metrics for
automatic classification of EEG events. IEEE Sensors. Forthcoming. DOI: Not Available.

In Process at NIHMS Active deep learning for the identification of concepts and relations in
electroencephalography reports. Journal of biomedical informatics. DOI:
10.1016/j.jbi.2019.103265.

 
Non-compliant Publications Previously Reported for this Project

Public Access Compliance Citation

Non-Compliant Goodwin T, Harabgiu S. Inferring Clinical Correlations from EEG Reports with Deep
Neural Learning. American Medical Informatics Association Annual Symposium (AMIA).
2017 March.

Non-Compliant Taylor S, Goodwin T, Harabagiu S. An Evaluation of Syntactic Dependency Parsers on
Clinical Data. American Medical Informatics Association Annual Symposium (AMIA).
2017 March.

Non-Compliant Goodwin T, Harabagiu S. Read, Decide and Explain! Recollective (Explanatory)
Question Answering. Annual Conference of the Association of Computational Linguistics
(ACL). 2017 February.

Non-Compliant Goodwin T, Harabagiu S. Knowledge Representations and Inference Techniques for
Medical Question Answering. ACM Transactions on Intelligent Systems and Technology.
2017 March.

Non-Compliant Goodwin T, Harabagiu S. Deep Learning from EEG Reports for Inferring Underspecified
Information. Proceedings of the American Medical Informatics Association Joint
Summits on Clinical Research Informatics (AMIA-CRI). 2017 March.

Non-Compliant Maldano R, Goodwin T, Harabagiu S. Active Deep Learning-Based Annotation of
Electroencephalography Reports for Cohort Identification. Proceedings of the American
Medical Informatics Association Joint Summits on Clinical Research Informatics (AMIA-
CRI). 2017 March 01.

Non-Compliant Maldonado R, Goodwin T, Skinner M, Harabagiu S. Deep Learning Meets Biomedical
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Ontologies: Knowledge Embeddings for Epilepsy. American Medical Informatics
Association Annual Symposium (AMIA). 2017 March.

Non-Compliant Goodwin T, Harabagiu S. Multi-Modal Patient Cohort Identification from EEG Report and
Signal Data. Proceedings of the American Medical Informatics Association Annual
Symposium (AMIA). 2016 November.

C.2 WEBSITE(S) OR OTHER INTERNET SITE(S) 

Category Explanation

Data or Databases https://www.isip.piconepress.com/projects/tuh_eeg/: A web site devoted to
dissemination of data and resources for this project.

Research Material https://www.isip.piconepress.com/projects/nih_cohort/: A web site devoted to
dissemination of information about the project.

Software https://www.isip.piconepress.com/projects/tuh_eeg/: At this same web site, we also
disseminate software related to the project. For example, at this URL:
 
https://www.isip.piconepress.com/projects/tuh_eeg/downloads/nedc_eval_eeg/v1.3.1/
 
which is a link under the main site, we disseminate a standardized scoring package we
developed so that researchers can reproduce our scoring metrics and performance
results.

C.3 TECHNOLOGIES OR TECHNIQUES

NOTHING TO REPORT

C.4 INVENTIONS, PATENT APPLICATIONS, AND/OR LICENSES 
 
Have inventions, patent applications and/or licenses resulted from the award during the reporting period? No 
 
If yes, has this information been previously provided to the PHS or to the official responsible for patent matters at the grantee
organization? No 
 

C.5 OTHER PRODUCTS AND RESOURCE SHARING

Nothing to report
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D. PARTICIPANTS

D.1 WHAT INDIVIDUALS HAVE WORKED ON THE PROJECT?

Commons ID S/K Name Degree(s) Role Cal Aca Sum Foreign
Org

Country SS

JOSCONE Y Picone,
Joseph

MS,PHD PD/PI 0.0 0.0 1.0 NA

SHARABAGIU Y Harabagiu,
Sanda Maria

PHD PD/PI 0.0 0.0 1.0 NA

OBEID07 Y Obeid, Iyad BS,MS,PH
D

PD/PI 0.0 0.0 1.0 NA

AILOPEZ N Lopez, Silvia BS Graduate
Student
(research
assistant)

12.0 0.0 0.0 NA

VINSHAH N Shah, Vinit MS Graduate
Student
(research
assistant)

12.0 0.0 0.0 NA

TRAVISGOODW
IN

N Goodwin,
Travis

MS Graduate
Student
(research
assistant)

12.0 0.0 0.0 NA

STUARTTAYLO
R

N Taylor, Stuart BS Graduate
Student
(research
assistant)

12.0 0.0 0.0 NA

RAMONMALDO
NADO

N Maldonado,
Ramon

BS Graduate
Student
(research
assistant)

12.0 0.0 0.0 NA

MATIESS N Thiess,
Matthew

HS Undergraduat
e Student

2.0 0.0 0.0 NA

ELLROME N Krome, Elliott HS Undergraduat
e Student

2.0 0.0 0.0 NA

DTREJO N Trejo, Devin HS Undergraduat
e Student

2.0 0.0 0.0 NA

CHRBELL N Campbell,
Chris

HS Undergraduat
e Student

2.0 0.0 0.0 NA

JAMHUGH N McHugh,
James

HS Undergraduat
e Student

2.0 0.0 0.0 NA

TAMHSAN N Ahsan,
Tameem

HS Undergraduat
e Student

2.0 0.0 0.0 NA

STEWONG N Wong, Steven HS Undergraduat
e Student

12.0 0.0 0.0 NA

JASRGEY N Bergey,
Jason

HS Undergraduat
e Student

2.0 0.0 0.0 NA

PATSOMARU N Somaru, Pat HS Undergraduat
e Student

2.0 0.0 0.0 NA

NIJHITE N White, Nija BS Undergraduat
e Student

1.0 0.0 0.0 NA
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NICECCA N Mecca,
Nicholas

HS Undergraduat
e Student

2.0 0.0 0.0 NA

DAWSHED N Jamshed,
Dawer

PhD Graduate
Student
(research
assistant)

12.0 0.0 0.0 NA

GOLMOHAMMA
DI

N Golmohamma
di, Meysam

MS Graduate
Student
(research
assistant)

12.0 0.0 0.0 NA

SCOTTYANG N Yang, Su PHD Postdoctoral
Scholar,
Fellow, or
Other
Postdoctoral
Position

12.0 0.0 0.0 NA

EVALTIN N von Weltin,
Eva

HS Undergraduat
e Student

12.0 0.0 0.0 NA

Glossary of acronyms:
S/K - Senior/Key
DOB - Date of Birth
Cal - Person Months (Calendar)
Aca - Person Months (Academic)
Sum - Person Months (Summer)

Foreign Org - Foreign Organization Affiliation
SS - Supplement Support
RE - Reentry Supplement
DI - Diversity Supplement
OT - Other
NA - Not Applicable

D.2 PERSONNEL UPDATES 
 
D.2.a Level of Effort 
 
Not Applicable 
 

D.2.b  New Senior/Key Personnel 
 
Not Applicable 
 

D.2.c Changes in Other Support 
 
Not Applicable 
 

D.2.d New Other Significant Contributors 
 
Not Applicable 
 

D.2.e  Multi-PI (MPI) Leadership Plan 
 
Not Applicable 
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E. IMPACT

E.1 WHAT IS THE IMPACT ON THE DEVELOPMENT OF HUMAN RESOURCES? 
 
Not Applicable 
 

E.2 WHAT IS THE IMPACT ON PHYSICAL, INSTITUTIONAL, OR INFORMATION RESOURCES THAT FORM INFRASTRUCTURE? 
 
We are now collecting and organizing EEG data for Temple Hospital. For the first time they can easily access archives of EEG data. This
is proving to be enormously valuable to their clinical operations. 
 

E.3 WHAT IS THE IMPACT ON TECHNOLOGY TRANSFER?  
 
Not Applicable 
 

E.4 WHAT DOLLAR AMOUNT OF THE AWARD'S BUDGET IS BEING SPENT IN FOREIGN COUNTRY(IES)? 
 

NOTHING TO REPORT 
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G. SPECIAL REPORTING REQUIREMENTS

G.1 SPECIAL NOTICE OF AWARD TERMS AND FUNDING OPPORTUNITIES ANNOUNCEMENT REPORTING REQUIREMENTS 
 
NOTHING TO REPORT 
 

G.2 RESPONSIBLE CONDUCT OF RESEARCH 
 
Not Applicable 
 

G.3 MENTOR'S REPORT OR SPONSOR COMMENTS 
 
Not Applicable 
 

G.4 HUMAN SUBJECTS 
 
Not Applicable 
 

G.5 HUMAN SUBJECTS EDUCATION REQUIREMENT 
 
Not Applicable 
 

G.6 HUMAN EMBRYONIC STEM CELLS (HESCS) 
 
Does this project involve human embryonic stem cells (only hESC lines listed as approved in the NIH Registry may be used in NIH
funded research)?  
 
No 
 

G.7 VERTEBRATE ANIMALS 
 
Not Applicable 
 

G.8 PROJECT/PERFORMANCE SITES 
 
Not Applicable 
 

G.9 FOREIGN COMPONENT 
 
No foreign component 
 

G.10 ESTIMATED UNOBLIGATED BALANCE 
 
Not Applicable 
 

G.11 PROGRAM INCOME 
 
Not Applicable 
 

G.12 F&A COSTS 
 
Not Applicable 
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I. OUTCOMES

I.1  What were the outcomes of the award?  
 
There are three major impacts from this project: (1) The data and resources generated from this project are being accessed by over
2,500 subscribers on a regular basis. The EEG Corpus released is being used to advance technology development using deep learning
techniques. (2) The EEG event technology has demonstrated the ability to detect clinically important life-altering events such as seizures
with state-of-the-art accuracy and as little as 7 seconds of latency. The entire TUH EEG Corpus has been released with automically
generated annotations using this technology. (3) The Cohort Retrieval system integrates signal and text information to support natural
language queries. A demonstration system was developed that allows user to submit queries on the TUH EEG Corpus. This technology
was publicly demonstrated at several conferences in 2018 and 2019.
 
The natural language processing component of the system, known as Mercury, automatically recognizes critical concepts in an EMR: (1)
EEG activities and their attributes, (2) EEG events, (3) medical problems, (4) medical treatments and (5) medical tests mentioned in the
narratives of the EEG reports, along with their inferred forms of modality and polarity. This allows unstructured EEG reports to be
searched using natural language queries. This capability, combined with the ability to index events in the actual EEG signal, can serve as
a clinical decision support tool. For example, we used these technologies to allow Temple Hospital neurologists to identify candidate
patients for a drug trial.
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