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B. OVERALL ACCOMPLISHMENTS

B.1 WHAT ARE THE MAJOR GOALS OF THE PROJECT? 
 
The specific aims have not changed since the start of the project. The percentages listed are relative to the overall goals of the multi-year
project since many of the sub-tasks span multiple years.
 
Specific Aim 1: Automatically recognize and time-align EEG events that contribute to a diagnosis: We will develop automated techniques
to discover and align the underlying EEG events that led to a diagnosis using data-driven approaches and semi-supervised learning. Five
classes of events will be identified: spike and sharp wave; generalized periodic epileptiform discharges; periodic lateralized epileptiform
discharges, eye blink and artifact. Everything else is considered background. This will make the data more useful to a wide range of
clinical research, and support a new form of biomedical knowledge derived from BigData repositories.
 
YR1 Sub-Tasks: Annotation Development (50%), Iterative Training and Bootstrapping (50%)
 
Specific Aim 2: Automatically recognize critical concepts in the EEG reports: We will automatically recognize clinical  events (e.g.
“intermittent bursts of paroxysmal high amplitude activity”) and their types: EEG-specific ACTIVITY (e.g. “beta frequency activity”), EEG-
specific PATTERN (e.g. “burst suppression pattern”), or CLINICAL DEPARTMENT (e.g. “coded for 30 minutes in the emergency room”).
In addition we shall automatically distinguish the clinical events’ polarity (POSITIVE, NEGATIVE) and modality (e.g. CONDITIONAL,
POSSIBLE). In EEG reports, mentions of clinical events also have dense spatial and temporal information associated with them that will
be mined automatically. Spatial expressions (e.g. “bilateral”, “diffuse”) and their spatial roles to the clinical events shall be discovered.
Similarly, temporal expressions (e.g. “every ten seconds”) and their temporal links to the clinical events shall be automatically mined. In
addition, because EEG reports describe also the clinical picture of patients, we shall identify automatically several types of medical
concepts in the form of medical problems (e.g. “epilepsy”), tests and treatments.
 
YR1: Clinical Events (80%), Medical Concepts (75%)
 
Specific Aim 3: Automatic patient cohort retrieval: We shall develop a patient cohort retrieval system that will identify patients having
EEGs relevant to a query or similar to a given EEG. Central to the patient cohort retrieval system is a qualified medical knowledge graph,
generated automatically by using a BigData solution based on MapReduce operating on the knowledge automatically extracted in
aims 1 and 2. In this way, the patient cohort retrieval system will be designed to search both free-text chart notes and EEG signals.
Searching both areas will enhance retrieval for those medical events or concepts recorded in only one place. In addition, a spatial and
temporal characterization of the way in which events in an EEG are narrated by physicians and the validation of these across a BigData
resource are important contributions to basic science.
 
YR1: Generation of QMKG with MapReduce (33%), Query Expansion (33%), Index Generation (95%), Learning to Rank Based on
Feedback (100%)
 
Specific Aim 4: Evaluation and analysis of the results of the patient cohort retrieval: To evaluate the cohort identification system clinicians
and medical students shall design sets of queries that model inclusion criteria that describe the kinds of patients desired for comparative
studies on EEG data. In addition, the experts will select subsets of EEGs to retrieve similar EEG data automatically from the cohort
identification system. Relevance judgements produced by clinical experts shall be used to qualify the degrees of relevance of the patients
identified. For each query, medical experts shall examine the top-ranked cohorts for common precision errors (false positives), and the
bottom five ranked common recall errors (false negatives). User validation testing will be performed using live clinical data and the
feedback will enable an analysis of the errors that will be used to better rank EEG reports. This will enhance the quality of the cohort
identification system. User acceptance studies shall also be conducted and information about the perceived value of the system shall be
collected.
 
An annotated big data archive of EEGs will greatly increase accessibility for non-experts in neuroscience, bioengineering and medical
informatics who would like to study EEG data and demonstrate that a much wider range of big data bioengineering applications are now
tractable. The cohort retrieval system and annotated EEG signals will greatly reduce training times for medical students pursing careers
in neuroscience.
 
YR 1: Generation of Queries (33%), Evaluation of Patient Cohort System (33%), Analysis of Results (33%), Component Evaluation
(33%), Demonstration / Feedback (25%) 
 

B.1.a Have the major goals changed since the initial competing award or previous report?   
 
No 
 

B.2 WHAT WAS ACCOMPLISHED UNDER THESE GOALS? 
 
File uploaded: acc_main_v01.pdf 
 

B.3 COMPETITIVE REVISIONS/ADMINISTRATIVE SUPPLEMENTS 
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For this reporting period, is there one or more Revision/Supplement associated with this award for which reporting is required?  
 
Yes

Revision/ Supplements # Revision/ Supplements
Title

Specific Aims Accomplishments

3U01HG008468-02S1 Scalable EEG
interpretation using Deep
Learning and Schema
Descriptors

Aim 1: Automatic labeling of the TUH
EEG Corpus for seizure events.
Aim 2:  Application of deep learning
sequential modeling techniques for
EEGs to predict seizures.
Characterize performance as a
function of latency.
Aim 3: Defining and generating
Hierarchical epileptiform Activity
Descriptors (HAD) for EEGs using
deep learning.
Aim 4: Automated Tagging of HADs in
medical texts using deep learning.

Please see the end of the
Accomplishments section above for a
complete description of our
accomplishments on the
supplemental. Given the size of the
award, we felt it best to write a
detailed account of our
accomplishments.

B.4 WHAT OPPORTUNITIES FOR TRAINING AND PROFESSIONAL DEVELOPMENT HAS THE PROJECT PROVIDED? 
 
File uploaded: training_v00.pdf 
 

B.5 HOW HAVE THE RESULTS BEEN DISSEMINATED TO COMMUNITIES OF INTEREST? 
 
We continue to disseminate our resources through traditional methods such as publication. We actively maintain three web sites related
to this project:
 
(1) The Cohort Retrieval Project Web Site: https://www.isip.piconepress.com/projects/nih_cohort/
 
We upgraded this web site to use Drupal so that it is more user-friendly and contains more frequent announcements about resources.
We post periodic updates about the project as needed.
 
(2) The NEDC Web Site: https://www.nedcdata.org/
 
We make major announcements about data and resources to this site.
 
(3) The TUH EEG Database Web Site: https://www.isip.piconepress.com/projects/tuh_eeg/
 
This is the location of the TUH EEG Corpus and its various subsets. We make all databases available from this site.
 
We also will be hosting the IEEE Signal Processing in Medicine and Biology Symposium in December 2017 for the 4th year. We use this
conference as a way to advertise our research and data resources.
 
Further, we now have our data resources cross-listed on a number of sites popular within the neuroscience community. We continue to
reach out to a wide range of neurologists, and have a presence at major neurology conferences, in an effort to promote our programs. 
 

B.6 WHAT DO YOU PLAN TO DO DURING THE NEXT REPORTING PERIOD TO ACCOMPLISH THE GOALS? 
 
Primary Award:
 
Aim 1: Automatically recognize and time-align events in EEG Signals: We will continue our efforts to improve the performance of our
deep learning classifiers by exploring transfer learning approaches and pre-training strategies. We will also investigate ways we can
incorporate confidence measures to reduce the high false alarm rate.
 
Aim 2: Automatically recognize critical clinical concepts in the EEG Reports: We will continue developing an integration of the EEG signal
and EEG report event detection systems so that we can query both data resources simultaneously. EEG reports have dense spatial and
temporal information associated with clinical events and medical concepts, which we propose to automatically discover as well. Prof.
Harabagiu’s teams have participated in the 2012 Semeval Task on automatic Spatial Role labeling as well as in the 2012 i2b2 Challenge
that focused on the automatic processing of temporal expressions and the temporal ordering of clinical events. We propose to use
annotations focusing on the spatio-temporal specifics of EEG reports in order to (a) detect automatically spatial expressions and (b)
temporal expressions, facilitating (c) the recognition of spatial relations to clinical events or medical concepts and (d) identification of
spatial relations and spatial containers. Specifically, while considering the annotation scheme for spatial information reported in
(Kordjamshidi et al., 2012), from which the Trajector, Landmark and Spatial Indicator spatial roles shall be derived, we shall also add new
roles that have been considered in the spatial features of EEG reports (Bebiczky et al., 2013), e.g. Laterality (e.g.
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left/right/midline/bilateral/diffuse) and Regions (e.g. frontal, temporal, central, parietal, occipital). The spatial role Trajector is defined as
the clinical event or medical concept whose location is being described, whereas the Landmark spatial role is defined as reference entity
in relation to which the location is defined (e.g. “over the occipital region”); the Spatial Indicator spatial role defines the constraints of
spatial properties of the Landmark. The spatial role of Laterality is a special case of Spatial Indicator, whereas Regions is a special case
of Landmark. To detect these spatial expressions and to identify the special roles and their relations to clinical events and medical
concepts, we propose to use a joint classification framework that was very successful when we built the UTDSpRL spatial role labeler for
the Semeval 2012 evaluation (Roberts & Harabagiu, 2012b). The spatial information that shall be identified in the EEG reports will also
enable new indexing schemes for searching the EEG big data and identifying patient cohorts.
 
Aim 3: Automatic Patient Cohort Retrieval: To achieve the goals pertaining to Aim 3 of the project, in the next period we shall organize
the acquired clinical knowledge in a graph, which will benefit from our recently developed medical knowledge embeddings (MKE). We
shall incorporate in the MKE, which are superior to the qualified medical knowledge graph (QMKG), temporal and spatial relations in
addition to the temporal and spatial attributes defined in the Hierarchical EEG Activity Tags. We also plan to use the MKE to enhance a
novel learning to rank methodology for patient cohort identification. Lastly, we plan to continue enhancing our multi-modal indexing and
retrieval scheme for clinical data, to include clinical events and spatial and temporal information as well as EEG events derived from the
EEG signals.
 
Aim 4: Evaluation and Analysis of the Results of the Patient Cohort Retrieval: To achieve the goals pertaining to Aim 4 of the project, in
the next period we shall continue the collaboration between Temple University and UTD to validate the results of the patient cohort
identification system and to generate the final set of clinically-relevant queries. The patient cohort retrieval system shall be evaluated by
considering that it shall return a list of ranked EEG reports and signals that satisfy the inclusion criteria set by an expended set of queries.
Like in in the first year of the project, the development of the queries for evaluation will also consider exclusion criteria determined by the
TUH EEG Corpus. Specifically, the main reasons for excluding a candidate query shall be either that the topic of the query will not be a
good fit for the TUH EEG Corpus or there will be too few or too many EEG reports returned by a Boolean retrieval system that the UTD
team shall build on top of the Lucene-based Index of the EEG corpus.
 
Another important aspect of the evaluation of the patient cohort retrieval system will focus on relevance judgments. The team from
Temple University shall recruit judges who are physicians in residence and medical students at Temple University. We propose to recruit
five judges. Judges will be instructed to rate each EEG report deemed relevant by the patient cohort retrieval system to determine
whether such a patient would be a candidate for a clinical study on the topic of the query. A definitely relevant judgment will mean that
the patient is unequivocally a candidate for the study. A possibly relevant judgment meant that the patient might be a candidate for the
study but insufficient information was available for a definitive decision. A not relevant judgment will mean that the patient was not a
candidate for the clinical study. The judgments will also enable an analysis of the results of the patient cohort retrieval system that can
lead to learning to rank from the feedback provided by expert clinicians. We propose to categorize the reasons for incorrectly retrieving
EEG reports and to derive their characterizing features. This will allow us to learn optimal ranking functions on the EEG corpus.
 
We will also start conducting user acceptance testing using three focus groups: expert annotators, clinicians and medical students.
 
Supplemental Award:
 
Aim 1: Automatic labeling of the TUH EEG Corpus for seizure events: We will continue developing the seizure detection corpus and
refining the detail in which each event is annotated so that we can build event-specific models. We will also validate our results on
several other databases we have recently acquired.
 
Aim 2:  Application of deep learning sequential modeling techniques for EEGs: We will improve performance of our baseline prediction
technology using more accurate deep learning models. We will explore in more detail what cues in the signal correlate with patients’
ability to predict seizures. Our goal is to be able to predict seizures with some degree of accuracy 30 minutes or more in advance with a
low false alarm rate.
 
Aim 3: Defining Hierarchical epileptiform Activity Descriptors (HAD) for EEGs: We will generate a schema of Hierarchical epileptiform
Activity Descriptors (HAD) and a hierarchical structure which will be rooted into the HAD tag, while organizing hierarchies for (1) the
epileptiform activity waveform; (2) the epileptiform activity frequency band; (3) the epileptiform activity anatomical location; (4) the
epileptiform activity position; (5) the epileptiform activity distribution; (6) the epileptiform activity frequency; (7) the epileptiform activity
magnitude.
 
Aim 4: Automated Tagging of HADs in medical texts: We will produce the HAD tags automatically using several deep learning
frameworks. We will automatically recognize the relations between the HAD tags. We will automatically annotate EEG signal recordings
with the same HAD tags and the relations between them that we discovered from the EEG reports that interpret the EEG signal
recordings. Clinical decision support (CDS) will be provided by retrieving scientific articles that document the medical care of similar
patients before, during and after their seizures. 
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Figure 1. DET Curve for the first (P1) and second (P2) passes of processing 
for the channel dependent and independent models respectively. 

 

Accomplishments 

Goals Specific to Aim 1: Automatically recognize and time-align events in EEG Signals: Identification of the 
type and temporal location of EEG signal events such as spikes or generalized epileptiform discharges in the 
EEG signal are critical to the interpretation of an EEG. 

Our main goals concerning Aim 1 for this year included (1) using domain knowledge to improve the previously 
reported performance, (2) developing a self-training method that would allow to increase the amount of 
annotated data, and (3) explore and implement more efficient training algorithms. 

The probability for the occurrence of a specific EEG activity can vary largely across channels. We can say, for 
example, that the observation of alpha rhythm is more likely in the occipital region than in other channels, or 
that it is much more likely to observe ocular artifacts in the frontal channels rather than in the temporal or 
posterior channels. Taking this spatial information into account, we decided to consider the possibility of 
training channel dependent models with our currently established HMM+SdA system. 

In our standard HMM+SdA baseline system, which is channel independent, we train one model for each event 
that we wish to decode in the EEG signal. In this case, we have six models: Spike and Sharp Wave (SPSW), 
Generalized Periodic Epileptiform Discharge (GPED), Periodic Lateralized Epileptiform Discharge (PLED), Eye 
Movement (EYEM), Artifact (ARTF) and Background (BCKG). In the channel dependent variation of the 
experiment, we train one model per event for each channel. Basically, we have six models for each channel.  

We evaluated the performance of the first pass of decoding (P1), which is an HMM-GMM system, for each 
channel individually. Table 1 shows the individual performance for each channel. The error rate for the channel 
independent system is 16.49%, which is outperformed by several of the channel dependent models and their 
average, which is 14.14%. 

The output for P1 was then used as an input for a second pass of processing (P2) that consists of a deep 
learning system known as Stacked denoising Autoencoders (SdA). We selected the channel that showed the 
best performance for P1, which was F4-C4, to run the experiment for P2. The error rate for P2 for the channel 
dependent model was evaluated to be 29.59%, while the analogous channel independent model has an error 
rate of 8.71%.  Figure 1 shows the Detection Error Tradeoff (DET) curve for P1 and P2 of both systems. 

The sudden drop in performance between the first and the second 
passes of processing for the channel independent modes can be 
attributed to the fact that there is not enough data for accurate 
training of the model. It is widely accepted that deep learning 

Channel # Channel 
Label 

Error (%) 

ch000 Fp1-F7 17.74 
ch001 F7-T3 16.38 
ch002 T3-T5 13.68 
ch003 T5-O1 11.55 
ch004 Fp2-F8 14.39 
ch005 F8-T4 17.34 
ch006 T4-T6 16.85 
ch007 T6-O2 16.13 
ch008 A1-T3 10.64 
ch009 T3-C3 14.23 
ch010 C3-CZ 15.31 
ch011 CZ-C4 12.17 
ch012 C4-T4 13.43 
ch013 T4-A2 12.95 
ch014 FP1-F3 15.62 
ch015 F3-C3 14.64 
ch016 C3-P3 15.73 
ch017 P3-O1 12.65 
ch018 FP2-F4 12.51 
ch019 F4-C4 8.87 
ch020 C4-P4 15.95 
ch021 P4-O2 12.27 

Table 1. HMM performance of channel dependent 
models reported individually for each channel. 
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Figure 2. A generic approach to self-training. 

Class Sensitivity (%) 
Before After 

GPED 52.8 56.5 

PLED 54.2 60.4 

SPSW 41.6 49.6 

EYEM 81.8 82.1 

BCKG 72.1 71.2 

ARTF 41.2 39.1 

Table 2. Sensitivity of the six EEG 
event models before and after the first 
iteration of the self-training algorithm. 

 

systems need vast amounts of data to achieve good performance levels, and dividing the available data 
among the 22 channels does not benefit the deep learning system. We can see that, contrary to the previous 
case, the channel independent model is improved with the second pass of processing. 

In general, we observe that the channel dependent models do improve the performance of the system up to 
the first pass of processing. To obtain a performance boost after P2, however, it would be necessary to expand 
the amount of labeled data for each channel. By the results presented so far, we can project that channel 
dependent models trained with large amounts of data could significantly improve the detection rate and 
decrease the false alarm rate after P2. 

To address the lack of annotated data, we developed a self-training approach to iteratively annotate a large 
clinical EEG corpus. The main motivation for this task was to create and explore the impact of an algorithm that 
would work on large clinical EEG data resources. The principal outcome of this work is the ability to 
automatically annotate the entire TUH EEG database with a level of accuracy comparable to that of manual 
annotations made by human experts, allowing the implementation of more sophisticated deep learning 
systems. 

The self-training algorithm that we developed was tested and implemented with the six EEG events that we 
mentioned above (SPSW, GPED, PLED, EYEM, ARTF, BCKG). A model for each class was first trained with a 
small pool of high confidence annotations made by experts. This trained model was then used to decode non-
labeled data. The decoded events (1 second epochs) with the highest posterior probabilities (highest 
confidence labels) were then selected and added to the training pool to retrain the models. The retrained 
models were then evaluated in an open evaluation set and used to decode more unlabeled data in the corpus. 
These steps were repeated until the entire database was annotated with high confidence labels. Figure 2 
Depicts an overview of the entire process. 

To obtain an early assessment of the effectiveness of this newly developed 
technique, we evaluated the sensitivity for each class after one iteration of 
the algorithm. Table 2 summarizes the observations of this experiments. It 
is possible to see that the sensitivity improved for the GPED, PLED and 
SPSW models. This improvement was less evident for the EYEM model, 
which only exhibited an improvement of ~0.3%. The BCKG and ARTF 
models, on the other hand showed a degradation in performance. Since the 
last three classes are all background events and are largely available 
across the corpus, the implementation of the self-training algorithm for them 
is not as critical as it is for the first three classes. As a matter of fact, the 
event with the least occurrences in the original annotated data is SPSW, 
and is therefore the class that we focus on expanding for the rest of the 
analysis. 

This algorithm is innovative because, besides 
operating with high levels of confidence in a 
large clinical data resource, it works without 
any human supervision. For this reason, 
however, it is necessary to ensure that the 
algorithm’s parameters are properly adjusted to 
select the correct number of high confidence 
events and maintain the performance of the 
system (or improve it) for future iterations. To 
optimize the algorithm and find a proper 
experimental scheme, we conducted two 
different types of tests: (1) analysis of the 
number of high confidence events to select for 
retraining, and (2) an analysis of the threshold 
for the posterior probabilities to be included for 
retraining.  

Page 6RPPR
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Figure 3. Number of decoded SPSW epochs used for retraining. 

 

 
Figure 4. Effect of probability threshold variation over performance. 

 
Figure 5. Effect of the added epochs for SPSW over performance for 5 
iterations of the self-training algorithm. 

 

First, we investigated the impact of different 
rankings of epochs. We focused on the SPSW 
class for this parameter analysis. Figure 3 shows 
the trend in recognition performance when we 
reduce the number of included SPSW events during 
re-training. In this analysis, we controlled the 
amount of highly ranked epochs: by reducing the 
preserved features for re-training, an increasing of 
the recognition performance was observed. As 
shown in Figure 3 we began by augmenting the 
training set with the top 10% of the decoded 
features. As we tightened the inclusion thresholds, 
recognition performance increased. 

We conducted a series of experiments with 
different posterior probability (log likelihood) 
thresholds for the selected epochs. The results 
for the first part of the analysis helped to select 
an initial threshold, which was then varied to find 
is optimal value. Figure 4 depicts the recognition 
accuracy for SPSW events as a function of the 
threshold. Even though the figure shows that the 
optimal log-likelihood threshold for event 
selection is 355, the performance of the baseline 
is not compromised by threshold values as high 
as 375. 

The experiments that we present above allowed 
to properly tune the algorithm for the labeling of 
new SPSW epochs. To further test the variability 
of the system’s performance for a large amount 
of automatically labeled data, we ran the 
algorithm for 5 iterations. As is shown in Figure 5, 
a large number of SPSW epochs (almost 30,000 
new labels) were automatically labeled by our 
algorithm, while maintaining a performance 
comparable to that of the baseline system for 
SPSW.  

The experiments that we have described to this 
point show that the approach that we have 
designed works for a large clinical EEG Corpus, 
TUH EEG, and provides high confidence 
annotations without human supervision. In other 
words, the implementation of this algorithm and 
future more sophisticated variations of it will not 
only allow the implementation of deep learning 
models for the decoding of EEG signals, but will 
also become a crucial tool in the annotation of the entire TUH EEG Corpus. 

As an activity to support the increasingly complex training processes that we must use to train models with 
larger datasets, we invested time in the complete parallelization of our HMM training algorithms. More 
specifically, we substituted our isolated unit training system with an embedded training system that resembles 
algorithms that have been widely used in the speech recognition field to build sub-word systems. In essence, 
our new training procedure simultaneously updates all of the HMMs in a system using all of the input training 
data. Figure 6 depicts the training method that we were implementing before the modifications. This approach, 
although effective, is not suitable for operation in larger databases, since it estimates the HMM parameters in a 
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Figure 6. Process followed for the isolated unit 
training approach. 

 

 
Figure 7. Parallelized training approach. 

 

serial way. The parallel solution that we have adapted to our 
system, shown in Figure 7, solves the problem of long training 
times by parallelizing the training operations. It can be seen that 
the input data is divided, and each partition is used to estimate 
parameters that are later combined by an accumulator, and 
used to update the HMMs. 

We investigated the effectiveness of the new training paradigm 
through the implementation of the same experiment with both 
sequential and parallel training. The experiment that we decided 
to use for comparison of the two training techniques was a 
seizure detection problem, which typically requires many hours 
of training, due to the long annotated seizure segments. The 
system was based on a left-to-right 3-state HMM for each class. 
The probabilities yielded by this model were later post-
processed with a Stacked denoising Autoencoder for temporal 
and spatial context integration. For simplicity, we trained only 
two models: seizure and background (non-seizure). The training 
set contained 172 EEG files recorded with 22 channels. We 
confirmed the efficiency of the parallel training method when we 
observed that this technique, which used 150 cores, took about 
2 hours for training, whereas the sequential training approach 
exceeded 22 hours.  

The performance of the systems for the 
two different training implementations 
was comparable. This behavior was 
expected, since the system modeled 
was essentially the same. The 
sensitivity of the trained background 
model for parallel training (29.07%) was 
higher than that of the same model 
trained sequentially (27.38%). On the 
contrary, the sensitivity of the seizure 
model trained in parallel was higher 
(18.67%) than the sequentially trained 
model (16.60%). The sensitivity for the 
second pass of processing (P2) for the 
system trained in parallel was 96.16% 
(SEIZ) and 93.85% (BCKG). For the sequentially trained models, the sensitivity was 95.84% (SEIZ) and 
93.13% (BCKG) respectively.  

One thing that we observed in the seizure detection experiment mentioned above, however, was the high 
False Alarm rate (FA), which reached 1754 false detections per 24-hour period for the first pass of processing 
and 14146 for the more sensitive second pass. Decreasing the FA is a crucial aspect for the development of a 
clinical event detection system. In this sense, we explored the possibility of making some changes in our 
system that would allow us to reach a good compromise between the FA and the sensitivity. 

The sensitivity is a one-to-one comparison between the ground truth label and the prediction, i.e. there is no 
imposter case in this process. This could lead to an extreme case: when the window duration is small enough, 
theoretically we may achieve rather high sensitivity since the tiny window can lose most of the class-specific 
information in feature extraction. This conjecture is verified by our results in P2: the sensitivity is high but the 
FA is also very large. In order to better deal with the imposter case (related to FA), each feature needs to 
better represent the characteristics of specific class. Studies in the EEG signal processing field, have shown 
that, depending on the classification scenarios, the optimal window size for EEG analysis ranges from 3s to 
30s.  
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With the dataset and goal from the seizure detection system mentioned above, we conducted a series of 
experiments using different window sizes for decoding, we found that increasing the window duration can 
reduce the FA significantly. For P1 stage (HMM), increasing the window duration from 1 second (default) to 25 
seconds the total FA rate reduced from 1754 per 24 hour to 404 per 24 hours. A similar FA reduction trend was 
observed from the P2 SdA processing stage: the FA rate reduced from 14146 per 24 hours to 141 per 24 
hours. It is worth mentioning that since the individual EEG recordings may contain multiple classes (labels), the 
performance will reach an optimal point and then begin to drop as window duration continues to increase. The 
current experimental design clearly shows performance improvements, but since the same window length was 
applied globally, the big window may have covered multiple short events which belong to different classes 
during the evaluation. This will certainly reduce the sensitivity, which was noticed in our experiments too. 
Therefore, it is worth to investigate the topic of automatically adjusting window size locally using deep learning 
technology. 

Goals Specific to Aim 2: Automatically recognize critical concepts in an EMR: (1) EEG activities and their 
attributes, (2) EEG events, (3) medical problems, (4) medical treatments and (5) medical tests mentioned in 
the narratives of the EEG reports, along with their inferred forms of modality and polarity. When we considered 
the recognition of the modality, we took advantage of the definitions used in the 2012 i2b2 challenge on 
evaluating temporal relations in medical text. In that challenge, modality was used to capture whether a 
medical event discerned from a medical record actually happened, is merely proposed, mentioned as 
conditional, or described as possible. We extended this definition such that the possible modality values of 
“factual”, “possible”, and “proposed” indicate that medical concepts mentioned in the EEGs are actual findings, 
possible findings and findings that may be true at some point in the future, respectively. For identifying polarity 
of medical concepts in EEG reports, we relied on the same definition used in the 2012 i2b2 challenge, 
considering that each concept can have either a “positive” or a “negative” polarity, depending on any absent or 
present negation of its finding. Through the identification of modality and polarity of the medical concepts, we 
aimed to capture the neurologist’s beliefs about the medical concepts mentioned in the EEG report. Some of 
the medical concepts mentioned in the EEG reports that describe the clinical picture of a patient are similar to 
those evaluated in the 2010 i2b2 challenge, as they represent medical problems, tests and treatments, thus we 
could take advantage of our participation in that challenge and use many of the features we have developed 
for automatically recognizing such medical concepts. However, EEG reports also contain a substantial number 
of mentions of EEG activities and EEG events, as they discuss the EEG test. 

In the second year of the project, we developed the ability to automatically annotate all medical concepts from 
the EEGs, creating an annotation schema after consulting numerous neurology textbooks and inspecting a 
large number of EEG reports from TUH-EEG. The annotation schema also represents the first step in our 
Multi-Task Active Deep Learning (MTADL) paradigm developed in the second year of the project, which 
required the following 5 steps: 

STEP 1: The development of an annotation schema; 
STEP 2: Annotation of initial training data; 
STEP 3: Design of deep learning methods that are capable to be trained on the data; 
STEP 4: Development of sampling methods for Multi-task Active Deep Learning system 
STEP 5: Usage of the Active Learning system which involves: 

Step 5.a.: Accepting/Editing annotations of sampled examples 
Step 5.b.: Re-training the deep learning methods and evaluation the new system. 

After developing the annotation schema, we performed manual annotations of an initial training set, which 
enable the design and development of two deep learning methods that were trained on that data. In addition, 
we developed sampling mechanisms that enabled the “active” component of the deep leaning, which then was 
used by (a) accepting or (b) editing the samples examples, followed by the re-training of the deep learning 
methods. The entire architecture of MTADL is illustrated in training the two deep learning architectures 
illustrated in Figure 8.   

We also evaluated the impact of Multi-task Active Deep Learning (MTADL) on the performance of our model. 
Specifically, we measured the change in performance after each additional round of annotations. Figure 9 
presents these results. Clearly the impact of MTADL on the performance of our model across all tasks was 
significant allowing it to achieve high performance after as few as 100 additional EEG Reports have been 
annotated. We plan to continue using the MTDADL annotation tool to vastly improve the accuracy of identifying 
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automatically (1) the attributes of EEG activities as well as (b) the attributes of the other medical concepts 
mentioned in the EEG reports. As shown in Figure 9, we already have achieved impressive performance on 
identifying the anchors of EEG activities as well as the boundaries of all medical concepts. 

Goals Specific to Aim 3: Retrieve patient cohorts from the EMRs that document their hospital visits. The 
Multi-Modal EEG Patient Cohort Retrieval system called MERCuRY (an acronym for Multi-modal 
EncephalogRam patient Cohort discoverY), was developed at University of Texas at Dallas by relying on the 
UTD team’s prior experience with patient cohort identification based on principles of Information retrieval (IR). 
In the second year of the project, The UTD team aimed to improve this patient cohort retrieval system by 
making use of the medical knowledge that can be automatically acquired from the EEG reports. We generated 
qualified medical knowledge graphs (QMKGs) automatically discerned from the EEG reports by using big-data 
techniques, similar to our prior work on retrieving patient cohorts in the TREC Medical Records track 
(TRECMed), a task developed in 2011 and 2012 as an Information Retrieval challenge pertinent to real-world 
clinical medicine and evaluated in the annual TExt Retrial Conference (TREC) hosted by the National Institute 
for Standards and Technology (NIST). 

We also developed another knowledge representation for yet  another TREC special track on Clinical Decision 
Support (TREC-CDS), which a Clinical Picture and Therapy Graph (CPTG) as a factorized Markov network. 
Finally we developed a novel representation, namely medical knowledge embeddings (MKE) which is a new 
probabilistic knowledge representation which is superior to the QMKG or the CPTG because (1) the 
relationships are not informed only by cohesive properties of texts, but by patterns of interactions between 
medical concepts, as captured by deep learning methods; and (2) similar medical concepts and relations share 
the same neighborhoods in the  multi-dimensional 
space enabled by the knowledge embeddings. The 
latter property resolves semantic heterogeneity which 
arises when disparate terminology is used to refer to 
the same concepts or relations while identical terms 
may refer to distinct concepts. 

As noted in Sahoo et al. (2014) a seizure with 
alteration of consciousness may be referred to as 
complex partial seizure, dialeptic seizure or focal 
dyscognitive seizure by different epilepsy experts. An 
MKE representation places all these expressions in 
the same location of the multi-dimensional space, as 
it learns that they are involved in the same relations 

 
Figure 8. Architecture of the Multi-Task Active Deep Learning for annotating EEG reports. 

 

 
Figure 9. Learning curves for all annotations, shown over the first 
100 EEG Reports annotated and evaluated with F1 measure. 
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with other epilepsy-relevant concepts. Thus, unlike the Epilepsy and Seizure Ontology (EpSO), the MKE 
representation does not require reconciliation of semantic heterogeneity, while being used for retrieving patient 
cohorts from medical records. 

Bottom-up knowledge acquisition methods rely on the automatic identification of concepts and relations from 
data to enable (i) the population of the knowledge representation and (ii) linking the acquired knowledge to 
existing ontologies. In learning medical knowledge embeddings (MKE) from EEG reports we did not only 
perform bottom-up acquisition of medical knowledge from EEG reports, but we also represented the 
knowledge probabilistically in a multi-dimensional space and performed inference on it. To do so, we followed 
a methodology which involved the following four steps: 

STEP 1: Decide which medical concepts and which relations between them are expressed in the EEG 
reports; 
STEP 2:  Automatically extract medical concepts and relations from the EEG reports; 
STEP 3: Learn the MKE and generate the associated MKE graph; 
STEP 4: Perform inference with MKE. 

It is to be noted that the MKE represent only knowledge available from the EEG reports, which do not discuss 
the taxonomic organization of medical concepts or their partonymy relations. These forms of relations are 
encoded in medical ontologies, thus the MKE provide complementary knowledge to medical ontologies. 
However, many of the concepts represented in the MKE are also encoded in existing medical ontologies, 
providing a simple mechanism of linking the MKE to various ontologies available in BioPortal. For example, the 
clinical history and the medication list of EEG reports mention multiple medical concepts already encoded in 
the Unified Medical Language System (UMLS) ontology.  Medical problems such as seizures, and treatments 
such as “Keppra”, “Lamictal” are encoded in UMLS while concepts such as idiopathic generalized epilepsy will 
be linked both to UMLS and the ESSO ontology. However, these ontologies do not capture relations between 
such concepts that are implied in the EEG reports, e.g. which brain activities evidence some epilepsy specific 
medical problems. 

Our four-step methodology aims to capture and represent such relationships, while also providing their 
probabilistic likelihood, learned automatically from the medical practice evidenced in the large corpus of EEG 
reports. In addition to medical problems and treatments that describe the clinical picture and therapy of a 
patient, EEG reports mention EEG events, which represent stimuli that activates the EEG (e.g. 
hyperventilation) and EEG activities, representing brain waves or sequences of waves. The description section 
of the EEG reports describing the EEG record mention a multitude of EEG activities and events recognized by 
the neurologist from the analysis of the EEG signal. EEG activities are also mentioned in the impression 
section and in the clinical correlation section. Thus we decided to encode in the MKE four types of medical 
concepts: (1) EEG events; (2) EEG activities; (3) medical problems and (4) treatments. Whenever these 
concepts are also encoded in other ontologies, we linked to them. For example, medical problems such as 
idiopathic generalized epilepsy, when identified in an EEG report, with methods developed in the STEP 2 of 
our methodology, shall be linked to UMLS through its concept unique identifier (CUI). In addition to these four 
types of concepts, we decided to discern four types of binary relations that are implicit in the EEG reports. 
Each of these relations operates between a source argument and a destination argument. The relations along 
with examples of the four types of medical concepts are illustrated in Figure 10. 

The EVIDENCES relation (from Figure 3) operates between: (a) EEG events, EEG activities, treatments, and 
(b) medical problems as providing evidence for the medical problem from the clinical correlation section of the 
EEG report. The EVOKES binary relation always has an EEG activity as a destination concept, as it attempts 
to capture the medical concepts that evoke the respective EEG activity. Those medical concepts can be either 
EEG events, or other EEG activities, medical problems or treatments followed by the patient. The third relation, 
namely OCCURS-WITH constraints both its arguments to be of the same type, e.g. either EEG activities, 
medical problems or treatments. The TREATMENT-FOR relation capture the treatments followed to prescribed 
for certain medical problems. 

The extraction of medical knowledge from EEG reports consists of (1) automatic identification of medical 
concepts and (2) binary relation detection. Medical Concept Identification was performed by taking advantage 
of our existing MTADL active deep learning methodology, which was developed for Aim 2 of the main project. 
Detecting Relations between Medical Concepts was possible when pairs of medical concepts identified in the 

Page 11RPPR

B.2 (acc_main_v01.pdf)



Picone, Obeid and Harabagiu: Automatic discovery and processing of EEG cohorts from clinical records Grant No. 5U01HG008468-02 

   

same EEG report were considered. Specifically, we established the four types of relations illustrated in 
Figure 10 by considering: (1) a potential EVIDENCES relation between any medical concepts from an EEG 
report and a medical problem identified in its clinical correlation section; (2) a potential EVOKES relation 
between any medical concept and an EEG activity, provided that the treatments were not identified in the 
clinical correlation section, as they may indicate possible or recommended treatments; (3) a potential 
OCCURS WITH relation between pairs of EEG activities, medical problems and treatments that are identified 
in the same section of the EEG report; and (4) a potential TREATMENT FOR relation between any treatment 
and a medical problem identified in the history section of the EEG report. All these potential relations are 
indicative of implied relations, that are not always directly stated in the text of the EEG report.  

The likelihood of the relations represented in the MKE are learned by relying on TransE, a framework that 
represents relations between medical concepts as translation vectors, connecting its arguments, i.e. the two 
medical concepts in the embedding space. TransE learns an embedding, 𝑐", for each medical concept ci and 
an embedding, and an embedding 𝑟, for each relation type r such that the relation embedding is a translation 
vector between the two concept embeddings representing its arguments. This means that for any medical 
concept ci, the concept most likely to be related to ci by the relation r should be the medical concept whose 
embedding is closest to (𝑐"+𝑟) in the embedding space. By modeling the medical concepts as points in the 
embedded space and the relations between them as translation vectors, we were able to measure the 
plausibility of any potential relation between any pair of concepts using the geometric structure of the 
embedding space. The plausibility of a relation between a source medical concept and a destination medical 
concept, represented as a triple, <cs;r;cd>, is inversely proportional to the distance in the embedding space 
between the point predicted by our model (𝑐$+𝑟)  and the point in the embedding space representing the 
destination argument of the relation, i.e. 𝑐%. For this purpose, we used the Manhattan Distance as our distance 
function. Details of the formal models and the optimization functions were described in a paper that we 
submitted for the Annual Symposium of the American Medical Informatics Association (AMIA), entitled “Deep 
Learning Meets Biomedical Ontologies: Knowledge Embeddings for Epilepsy”. 

The relations represented in the MKE were evaluated in terms of (a) their plausibility; and (b) their 
completeness. The plausibility of relations encoded in MKE was assessed in three ways, measuring how well 
MKE ranks triples from a test set T, of 1,000 relation triples held out from the data used to train the MKE. For 
each triple t in the test set, we randomly removed either the source or destination argument and produced a 
set of candidate triples by replacing the removed argument with every medical concept automatically identified 

 
Figure 10. Medical concepts and relations represented in the Medical Knowledge Embeddings (MKE). 
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Figure 11. The graphical user interface for the patient cohort 
retrieval system. 
 

with the methodology developed for Aim 2 of the main project. We ranked the candidate triples in ascending 
order according to the distance function. This allowed us to calculate the following metrics using the rankings 
produced from every triple in the test set: (1) Mean Reciprocal Rank (MRR); (2) Precision at 10 (P@10) and (3) 
Hits at K (i.e. H@10 and H@100). The micro-averaged Mean Reciprocal Rank of 83.33% indicates that for the 
majority of triples in the test set, the top ranked candidate triple is correct. The P@10 metric showed that 
66.73% of the top 10 ranked triples were correct, in general. It is interesting to note that the results for the 
Hits@10 metric have the most variability between relation types. In general, the Hits@100 results showed that 
the MKE correctly ranks test relations t in the top 5% of candidate triples 81.3% of the time. Future work will 
consider techniques for learning plausibility thresholds that will allow MKE to be considered for curation and 
acceptance in existing, expert and community-validated biomedical ontologies. 

By applying knowledge graph embedding techniques, we were able to discover data-driven knowledge which 
can be linked to other ontologies from the BioPortal. Experimental results demonstrated the promise of this 
approach and highlight the potential of the MKE for bridging the knowledge gaps of existing neurological 
ontologies. The MKE developed for this aim showcased the way in which deep learning techniques applied to 
large collections of medical records can supply medical knowledge derived from clinical practice and meet the 
ontological commitments encoded in existing biomedical ontologies. By representing medical knowledge 
probabilistically, the MKE will also enable probabilistic reasoning on its knowledge. 

Finally, the team at The University of Texas at Dallas has 
developed a web interface that allows users to (1) enter 
and search arbitrary patient cohort queries, (2) browse 
the retrieved (and ranked) EEG reports produced by their 
MERCuRY system for the given query, and (3) view the 
content of the of each retrieved EEG report. The team at 
Temple University has developed a system that performs 
automatic time-aligned EEG event recognition and 
displays the recognized signals through a local 
application. To efficiently integrate the knowledge learned 
from the two applications, we designed an Application 
Programming Interface (API) that allows requests and 
responses from the MERCuRY system. Figure 11 shows 
a screenshot of the user interface for the patient cohort 
system, which allows to visualize the annotated EEG signals and medical reports. 

Goals Specific to Aim 4: Validate the usefulness of the patient cohort identification system by collecting 
feedback from clinicians and medical students. For each query, medical experts shall examine the top ranked 
cohorts for common precision errors (false positives), and the bottom five ranked common recall errors (false 
negatives). In a very fruitful collaboration, both the Temple University team and the UTD team have 
participated in the evaluation and validation of the patient cohort identification system implemented in the 
MERCuRY system. Our immediate goal this second year was to assemble 120 clinically relevant queries that 
are used by neurologists to evaluate the quality of the EEG reports/records considered relevant by the patient 
cohort retrieval system in its current form.  To assembled to targeted number of queries, we have performed 
several rounds of query generation. In each round, the neurologists have provided clinical rationales for the 
queries, suggested some, invalidated some and are continued to be interviewed. We retained only patient 
cohort queries that have been validated independently by two neurologists and compute the inter-neurologist 
agreement rate. In addition, we are collecting examples of queries which were not deemed clinically relevant 
by at least two neurologists, along with their rationales.  In the process, we also assigned evaluation tasks to 
the neurologists that either proposed a query or validated a query. Examples of the clinically relevant queries 
provided by neurologists and analyzed by us are: 

 

 

 

Page 13RPPR

B.2 (acc_main_v01.pdf)



Picone, Obeid and Harabagiu: Automatic discovery and processing of EEG cohorts from clinical records Grant No. 5U01HG008468-02 

   

No QUERY Agreed By Rationale 
GQ1 Patients experiencing seizures and 

generalized shaking 
Drs. Cheng, 
Ellis  & 
Tobochnick 

Dr. Cheng’s rationale: This query defines a specific clinical 
population for which a few specific EEG patterns are typically 
associated with. May not exclude psychogenic non-epileptogenic 
seizures. 
Dr. Ellis’s rationale: I think “seizures” is certainly a relevant query. In 
theory it would also be relevant to query the clinical semiology 
(“generalized shaking”). 
 

GQ2 Multiple sclerosis and seizure Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: Seizures are more prevalent in patients with 
multiple sclerosis compared to the general population. This search 
would isolate those patients with MS who had an EEG ordered for 
seizure evaluation. 
Dr. Tobochnick’s rationale: Same 

GQ3 Patients with anoxic brain injury and 
EEGs demonstrating sharp waves, 
spikes, or spike/polyspike and 
wave activity or seizures. 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: This query helps to identify the prevalence of 
anoxic brain injury patients with a predisposition towards, or 
captured evidence of, seizures. While not often a consequence of 
anoxic brain injury, seizures may occur. 
Dr. Tobochnick’s rationale: Same 

GQ4 Patients under 18 years old with 
absence seizures 

Drs. Barnes, 
Ellis, Cheng 
& 
Tobochnick 

Dr. Barnes’s rationale: This is a nice, well-defined query. 
Dr. Cheng’s rationale: Same as Dr. Tobochnick. 
Dr. Ellis’ rationale: I assume we mean electrographic absences, that 
is, 3Hz generalized spike-and-wave discharges with associated loss 
of awareness, captured during EEG recording. 
Dr. Tobochnick’s rationale: Specifies patient population with type of 
epilepsy consistent with age range in query and type of seizures 
with characteristic EEG pattern. 

GQ5 Patients over age 18 with history of 
developmental delay and EEG with 
electrographic  seizures 

Drs. Barnes, 
Ellis, Cheng 
& 
Tobochnick 

Dr. Barnes’s rationale: The morphology of the ictal patterns would 
be of interest to epileptologists. 
Dr. Cheng’s rationale: Same as Dr. Tobochnick. 
Dr. Ellis’ rationale: A relevant and interesting cohort of patients (not 
all developmental delay is due to brain injury, but clearly the brain is 
functionally abnormal by definition). 
Dr. Tobochnick’s rationale: Returns records from specific clinical 
patient population with seizures captured on EEG. Many patients 
with developmental delay have higher risk of epilepsy due to prior 
brain injury. 

GQ6 History of seizures and EEG with 
TIRDA without sharps, spikes, or 
electrographic seizures 

Drs. Barnes, 
Ellis, Cheng 
& 
Tobochnick 

Dr. Barnes’s rationale: TIRDA is a very relevant finding to EEG 
physicians. 
Dr. Cheng’s rationale: Note that TIRDA can occur with or without 
associated epileptiform activity. This wording may exclude patients 
with both TIRDA and sharp waves. 
Dr. Ellis’ rationale: TIRDA is definitely a clinically relevant EEG 
finding to query. I also like the option of querying for the absence of 
specific findings, as a way to limit the query results. 
Dr. Tobochnick’s rationale: Queries patients with clinical history 
concerning for epilepsy and EEG with specific feature that has 
epileptic potential. 

GQ7 History of psychogenic non-epileptic 
seizures and EEG with sharp waves, 
spike/polyspike and wave or spikes 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: Epilepsy and psychogenic non-epileptic 
seizures are often co-morbid. This query would help to identify 
those with both epileptic and non-epileptic seizures. 
Dr. Tobochnick’s rationale: Same 

GQ8 Patients with history of seizure and 
normal EEG 

Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’ rationale: Could help to guide management of patients 
after first time seizure 
Dr. Tobochnick’s rationale: Same 

GQ9 Patients evaluated for seizures vs 
stroke 

Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’s rationale: Although this will retrieve a large number of 
records, the question of TIA vs seizure is a clinically relevant one, 
and EEG may be helpful. We see teams consulting for this all the 
time. 
Dr. Tobochnick’s rationale: Although this will retrieve a large number 
of records, the question of TIA vs seizure is a clinically relevant one, 
and EEG may be helpful. 

GQ10 Patients with stroke and an EEG 
demonstrating sharp waves, spikes, 
or spike/polyspike and wave activity 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: While individuals with stroke are at increased 
risk of having seizures, the majority do not. This query helps to 
identify those with EEGs demonstrating a predisposition to seizures, 
i.e. with epileptiform activity. 
Dr. Tobochnick’s rationale: Same 

GQ11 Brain tumor and sharp waves, Drs. Cheng Dr. Cheng’s rationale: Identifies patients with a brain tumor which 
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spike/polyspike and wave or spikes. & 
Tobochnick 

demonstrates epileptogenicity, i.e. a predisposition to having 
seizures. 
Dr. Tobochnick’s rationale: Same 

GQ12 Autism and sharp waves, 
spike/polyspike and wave or spikes 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: Identifies patients with autism that 
demonstrate epileptogenicity, i.e. a predisposition to having 
seizures. 
Dr. Tobochnick’s rationale: Same 

GQ13 EEGs without sharp waves, spikes, or 
spike/polyspike and wave activity in 
patient’s diagnosed with epilepsy 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: While individuals with stroke are at increased 
risk of having seizures, the majority do not. This query helps to 
identify those with EEGs demonstrating a predisposition to seizures, 
i.e. with epileptiform activity. 
Dr. Tobochnick’s rationale: Same 

GQ14 Patients taking topiramate (Topamax) 
with a diagnosis of headache and 
EEGs demonstrating sharp waves, 
spikes, or spike/polyspike and wave 
activity. 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: Topiramate (Topamax) is indicated for 
primary use in management of seizures and migraine headaches. 
This query identifies how common it is for patients with both 
conditions to be prescribed topiramate. 
Dr. Tobochnick’s rationale: Same 

GQ15 Patients with anoxic brain injury and 
EEG reports denoting brain death. 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: Brain death remains a clinical diagnosis. 
However, there is no universal consensus on brain death criteria, 
and ancillary tests such as EEG are often used to assist with this. 
However, electroencephalographers are wary of declaring brain 
death from an EEG, as even electrodes on gelatin can demonstrate 
a signal. Nonethelss, this practice persists. This query would help to 
identify how often EEG contributes to brain death determination in 
clinical practice. 
Dr. Tobochnick’s rationale: Same 

GQ16 Patients with a history of anoxic brain 
injury 

Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’ rationale: Often ordered consult, can help researchers 
propose a manner in which to decide on who requires an EEG as a 
part of their care. 
Dr. Tobochnick’s rationale: EEG can be helpful in evaluating for 
epileptic myoclonus after anoxic brain injury, although again the 
utility of this query would be greater with information regarding 
current mental status (awake, obtunded, coma) and timing of brain 
injury (2 years ago vs 2 days ago).  

GQ17 EEG showing electrocerebral silence, 
aka electrocerebral inactivity (ECI) 

Drs. Ellis & 
Tobochnick 

Dr. Ellis’ rationale: This is the EEG finding in brain death. 
Dr. Tobochnick’s rationale: Same. 
 

GQ18 EEG showing triphasic waves. Drs. Ellis & 
Tobochnick 

Dr. Ellis’ rationale: This EEG pattern is often seen in patients with 
hepatic encephalopathy due to liver failure, or other metabolic 
encephalopathies. Generally this pattern is not considered 
epileptiform, though that claim is somewhat controversial. 
Dr. Tobochnick’s rationale: Same 

GQ19 EEG showing periodic lateralized 
epileptiform discharges (PLEDs) 

Drs. Ellis & 
Tobochnick 

Dr. Ellis’ rationale: This EEG pattern is common in patients with 
highly epileptogenic brain lesions, such as HSV encephalitis, brain 
tumors, etc. It portends very high risk for seizures. Management of 
this EEG pattern itself is controversial. 
Dr. Tobochnick’s rationale: Same 

GQ20 EEG showing generalized periodic 
epileptiform discharges (GPEDs) 

Drs. Ellis & 
Tobochnick 

Dr. Ellis’ rationale: This EEG pattern is often seen after global brain 
injury such as post-cardiac arrest, and is thought to portend a poor 
prognosis, but the clinical management is controversial. 
Dr. Tobochnick’s rationale: Same 

GQ21 EEG showing burst suppression Drs. Ellis & 
Tobochnick 

Dr. Ellis’ rationale: burst-suppression is seen after severe global 
brain injury (for example anoxic injury after cardiac arrest) or due to 
anesthetic medications (the so-called “pharmacologic coma”). 
Whether or not the burst-suppression pattern is medication induced 
would also be clinically relevant, but searching the EEG reports 
themselves unlikely to reliably provide this data. 
Dr. Tobochnick’s rationale: burst suppression pattern can 
sometimes add prognostic value. 

GQ22 Patients under 50 with FIRDA Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’ rationale: FIRDA is a normal variant above 50, is a 
nonspecific finding sometimes associated with encephalopathy. 
May be beneficial to allow for the search so that the data can be 
compared to the clinical course of the patient 
Dr. Tobochnick’s rationale: Same 

GQ23 Pediatric patients with posterior 
dominant rhythms slower than 
anticipated for age 

Drs. Barnes, 
Cheng & 
Tobochnick 

Dr. Barnes’s rationale: same as Dr. Tobochnick. 
Dr. Cheng’s rationale: same as Dr. Tobochnick. 
Dr. Tobochnick’s rationale: Query provides specific EEG 
abnormality in an appropriately specific patient population, the 
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causes of which are many. 
GQ24 ICU patients with altered mental 

status and EEG showing non-
convulsive status epilepticus (NCSE) 

Drs. Barnes, 
Ellis, Cheng 
& 
Tobochnick 

Dr. Barnes’s rationale: Up to 20% of unconscious patients in the 
ICU setting have status epilepticus, and we have scant data on 
them, this would be a query that would prove very useful. 
Dr. Cheng’s rationale: same as Dr. Tobochnick. 
Dr. Tobochnick’s rationale: Specific population of patients with 
indication for EEG and finding of seizure activity on EEG without 
clinical convulsions. “ICU” is optional but provides a much more 
homogenous patient population. NCSE is common in ICU patients 
with typical presentation only of altered mental status. 

GQ25 Patients with a history of head trauma 
and abnormal EEG 

Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’ rationale: Specific patient population that may have 
focal changes on EEG of interest to a corpus user 
Dr. Tobochnick’s rationale: Same 

GQ26 Patients with a history of migraine and 
abnormal EEG 

Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’ rationale: Could lend to helping influence decisions on 
which headache patients we should send for an EEG, pattern that 
we don’t know may arise 
Dr. Tobochnick’s rationale: Complex migraines may occasionally 
have focal features that could potentially be confused for seizures 

GQ27 Patients with numbness or 
paresthesias as an indication for EEG, 
with EEG both with and without 
epileptiform activity 

Drs. Cheng 
& 
Tobochnick 

Dr. Cheng’s rationale: Surface EEG is not high yield for seizure 
onset zones with a small surface area, and for auras such as 
sensory symptoms, though it is often ordered. This query would find 
patients who presented with such symptoms, and help to estimate 
predictive value of such an investigation. 
Dr. Tobochnick’s rationale: Same 

GQ28 Patients  younger than 30 years old 
with wicket noted on EEG 

Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’ rationale: Abnormal finding for a patient of that age, but 
nonspecific, could yield a previously unrecognized pattern 
Dr. Tobochnick’s rationale: Same 

GQ29 Patients with excess theta in 
drowsiness 

Drs. Barnes 
& 
Tobochnick 

Dr. Barnes’s rationale: Who are we to determine what someone will 
want to look at? May be useful in the future. 
Dr. Tobochnick’s rationale: This query provides a specific EEG 
finding and a specific clinical background. The ultimate clinical 
significance of this scenario is pretty unremarkable, but the query 
itself is appropriate. 

GQ30 Epileptiform discharges with (or 
without) a clinical correlate 

Drs. Ellis & 
Tobochnick 

Dr. Ellis’ rationale: relevant to distinguish whether epileptiform 
discharges cause clinical manifestations. 
Dr. Tobochnick’s rationale: suggestive of diagnosis of epilepsy 

 

We developed an evaluation protocol which was followed by both teams through a secure-interface generated 
at UTD. We primarily evaluated the MERCuRY system according to its ability to retrieve patient cohorts. To 
this end, we generated a set of 115 evaluation queries. For each query, we retrieved the ten most relevant 
patients as well as a random sample of ten additional patients retrieved between ranks eleven and one 
hundred. We asked six relevance assessors to judge whether each of these patients belonged or did not 
belong to the given cohort. Moreover, the order of the documents (and queries) were randomized and judges 
were not told the ranked position of each patient. Each query and patient pair was judged by at least two 
relevance assessors, obtaining an inter-annotator agreement of 80.1% (measured by Cohen’s kappa). 

This experimental design allowed us to evaluate not only the set of patients retrieved for each cohort, but also 
the individual rank assigned to them. Specifically, we adopted standard measures for information retrieval 
effectiveness, where patients labeled as belonging to the cohort were considered relevant to the cohort query, 
and patients labelled as not belonging to the cohort were considered as non-relevant the cohort query. Note 
that because our relevance assessments consider only a sample of the patients retrieved for each query, we 
adopted two measures of ranked retrieval quality: the Mean Average Precision28 (MAP) and the Normalized 
Discounted Cumulative Gain (NDCG). The MAP provides a single measurement of the quality of patients 
retrieved at each rank for a particular topic. Likewise, the NDCG measures the gain in overall cohort quality 
obtained by including the patients retrieved at each rank. This gain is accumulated from the top-retrieved 
patient to the bottom-retrieved patient, with the gain of each patient discounted at lower ranks. Lastly, we 
computed the “Precision at 10” metric (P@10), which measures the ratio of patients retrieved in the first ranks 
which belong to the patient cohort. 

A number of clinicians have evaluated the clinical queries provided by UTD. The evaluation has been 
conducted for two rounds: in the first round, 15 queries were composed by students who have no clinical 
background, these queries were then sent to 4 neurologists to evaluate their clinical relevance: each 
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neurologist made his/her judgment for the queries. The neurologists were also asked to provide another 5 
clinical-related queries. For the original 15 queries, depending on the judgements from the neurologists the 
confidence of clinical-relevance was ranked, i.e. analyze the inter-rater agreement amongst the four 
neurologists. This information was provided to our UTD colleagues to tune their query retrieval system. In the 
second round, 60 different queries were presented to 2 clinical consultants for new the round of judgments, 
each of them was also asked to provide 15 additional queries. These query evaluations were then sent to UTD 
team for the analysis and model training. 
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Accomplishments – Supplemental 
Aim 1: Automatic labeling of the TUH EEG Corpus for seizure events.  
 
We have labeled the data using AutoEEG and Persyst. 
 
Aim 2:  Application of deep learning sequential modeling techniques for EEGs to predict seizures. 
Characterize performance as a function of latency. 
 
We have characterized performance using oour HMM-SdA system. See plot. 
 
Aim 3: Defining and generating Hierarchical epileptiform Activity Descriptors (HAD) for EEGs using deep 
learning.  
 
Identification of epileptiform activities, seizures and the specific EEG patterns that accompany 
epilepsy syndromes remains an electroencephalographer’s most critical task. EEG signals record 
both epileptiform activities and EEG events. While the Hierarchical Event Descriptors (HED) 
(available from http://www.hedtags.org) have defined many types of EEG experimental events, no 
existing components of schema.org standardize the epileptiform activities and their attributes. We 
filled this gap by generating a schema of Hierarchical epileptiform Activity Descriptors (HAD). 
Similarly to the Hierarchical Event Descriptors (HED), we generated a hierarchical structure for the 
Hierarchical epileptiform Activity Descriptors (HAD), which will be rooted into the HAD tag, while 
organizing hierarchies as attributes for (1) the epileptiform activity waveform; (2) the epileptiform 
activity frequency band; (3) the epileptiform activity anatomical location; (4) the epileptiform activity 
position; (5) the epileptiform activity distribution; (6) the epileptiform activity frequency; (7) the 
epileptiform activity magnitude. We generated 1890 HAD attributes, organized in seven hierarchies: 
(a) a hierarchy of morphology HAD tags; (b) a hierarchy of frequency bands; (c) a hierarchy of 
magnitude tags; (d) a hierarchy of recurrence HAD tags; (e) a hierarchy of  dispersal HAD tags; (f) a 
hierarchy of brain hemisphere HAD tags; (g) a hierarchy of brain location HAD tags; and (f) a small 
hierarchy of HAD tags to indicate whether the EEG activity occurs in the background or not. It is to be 
noted that out of the seven attribute hierarchies, three correspond to spatial properties and one to 
temporal properties of the EEG activities.  
We designed a fine-grained ontology of annotations to account for the variation in the medical 
language used by neurologists when generating the EEG reports. For example, for the "Morphology" 
attribute we have defined 2 sub-types, namely: (1) “Rhythm” and (2) “Transient”. “Transient”, in turn, 
contains 3 sub-types: “Pattern”, “Complex”, and “Single Wave”. We also noted the importance of the 
attribute denoted as "Frequency Band". The frequency band associated with an EEG activity is 
important for diagnosis. A polyspike, for example, represents a transient waveform whose frequency 
can lie within the alpha, beta, delta or theta brands. Knowing the frequency of the activity can change 
the clinical significance. For example, in http://www.ncbi.nlm.nih.gov/books/NBK2608/figure/ch10.f5/ , 
the authors report that polyspikes with a 14 Hz (Alpha or Beta band) frequency are associated with 
Doose Syndrome, while in http://www.ncbi.nlm.nih.gov/books/NBK98213/ the authors report that 
absence seizures are associated with polyspikes with 2 to 4 Hz frequencies (Delta band). Together, 
the “Frequency Band” and “Morphology” attributes allows us to indicate the frequency of not only 
rhythmic waves, but of transients (like polyspikes) as well. For example, “alpha waves” would 
correspond to an EEG annotation of “waves” with “Morphology=rhythm” and “Frequency 
Band=alpha”.  
The full HAD tag hierarchies are: 
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Morphology ∷=  represents the type or "form" of EEG activity waves. 

● Rhythm 
● Transient 

Ø Pattern 
■ Burst suppression 
■ Slowing 
■ Benign epileptic transients of sleep (BETS) 
■ Photic driving (response) 
■ Periodic Laterilized Epilepitiform Discharges (PLEDs) were defined as repetitive 

periodic, focal, or hemispheric epileptiform discharges (spikes, spike and waves, 
polyspikes, sharp waves) usually recurring every 1 to 2 seconds. 

■ Generalized periodic epileptiform discharges (GPEDs) are very rare patterns and 
are classified as periodic short-interval diffuse discharges (PSIDDs), periodic 
long-interval diffuse discharges (PLIDDs) and suppression-burst patterns 
according to the interval between the discharges. 

■ Epileptiform discharge (unspecified) 
Ø Complex: A sequence of two or more waves having a characteristic form or recurring with 

a fairly consistent form, distinguished from background activity. 
■ K-complex 
■ Sleep spindles 
■ Spike-and-sharp-wave complex 
■ Spike-and-slow-wave complex 
■ Sharp-and-slow-wave complex 
■ Triphasic wave: High-amplitude (over 70 mV) positive sharp transients, which are 

preceded and followed by relatively low-amplitude negative waves. The first 
negative wave generally has a lower amplitude than the negative afterwave. The 
distribution is generalized, and frequently the largest deflections in a bipolar 
fronto-occipital derivation occur at the frontal electrodes. Triphasic waves tend to 
have a repetition rate of ca. 1±2 Hz. 

■ Polyspike complex 
■ Polyspike-and-slow-wave complex 

Ø (Single) Wave: 
■ V wave 
■ Wicket spikes 
■ Spike 
■ Sharp wave 
■ Slow wave 
■ Positive occipital sharp transients of sleep (POSTS) / Lambda Wave 

Frequency Band ∷= Clinically relevant frequency bands (Details in 
http://emedicine.medscape.com/article/1139332-overview#a2) 

• Alpha (8 – 13 Hz) 
• Beta (13 – 32 Hz) 
• Delta ( < 4 Hz) 
• Theta (4 - 8 Hz) 
• Gamma ( > 32 Hz) 
• N/A 

Magnitude ∷= describes the amplitude of the EEG activity if it is emphasized in the EEG report 

The MAGNITUDE attribute of the EEG Activity may have the following values: 

• Low: e.g.: subtle (spike), small (polyspike discharge) 
• High: e.g.:  high (voltage burst);  high amplitude (spike); excess (theta) 
• Normal 

Background ∷= this is a binary attribute to denote if an  EEG activity occurs in the background or not. 

The BACKGROUND attribute of the EEG Activity may have the following values: 

• Yes 
• No  
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Recurrence (TEMPORAL) ∷= describes how often the EEG activity occurs.  

The RECURRENCE attribute of the EEG Activity may have the following values: 

• Continuous (e.g. “rhythmic”) 
• Repeated (e.g. “intermittent”, “regular”) 
• None (e.g. “burst”) 

Dispersal (SPATIAL) ∷= describes the spread of the activity over regions of the brain 

The DISPERSAL attribute of the EEG Activity may have the following values: 

• Localized (e.g. focal): limited to a small area of the brain 
• Generalized (e.g. diffuse): occurring over a large area of the brain or both sides of the head 
• N/A (if not specified) 

Hemisphere (SPATIAL) ∷= describes which hemisphere of the brain does the activity occur in. 

The HEMISPHERE attribute of the EEG Activity may have the following values: 

• Right 
• Left 
• Both 
• N/A (if no hemispheric information is provided) 

Brain Location (SPATIAL) ::= describes the region of the brain in which the EEG activity occurs  

The BRAIN LOCATION attribute of the EEG Activity indicates the location/area of the activity 
(corresponding to electrode placement). It may have the following values: 

• Frontal (i.e. Anterior): Corresponds to the frontal region of the brain including all F*, Fp* and AF* 
electrodes 

• Occipital (i.e. Posterior): Corresponds to the occipital region of the brain including all O* 
electrodes 

• Temporal: Corresponds to the temporal region of the brain including all T* electrodes 
• Central: Corresponds to the central region of the brain including all C* electrodes 
• Parietal: Corresponds to the parietal region of the brain including all P* electrodes 
• Frontocentral: Corresponds to the area between the frontal and central regions of the brain 

including all FC* electrodes 
• Frontotemporal: Corresponds to the region between the frontal and temporal regions of the brain 

including all FT* electrodes 
• Centroparietal: Corresponds to the region between the central and parietal regions of the brain 

including all CP* electrodes 
• Parieto-occiptal: Corresponds to the region between the parietal and occipital regions of the brain 

including all PO* electrodes 
• N/A (if no location information is provided) 

 
The “Recurrence” HAD tag captures whether an EEG activity re-occurs, and, if so, whether the recurrence is 
continuous or not. It is a special form of temporal attribute, which, to our knowledge, has not been studied in 
previous annotations of temporal information in EHRs. In contrast, the "Dispersal" attribute does not capture 
any temporal information, but instead indicates whether the EEG activity was limited to a small "localized" 
region of the brain, or that it occurred throughout a "generalized" or large region of the brain. Thus it is one of 
the spatial attributes that we discern from the EEG reports. The second spatial attribute capture the hemisphere 
of the brain where the EEG activity is noticed. The third spatial attribute is the "BRAIN LOCATION", defined 
as a multi-valued attribute which organize the values into a hierarchy, such that each electrode is a leaf under 
the corresponding brain region. E.g. "Brain Location=Temporal>T1" if we know the location of the EEG 
activity is T1, or just "Brain Location=Temporal" if we don't know the location, but only the area. This works 
with multiple values, for example "polyspike in T1, T2 spreading into parietal lobe" would produce the attribute 
"Brain Location=(Temporal>T1, Temporal>T3, Parietal)". 
 

Page 20RPPR

B.2 (acc_main_v01.pdf)



Picone, Obeid and Harabagiu:  Scalable EEG interpretation using Deep Learning and Schema Descriptors Grant No.  3U01HG008468-02S1 
 

   

Aim 4: Automated Tagging of HADs in medical texts using deep learning. 
 

The definition of the HAD tags allowed us to develop deep neural learning architectures capable of 
annotating the tags in the EEG reports, and in many other biomedical texts. For example, 	a mention 
of a PLED in the EEG report would correspond to the attribute annotations 
"Morphology=Transient>Pattern>PLED" with other attributes depending on the context. However, our 
fine-grained attributes allows us to detect circumlocutious or implied PLEDs. For example, "bursts of 
frontally predominant high amplitude spike or sharp activity" -- a type of PLED -- would correspond to 
the EEG Activity "spike or sharp activity" with the following attributes: 
  - Morphology=Transient>Complex>Spike-and-sharp-wave complex 
  - Frequency Band: N/A 
  - Magnitude: High 
  - Background: No 
  - Recurrence: Repeated 
  - Dispersal: Localized 
  - Hemisphere: N/A 
  - Brain Location: Frontal 
Thus, because a PLED is defined as repetitive periodic, focal, or hemispheric epileptiform discharges (spikes, 
spike and waves, polyspikes, sharp waves), we can infer implied PLEDs as EEG Activities whose Morphology 
attribute has the value "spike", "spike and wave", "polyspikes", or "sharp waves" and its Recurrence has the 
value "Repeated". Automatically producing HAD tag annotations was made possible by two deep learning 
architectures informed by two feature vector representations, that considered the features illustrated in Table 1.  
Features used for Deep Learning-Based 
Identification of Anchors of EEG Activity 
Attributes and 

Features used for Deep Learning-Based Recognition of 
Attributes EEG Activities 

1. The lemma of the token and the 
previous/next tokens 

2. The PoS of the token and the 
previous/next tokens 

3. The phrase chunk of the token and the 
previous/next tokens 

4. The lemmas of the previous, current, 
and next tokens  

5. The Brown cluster of the token 
6. The UMLS Concept Unique Identifier 

(cui) of UMLS concepts containing the 
token 

7. The title of the section containing the 
token 

1. The medical concept mention itself 
2. The lemmas of each token in the medical concept 

mention  
3. The PoS of each token in the medical concept mention 
4. The lemmas of 3 tokens before/after the medical concept 

mention 
5. The title of the section containing the token 
Context Features: For each token, t, in the sentence: 
6. The syntactic dependency path to t. 
7. The number of words between the medical concept 

mention and t 
8. The number of “hops” in the syntactic dependency path 

from the head of the medical concept mention to t 
9. The number of medical concepts between the medical 

concept mention and t 

Table 1: Features vectors used for automatic annotation of HAD tags 
We used the GENIA tagger for tokenization, lemmatization, Part of Speech (PoS) recognition, and phrase 
chunking. Stanford CoreNLP was used for syntactic dependency parsing. Brown Cluster features generated 
from the entire TUH EEG corpus were used in both feature vector representations listed in Table 1. Brown 
clustering is an unsupervised learning method that discovers hierarchical clusters of words based on their 
contexts. We also used in the feature vector representation medical knowledge available from the Unified 
Medical Language System (UMLS). 

EEG reports mention multiple medical concepts in the narratives used in each report section. To find the spans 
of text that correspond to EEG activities and should receive HAD tags, we trained a stacked Long Short-Term 
Memory (LSTM) network for detecting EEG Activity anchors.  The stacked LSTM network processes each 
document at the sentence level. To do this, we represented each sentence as a sequence of tokens [w1, w2,..., 
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wN], and train both LSTMs to assign a label biÎ{ “I”, “O”, “B”} to each token wi such that it will receive a 
label bi=”B” if the token wi is at the beginning of a mention of a medical concept, a label bi=”I” if the token wi 
is inside any mention of a medical concept and a label bi=”O” if the token wi is outside any mention of a 
medical concept.  

For example, the token sequence “occasional 
left anterior temporal [sharp and slow wave 
complexes]ACT” would correspond to the label 
sequence [O,O, O,O,B,I,I,I], where 
tokens {occasional, left, anterior, temporal} 
are all assigned labels of O, as they are not 
part of the anchor of an EEG activity, 
although they describe its attributes, 
token {sharp} is assigned a label of B, and the 
tokens {and, slow, wave, complexes} 
are all assigned labels of I. This IOB notation 
allows medical concept mentions to be 
identified by continuous sequences of 
tokens starting with a token labeled B 
optionally followed tokens labeled I.  

To be able to use a deep learning architecture for automatically identifying the anchors of EEG 
activities we first tokenized all reports, and represented each token wi  as a feature vector, ti  obtained 
by considering the features illustrated in Table 1.  As illustrated in Figure 2, the features vectors t1, t2, 
…, tN are provided as input to the stacked LSTMs to predict a sequence of output labels, b1, b2, …, 
bN. To predict each label bi, the deep learning architecture considers (1) the vector representation of 
each token, ti; as well as (2) the vector representation of all previous tokens from the sentence by 
updating a memory state that is shared throughout the network. LSTM cells also have the property 
that they can be “stacked” such that the outputs of cells on level 𝑙 are used as the inputs to the cells 
on level on level 𝑙 + 1. We used a stacked LSTM with 3 levels where the input to the first level is a 
sequence of token vectors and the output from the top level is used to determine the 𝐼𝑂𝐵 labels for 
each token. The output from the top level, 𝑜/0, is a vector representing token 𝑤/ and every previous 
token in the sentence. To determine the 𝐼𝑂𝐵 label for token 𝑤/, the output 𝑜/0 is passed through a 
softmax layer. The softmax layer produces a probability distribution over all 𝐼𝑂𝐵 labels. This is 
accomplished by computing a vector of probabilities, 𝑞/ such that 𝑞/,4 is the probability of label "𝐼", 𝑞/,6 
is the probability of label "𝑂", and 𝑞/,0 is the probability of label "𝐵". The predicted 𝐼𝑂𝐵 label is then 
chosen as the label with highest probability, 𝑦/ = 	 argmax

>
𝑞/>. We used the architecture illustrated in 

Figure 4 to decide where HAD tags can be placed. In order to decide which tags should be selected, 
we considered 16 possible attributes for EEG Activities as well as polarity and modality, and type, 
modality, and polarity. Traditionally, attribute classification is performed by training a classifier, such 
as an SVM, to determine the value for each attribute. This approach would require training 18 
separate attribute classifiers for EEG Activities. However, by leveraging the power of deep learning, 
we could simplify this task by creating one multi-purpose, high-dimensional vector representation of 
an EEG activity, or embedding, and use this representation to determine each attribute 
simultaneously with the same deep learning network. Using a shared embedding allows important 
information to be shared between individual tasks. To accomplish this, we use the Deep Rectified 
Linear Network (DRLN) for multi-task attribute detection, illustrated in Figure 5.  
 

 
 

Figure 4: Deep Learning architecture for the 
identification of  the EEG activity anchors . 
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Training and Professional Development 

Temple University Postdoc: Our postdoc arrived in late March 2016. Over the first few months 
of the project, he struggled with computer programming and computational issues. We provided 
remedial training on C++ and Python programming, and provided instruction on Linux clusters. 
In Fall 2016, he sat in on PI Picone’s Software Tools for Engineers course 
(https://www.isip.piconepress.com/courses/temple/ece_3822/), in which he was introduced to 
many aspects of our computing environment. 

We also emphasize communication skills. We supported him in presenting his work at the 2016 
IEEE Signal Processing in Medicine and Biology Symposium, which we host at Temple 
University. He learned how to write a standard conference paper and how to present in this type 
of technical forum. 

He was trained how to annotate EEG data for seizures to increase his understanding of the 
problem space. He worked closely with our annotation team and received instruction from our 
senior student working on this research. He is now able to annotate seizures in signals with a 
reasonable degree of accuracy. 

Temple University Graduate Students: Graduate student training consisted mainly of 
programming skill development. We are making heavy use of Python and C++ in this project. 
We have defined a methodology for developing, documenting and releasing C++, Python and 
MATLAB code, and our graduate students have been trained on this. They were mentored by 
the PIs. 

We have also adopted the Keras toolkit as a high-level interface to Theano. This has greatly 
reduced the time it takes to prototype new deep learning systems. 

Temple University Undergraduate Students: We have hired several undergraduate students 
to provide IT support for our team members. These students administer the software and 
hardware production computing environment. We have trained several of these students since 
they had no prior system administration experience for Linux clusters. We have also trained a 
student to actively maintain our project web sites using tools such as Drupal. These types of 
state of the art computational skills make these students very attractive to future employers. We 
expect several of these students to continue in our MS program. 

University of Texas at Dallas Graduate Students: Three PhD students have been advised for 
their research conducted for this project at University of Texas at Dallas.  

Travis Goodwin is a 5th year PhD student in Computer Science at UTD who has developed 
novel research in the area of multi-modal indexing, inference of underspecified information in 
the EEG reports and interaction of various factors in the EEG reports. Travis has also been 
working on defining the HAD tags under the supplement project. He has also worked on using 
deep learning methods for the automatic annotation of HAD tags as well for generating data-
driven neural knowledge representations of the knowledge discerned from the EEG reports. 
Travis has successfully submitted 10 conference papers and has received this year the best 
student paper award at the IEEE CIKM Conference, a major conference on knowledge 
managements and information retrieval. In addition, he has submitted successfully 5 papers to 
at the American Medical Informatics Association Joint Summits on Clinical Research Informatics 
(AMIA-CRI) or the American Medical Informatics Association Annual Symposium (AMIA) as well 
as 2 journal papers. These accomplishments meet Travis’s Individual Development Plans 
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(IDPs). 

Ramon Maldonado is a 2nd year PhD student in Computer Science at UTD who has performed 
research on automatically identifying all medical concepts from the Temple University Hospital 
EEG data, in the forms of EEG reports documenting 25,000 sessions and 15,000 patients 
collected over 12 years at Temple University Hospital. During the past year, Ramon became a 
qualified PhD student, by passing a set of qualifying exams, while developing new techniques 
for his research, which is remarkable. He is has submitted a paper which was accepted and is 
presented at the American Medical Informatics Association Joint Summits on Clinical Research 
Informatics (AMIA-CRI), San Francisco, CA. Ramon has also recently submitted a paper to the 
American Medical Informatics Association Annual Symposium (AMIA) as well as a journal paper 
to the Journal of Biomedical Informatics. Ramon plans to submit a second paper to the Journal 
of Biomedical Informatics soon, based on his work in the SEMEVAL 2016 evaluation on clinical 
narratives describing events, event containers as well as temporal relations. These 
accomplishments meet Ramon’s Individual Development Plans (IDPs). 

Stuart Taylor is a 1st year PhD student in Computer Science at UTD who has worked on the 
initial development of the active deep learning for annotating EEG reports. He also worked on 
the generation of queries for the evaluation of patient cohorts. Stuart has submitted a poster to 
the to the American Medical Informatics Association Annual Symposium (AMIA) in 2017 and 
has plan on working on the recognition of HAD tags in biomedical texts.  These 
accomplishments meet Stuart’s Individual Development Plans (IDPs). 

General Training: In Spring 2017, PI Picone offered a three credit hour independent study 
course titled “Information Theory” (ECE 8526: https://www.isip.piconepress.com/ 
courses/temple/ece_8526/). This course was attended by several of students who are either 
currently contributing to the project or will be joining the team in the coming year. 
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C. OVERALL PRODUCTS

C.1 PUBLICATIONS 
 
Are there publications or manuscripts accepted for publication in a journal or other publication (e.g., book, one-time publication,
monograph) during the reporting period resulting directly from this award? 
 
Yes

Publications Reported for this Reporting Period

Public Access Compliance Citation

Complete Goodwin T, Harabagiu SM. A Probabilistic Reasoning Method for Predicting the
Progression of Clinical Findings from Electronic Medical Records. AMIA Joint Summits
on Translational Science proceedings. AMIA Joint Summits on Translational Science.
2015;2015:61-5. PubMed PMID: 26306238; PubMed Central PMCID: PMC4525214.

Complete Harati A, Golmohammadi M, Lopez S, Obeid I, Picone J. Improved EEG Event
Classification Using Differential Energy. ... IEEE Signal Processing in Medicine and
Biology Symposium. IEEE Signal Processing in Medicine and Biology Symposium.
2015 December;2015. PubMed PMID: 27213180; PubMed Central PMCID:
PMC4874511.

Complete López S, Suarez G, Jungreis D, Obeid I, Picone J. Automated Identification of Abnormal
Adult EEGs. ... IEEE Signal Processing in Medicine and Biology Symposium. IEEE
Signal Processing in Medicine and Biology Symposium. 2015 December;2015. PubMed
PMID: 27195311; PubMed Central PMCID: PMC4868184.

Complete Goodwin T, Harabagiu SM. Inferring the Interactions of Risk Factors from EHRs. AMIA
Joint Summits on Translational Science proceedings. AMIA Joint Summits on
Translational Science. 2016;2016:78-87. PubMed PMID: 27595044; PubMed Central
PMCID: PMC5001781.

Complete Goodwin TR, Harabagiu SM. Multi-modal Patient Cohort Identification from EEG Report
and Signal Data. AMIA ... Annual Symposium proceedings. AMIA Symposium.
2016;2016:1794-1803. PubMed PMID: 28269938; PubMed Central PMCID:
PMC5333290.

In Process at NIHMS Goodwin T, Harabagiu S. Inferring the Interactions of Risk Factors from EHRs.
Proceedings of the 2016 American Medical Informatics Association (AMIA) Summit on
Clinical Research Informatics (CRI). 2016 March;:78-87. 

In Process at NIHMS Goodwin T, Harabagiu S. Embedding Open-domain Common-Sense  Knowledge from
Text. Proceedings of the Language Resources and Evaluation Conference (LREC-
2016). 2016 May. 

In Process at NIHMS Goodwin T, Harabagiu S. Medical Question Answering for Clinical Decision Support.
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 2016 October 01. 

In Process at NIHMS Goodwin T, Harabagiu S. Multi-Modal Patient Cohort Identification from EEG Report and
Signal Data. Proceedings of the American Medical Informatics Association Annual
Symposium (AMIA). 2016 November. 

N/A: Not Journal Picone J, Obeid Iyad. Fundamentals in Data Science: Data Wrangling, Normalization,
Preprocessing of Physiological Signals. The BD2K Guide Lecture Series;
2016 November 18; Bethesda, Maryland, USA.

N/A: Not Journal Harabagiu S. Fundamentals in Data Science: Active Deep Learning-Based Annotation of
Electroencephalography Reports for Patient Cohort Identification. The BD2K Guide
Lecture Series; 2016 December 02; Bethesda, Maryland, USA.

Non-Compliant Lopez S, Gross A, Yang S, Golmohammadi M, Obeid Iyad, Picone J. An Analysis of
Two Common Reference Points for EEGs. Proceedings of the IEEE Signal Processing
in Medicine and Biology Symposium. 2016 December 03;N/A(N/A):N/A. 

In Process at NIHMS Yang S, Lopez S, Golmohammadi M, Obeid Iyad, Picone J. Semi-automated Annotation
of Signal Events In Clinical EEG Data. Proceedings of the IEEE Signal Processing in
Medicine and Biology Symposium. 2016 December 03;N/A(N/A):N/A. 
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N/A: Not Journal Obeid Iyad, Picone J. Biomedical Signal Processing in Big Data. 1 ed. Sejdik E, Falk T,
editors. Boca Raton, Florida, USA. CRC Press; 2017. Chapter N/A, Machine Learning
Approaches to Automatic Interpretation of EEGs; N/Ap. N/Ap.

PMC Journal - In process Goodwin T, Harabagiu S. Read, Decide and Explain! Recollective (Explanatory)
Question Answering. Annual Conference of the Association of Computational Linguistics
(ACL). 2017 February. 

PMC Journal - In process Goodwin T, Harabagiu S. Deep Learning from EEG Reports for Inferring Underspecified
Information. Proceedings of the American Medical Informatics Association Joint
Summits on Clinical Research Informatics (AMIA-CRI). 2017 March. 

PMC Journal - In process Goodwin T, Harabgiu S. Inferring Clinical Correlations from EEG Reports with Deep
Neural Learning. American Medical Informatics Association Annual Symposium (AMIA).
2017 March. 

PMC Journal - In process Goodwin T, Maldonado R, Harabagiu S. Automatic Recognition of Symptom Severity
from Psychiatric Evaluation Reports. Journal of Biomedical Informatics. 2017 March. 

PMC Journal - In process Goodwin T, Harabagiu S. Knowledge Representations and Inference Techniques for
Medical Question Answering. ACM Transactions on Intelligent Systems and Technology.
2017 March. 

PMC Journal - In process Maldano R, Goodwin T, Harabagiu S. Active Deep Learning-Based Annotation of
Electroencephalography Reports for Cohort Identification. Proceedings of the American
Medical Informatics Association Joint Summits on Clinical Research Informatics (AMIA-
CRI). 2017 March 01. 

PMC Journal - In process Maldonado R, Goodwin T, Skinner M, Harabagiu S. Deep Learning Meets Biomedical
Ontologies: Knowledge Embeddings for Epilepsy. American Medical Informatics
Association Annual Symposium (AMIA). 2017 March. 

PMC Journal - In process Taylor S, Goodwin T, Harabagiu S. An Evaluation of Syntactic Dependency Parsers on
Clinical Data. American Medical Informatics Association Annual Symposium (AMIA).
2017 March. 

N/A: Not Journal Golmohammadi M, Shah V, Lopez S, Ziyabari S, Camaratta J, Obeid Iyad, Picone J.
The TUH EEG Seizure Corpus. Annual Meeting of the American Clinical
Neurophysiology Society; 2017 February 08; Phoenix, Arizona, USA. 

N/A: Not Journal Golmohammadi M, Ziyabari S, Lopez S, Krome E, Thiess M, Obeid Iyad, Picone J, Yang
S. EEG Event Detection Using Deep Learning. Big Data to Knowledge All Hands
Grantee Meeting; 2016 November 29; Bethesda, Maryland, USA. 

N/A: Not Journal Harabagiu S, Goodwin T, Maldonado R, Taylor S. Active Deep Learning-Based
Annotation of Electroencephalography Reports for Cohort Identification. Big Data to
Knowledge All Hands Grantee Meeting; 2016 November 29; Bethesda, Maryland, USA. 

N/A: Not Journal Harabagiu S, Goodwin T. Deep Learning-Based Multi-Modal Indexing of Heterogeneous
Clinical Data for Patient Cohort Retrieval. Big Data to Knowledge All Hands Grantee
Meeting; 2016 November 29; Bethesda, Maryland, USA. 

N/A: Not Journal Picone J, Obeid Iyad, Harabagiu S. Automatic Discovery and Processing of EEG
Cohorts from Clinical Records. Big Data to Knowledge All Hands Grantee Meeting;
2016 November 29; Bethesda, Maryland, USA. 

N/A: Not Journal Picone J, Obeid Iyad, Harabagiu S. Scalable EEG interpretation using Deep Learning
and Schema Descriptors. Big Data to Knowledge All Hands Grantee Meeting;
2016 November 29; Bethesda, Maryland, USA. 

N/A: Not Journal Somaru Pat, Obeid Iyad, Picone J. Low-Cost High-Performance Computing Via
Consumer GPUs. Picone J, editor. Proceedings of the IEEE Signal Processing in
Medicine and Biology Symposium. IEEE Signal Processing in Medicine and Biology
Symposium; 2016 December 03; Philadelphia, Pennsylvania, United States. 

N/A: Not Journal Thiess M, Krome E, Golmohammadi M, Obeid Iyad, Picone J. Enhanced Visualizations
for Improved Real-Time EEG Monitoring. Proceedings of the IEEE Signal Processing in
Medicine and Biology Symposium. IEEE Signal Processing in Medicine and Biology
Symposium; 2016 December 03; Philadelphia, Pennsylvania, USA. 
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In Process at NIHMS Active Deep Learning-Based Annotation of Electroencephalography Reports for Cohort
Identification. Proceedings of the American Medical Informatics Association Joint
Summits on Clinical Research Informatics (AMIA-CRI). 

C.2 WEBSITE(S) OR OTHER INTERNET SITE(S) 

Category Explanation

Research Material https://www.isip.piconepress.com/projects/nih_cohort: This is the URL from which we
distribute project information and related resources.

Data or Databases https://www.isip.piconepress.com/projects/tuh_eeg: This is the URL from which we
distribute data and resources related to the TUH EEG Corpus.

C.3 TECHNOLOGIES OR TECHNIQUES

Category Explanation

Software AutoEEG Demonstration System: A visualization tool that includes annotation of EEG
signals. This tool has been used to generate the data described in the report.
 

Software MERCuRY (Multi-modal EncephalogRam patient Cohort discoveRY): A demonstration
of our cohort retrieval system.

C.4 INVENTIONS, PATENT APPLICATIONS, AND/OR LICENSES 
 
Have inventions, patent applications and/or licenses resulted from the award during the reporting period?  
 
No 
 

C.5 OTHER PRODUCTS AND RESOURCE SHARING

NOTHING TO REPORT
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D. OVERALL PARTICIPANTS

D.1 WHAT INDIVIDUALS HAVE WORKED ON THE PROJECT?

Commons ID S/K Name Degree(s) Role Cal Aca Sum Foreign
Org

Country SS

JOSCONE Y Picone,
Joseph

MS,PHD PD/PI 0 1 2 NA

SHARABAGIU Y Harabagiu,
Sanda Maria

PHD PD/PI 0 3 3 NA

OBEID07 Y Obeid, Iyad BS,MS,PH
D

PD/PI 0 0 1 NA

RAMONMALDO
NADO

N Maldonado,
Ramon

BS Graduate
Student
(research
assistant)

12 0 0 NA

GOLMOHAMMA
DI

N Golmohamma
di, Meysam

MS Graduate
Student
(research
assistant)

12 0 0 NA

DAWSHED N Jamshed,
Dawer

PhD Graduate
Student
(research
assistant)

5 0 0 NA

AILOPEZ N Lopez, Silvia BS Graduate
Student
(research
assistant)

12 0 0 NA

CHRBELL N Campbell,
Chris

HS Undergraduat
e Student

1 0 0 NA

STEWONG N Wong, Steven HS Undergraduat
e Student

1 0 0 NA

PATSOMARU N Somaru, Pat HS Undergraduat
e Student

1 0 0 NA

NICECCA N Mecca,
Nicholas

HS Undergraduat
e Student

1 0 0 NA

MATIESS N Thiess,
Matthew

HS Undergraduat
e Student

1 0 0 NA

JASRGEY N Bergey,
Jason

HS Undergraduat
e Student

1 0 0 NA

JAMHUGH N McHugh,
James

HS Undergraduat
e Student

1 0 0 NA

EVALTIN N von Weltin,
Eva

HS Undergraduat
e Student

1 0 0 NA

ELLROME N Krome, Elliott HS Undergraduat
e Student

1 0 0 NA

DTREJO N Trejo, Devin HS Undergraduat
e Student

1 0 0 NA

STUARTTAYLO
R

N Taylor, Stuart BS Graduate
Student
(research
assistant)

12 0 0 NA
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TRAVISGOODW
IN

N Goodwin,
Travis

MS Graduate
Student
(research
assistant)

12 0 0 NA

SCOTTYANG N Yang, Su PHD Postdoctoral
Scholar,
Fellow, or
Other
Postdoctoral
Position

12 0 0 NA

TAMHSAN N Ahsan,
Tameem

HS Undergraduat
e Student

1 0 0 NA

Glossary of acronyms:
S/K - Senior/Key
DOB - Date of Birth
Cal - Person Months (Calendar)
Aca - Person Months (Academic)
Sum - Person Months (Summer)

Foreign Org - Foreign Organization Affiliation
SS - Supplement Support
RE - Reentry Supplement
DI - Diversity Supplement
OT - Other
NA - Not Applicable

D.2 PERSONNEL UPDATES 
 
D.2.a Level of Effort 
 
Will there be, in the next budget period, either (1) a reduction of 25% or more in the level of effort from what was approved by the agency
for the PD/PI(s) or other senior/key personnel designated in the Notice of Award, or (2) a reduction in the level of effort below the
minimum amount of effort required by the Notice of Award?  
 
Yes 
 
Unexpected staffing changes and a late start with postdoc staffing, along with additional external funding awards, have resulted in a
proposal to adjust staffing in the third year of the project. We have also employed more undergraduates for data preparation since we
were not able to utilize as much neurologist time on preparing data. This is described in more detail in the report. 
 

D.2.b  New Senior/Key Personnel 
 
Are there, or will there be, new senior/key personnel?  
 
No 
 

D.2.c Changes in Other Support 
 
Has there been a change in the active other support of senior/key personnel since the last reporting period?  
 
No 
 

D.2.d New Other Significant Contributors 
 
Are there, or will there be, new other significant contributors?  
 
No 
 

D.2.e  Multi-PI (MPI) Leadership Plan 
 
Will there be a change in the MPI Leadership Plan for the next budget period?  
 
No 
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E. OVERALL IMPACT

E.1 WHAT IS THE IMPACT ON THE DEVELOPMENT OF HUMAN RESOURCES? 
 
Not Applicable 
 

E.2 WHAT IS THE IMPACT ON PHYSICAL, INSTITUTIONAL, OR INFORMATION RESOURCES THAT FORM INFRASTRUCTURE? 
 
There are two types of infrastructure impact this project has: computational and archival. The computing cluster we have developed
allows our students to run significant computer simulations at an overall system cost much lower than available cloud-based services. Its
cost-effective approaches to disk space (an order of magnitude cheaper than commercial storage area network solutions) and compute
capacity (using commodity GPUs in bulk) have enabled us to run very large-scale simulations on big data. We have been able to
demonstrate this cluster to our engineering students in an undergraduate class that PI Picone teaches (ECE 3822: Software Tools for
Engineers), so the cluster is also have educational impact. For many of our students this is their first exposure to clustered computing.
 
In terms of archival, the database of clinical EEGs we are building has become the primary archive for hospital clinicians. They routinely
consult us when they want to do an historical search on their patients, or need to locate an older EEG that has been purged from their
local cache. The database itself continues to grow and evolve, and now includes annotations of subsets of the data for seizure detection
and normal/abnormal classification. This continues to make TUH EEG the premier resource for machine learning research on clinical
EEG data.
 
 

E.3 WHAT IS THE IMPACT ON TECHNOLOGY TRANSFER?  
 
Not Applicable 
 

E.4 WHAT DOLLAR AMOUNT OF THE AWARD'S BUDGET IS BEING SPENT IN FOREIGN COUNTRY(IES)? 
 

NOTHING TO REPORT 
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F. OVERALL CHANGES

F.1 CHANGES IN APPROACH AND REASONS FOR CHANGE 
 
Not Applicable 
 

F.2 ACTUAL OR ANTICIPATED CHALLENGES OR DELAYS AND ACTIONS OR PLANS TO RESOLVE THEM 
 
Over the past year we have solicited about 100 neurologists to find consultants willing to mark up data. Approximately 20 of these agreed
to annotate data. Unfortunately, they have not provided results in a timely fashion. They have been responsive on analyzing queries and
usability engineering issues, but have not been responsive on annotating EEG signal data. Therefore, we shifted our strategy to do two
things. First, we are implementing a pseudo-crowd sourcing strategy using an FAQ-type approach. We will use this to solicit interest from
an international pool of neurologists and to stimulate discussion on particular issues (e.g., short seizures). Second, we have trained a
team of undergraduates to annotate signals. Their performance is very competitive with our neurologists. In fact they have demonstrated
an ability to annotate signals in a much more detailed manner than neurologists typically do. This has allowed us to generate data
required for our machine learning systems. We continue to attempt to use neurologists for query reviews and annotation in an effort to
certify our data and conduct inter-rater agreement studies. 
 

F.3 SIGNIFICANT CHANGES TO HUMAN SUBJECTS, VERTEBRATE ANIMALS, BIOHAZARDS, AND/OR SELECT AGENTS 
 
F.3.a Human Subjects 
 
No Change 
 

F.3.b Vertebrate Animals 
 
No Change 
 

F.3.c Biohazards 
 
No Change 
 

F.3.d Select Agents 
 
No Change 
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G. OVERALL SPECIAL REPORTING REQUIREMENTS

G.1 SPECIAL NOTICE OF AWARD TERMS AND FUNDING OPPORTUNITIES ANNOUNCEMENT REPORTING REQUIREMENTS 
 
NOTHING TO REPORT 
 

G.2 RESPONSIBLE CONDUCT OF RESEARCH 
 
Not Applicable 
 

G.3 MENTOR'S REPORT OR SPONSOR COMMENTS 
 
Not Applicable 
 

G.4 HUMAN SUBJECTS 
 
G.4.a Does the project involve human subjects?  
 
No 
 

G.4.b Inclusion Enrollment Data 
 
Not Applicable

G.4.c ClinicalTrials.gov 
 
Does this project include one or more applicable clinical trials that must be registered in ClinicalTrials.gov under FDAAA? 

G.5 HUMAN SUBJECTS EDUCATION REQUIREMENT 
 
Are there personnel on this project who are newly involved in the design or conduct of human subjects research?  
 

G.6 HUMAN EMBRYONIC STEM CELLS (HESCS) 
 
Does this project involve human embryonic stem cells (only hESC lines listed as approved in the NIH Registry may be used in NIH
funded research)?  
 
No 
 

G.7 VERTEBRATE ANIMALS 
 
Does this project involve vertebrate animals?  
 
No 
 

G.8 PROJECT/PERFORMANCE SITES 
 

Organization Name: DUNS Congressional
District

Address

Primary: Temple
University - Of The
Commonwealth System
of

057123192 PA-001 TEMPLE UNIV OF THE COMMONWEALTH
1947 N. 12th Street
Philadelphia PA 191226099

The University of Texas
at Dallas

800188161 TX-032 Office of Sponsored Projects, AD15
800 West Campbell Road
Richardson TX 75080

TEMPLE UNIVERSITY 057123192 TEMPLE UNIVERSITY
1801 N Broad Street, 401 Conwell Hall
PHILADELPHIA PA 191226003
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Temple University - Of
The Commonwealth
System of

057123192 PA-001 TEMPLE UNIV OF THE COMMONWEALTH
1947 N. 12th Street
Philadelphia PA 191226099

The University of Texas
at Dallas

800188161 TX-032 Office of Sponsored Projects, AD15
800 West Campbell Road
Richardson TX 75080

TEMPLE UNIVERSITY 057123192 TEMPLE UNIVERSITY
1801 N Broad Street, 401 Conwell Hall
PHILADELPHIA PA 191226003

Temple University - Of
The Commonwealth
System of

057123192 PA-001 TEMPLE UNIV OF THE COMMONWEALTH
1947 N. 12th Street
Philadelphia PA 191226099

The University of Texas
at Dallas

800188161 TX-032 Office of Sponsored Projects, AD15
800 West Campbell Road
Richardson TX 75080

TEMPLE UNIVERSITY 057123192 TEMPLE UNIVERSITY
1801 N Broad Street, 401 Conwell Hall
PHILADELPHIA PA 191226003

Temple University - Of
The Commonwealth
System of

057123192 PA-001 TEMPLE UNIV OF THE COMMONWEALTH
1947 N. 12th Street
Philadelphia PA 191226099

The University of Texas
at Dallas

800188161 TX-032 Office of Sponsored Projects, AD15
800 West Campbell Road
Richardson TX 75080

G.9 FOREIGN COMPONENT 
 
No foreign component 
 

G.10 ESTIMATED UNOBLIGATED BALANCE 
 
G.10.a Is it anticipated that an estimated unobligated balance (including prior year carryover) will be greater than 25% of the current
year's total approved budget?  
 
Yes 
 
Estimated unobligated balance: 601373 
 
G.10.b Provide an explanation for unobligated balance: 
We began the project approximately half a year behind schedule due to unexpected staffing issues that were described in the previous
annual report. To offset lower than expected productivity from neurologists, we have employed undergraduate annotators, as described
in the accomplishments section.
 
The supplemental award was awarded in October 2016 - the middle of the semester. This made it difficult to staff the project until
January 1, 2017.  Also, delays in invoicing contribute to the increased amount of unspent funds. However, approximately 50% of the
supplemental funds have been obligated and will be spent by 5/31/2017. The remaining funds should be spent by December 31, 2017. 
 
G.10.c If authorized to carryover the balance, provide a general description of how it is anticipated that the funds will be spent 
Regarding the supplement, we are on track to expend the funds over roughly a one-year period starting January 1, 2017 and ending
December 31, 2017. Because the award arrived in the middle of the Fall 2016 semester, we had to delay staffing the project until January
1.
 
Regarding the main award, we have made two major changes to the budget for FY3 to accelerate progress on the project. First, starting
in FY2, we realized that it was going to be difficult to engage neurologists for data annotation. Therefore, starting in FY2, we have trained
a group of undergraduates to do data annotation. They have been highly productive and are much less expensive. This has allowed us to
increase the amount of data generated. We benchmarked these students against data that was annotated by a small number of
neurologists and demonstrated that their accuracy was comparable or better than the experts. Therefore, we have relied on this
mechanism to generate data.
 
We also plan to staff the project in FY3 with additional grad students who are fully trained on the technology and available because a
concurrent related funded project (NSF STTR Phase 1) is coming to a close. These students will bring additional research on deep
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learning techniques to our project to improve event detection performance. 
 

G.11 PROGRAM INCOME 
 
Is program income anticipated during the next budget period?  
 
No 
 

G.12 F&A COSTS 
 
Not Applicable 
 



OMB Number: 4040-0001

Expiration Date: 06/30/2016

RESEARCH & RELATED BUDGET - SECTION A & B

ORGANIZATIONAL DUNS*:  057123192
Budget Type*:        ● Project       ❍ Subaward/Consortium

Enter name of Organization: TEMPLE UNIV OF THE COMMONWEALTH

Start Date*:  06-01-2017           End Date*: 05-31-2018

A. Senior/Key Person

# Prefix First Name* Middle

Name

Last Name* Suffix Project Role* Base

Salary ($)

Calendar

Months

Academic

Months

Summer

Months

Requested

Salary ($)*

Fringe

Benefits ($)*

Funds Requested ($)*

1. Dr Iyad Obeid Project Co-PI 112,716.00 0.75 1.0 21,917.00 3,685.00 25,602.00
2. Dr Joseph Picone Project Lead 136,125.00 0.75 1.0 26,468.00 4,451.00 30,919.00

Total Funds Requested for all Senior Key Persons in the attached file

Additional Senior Key Persons: File Name: Total Senior/Key Person 56,521.00

Mime Type:

B. Other Personnel

Number of

Personnel*

Project Role* Calendar Months Academic Months Summer Months Requested Salary ($)* Fringe Benefits* Funds Requested ($)*

1 Post Doctoral Associates 9.65 39,669.00 11,226.00 50,895.00
1 Graduate Students 12.0 22,472.00 3,798.00 26,270.00
1 Undergraduate Students 6.0 10,084.00 257.00 10,341.00

Secretarial/Clerical

3 Total Number Other Personnel Total Other Personnel 87,506.00

Total Salary, Wages and Fringe Benefits (A+B) 144,027.00

RESEARCH & RELATED Budget {A-B} (Funds Requested)
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RESEARCH & RELATED BUDGET - SECTION C, D, & E

ORGANIZATIONAL DUNS*:   057123192

Budget Type*:        ● Project       ❍ Subaward/Consortium

Enter name of Organization: TEMPLE UNIV OF THE COMMONWEALTH

Start Date*:  06-01-2017          End Date*:  05-31-2018

C. Equipment Description
 

List items and dollar amount for each item exceeding $5,000

Equipment Item Funds Requested ($)*

Total funds requested for all equipment listed in the attached file 0.00

Total Equipment 0.00

Additional Equipment:       File Name:

Mime Type:

D. Travel Funds Requested ($)*

1. Domestic Travel Costs ( Incl. Canada, Mexico, and U.S. Possessions) 16,000.00
2. Foreign Travel Costs 0.00

Total Travel Cost 16,000.00

E. Participant/Trainee Support Costs Funds Requested ($)*

1. Tuition/Fees/Health Insurance 0.00
2. Stipends 0.00
3. Travel 0.00
4. Subsistence 0.00
5. Other:  

0   Number of Participants/Trainees Total Participant Trainee Support Costs 0.00

RESEARCH & RELATED Budget {C-E} (Funds Requested)
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RESEARCH & RELATED BUDGET - SECTIONS F-K

ORGANIZATIONAL DUNS*:   057123192

Budget Type*:        ● Project       ❍ Subaward/Consortium

Enter name of Organization: TEMPLE UNIV OF THE COMMONWEALTH

Start Date*:  06-01-2017          End Date*:  05-31-2018

F. Other Direct Costs Funds Requested ($)*

1. Materials and Supplies 1,750.00
2. Publication Costs 0.00
3. Consultant Services 25,000.00
4. ADP/Computer Services 0.00
5. Subawards/Consortium/Contractual Costs 93,905.00
6. Equipment or Facility Rental/User Fees 0.00
7. Alterations and Renovations 0.00

Total Other Direct Costs 120,655.00

G. Direct Costs Funds Requested ($)*

Total Direct Costs (A thru F) 280,682.00

H. Indirect Costs

Indirect Cost Type Indirect Cost Rate (%) Indirect Cost Base ($) Funds Requested ($)*

1. F&A 56.0 186,777.00 104,595.00
2. F&A 53.0 93,905.00 49,770.00

Total Indirect Costs 154,365.00

Cognizant Federal Agency 

(Agency Name, POC Name, and POC Phone Number)

I. Total Direct and Indirect Costs Funds Requested ($)*

Total Direct and Indirect Institutional Costs (G + H) 435,047.00

J. Fee Funds Requested ($)*

 0.00

K. Budget Justification* File Name: budget_justification_v03.pdf Mime Type:

(Only attach one file.)

RESEARCH & RELATED Budget {F-K} (Funds Requested)

 

                                                                                                               Page 3

RPPR DRAFT

Page 37RPPR



Budget Justification 
Our budget request for the third year of this project includes the amount originally awarded for the third year 
($435,047). 

Budget Justification (Temple University) 

Dr. Iyad Obeid, Ph.D. (Temple University, co-PI): Dr. Obeid will spend one summer month and 0.75 months in 
the academic year on the primary award. His duties will include supervising the signal processing components 
of the EEG event detection project, and annotation of the EEG event data. He will also supervise the 
development and dissemination of the annotated version of the TUH EEG Corpus and the assessment phases 
of the project. Dr. Obeid is an Associate Professor of Electrical and Computer Engineering in the College of 
Engineering, and is jointly appointed to the Department of Bioengineering. He is also Director of the Neural 
Engineering Data Consortium. His expertise is in brain machine interfaces, including both hardware and 
software. He provides extensive knowledge on EEG technology as well. 

Joseph Picone, Ph.D. (Temple University, Principal Investigator): Dr. Picone will spend one summer month 
and 0.75 months in the academic year on the primary award. His duties will include serving as the contact P.I. 
and providing overall coordination of the project. He will also direct the machine learning aspects of both 
projects. Dr. Picone is a Professor of Electrical and Computer Engineering in the College of Engineering. He is 
also co-Director of the Neural Engineering Data Consortium. His expertise is in machine learning specifically in 
signal and image processing applications such as speech recognition. 

Postdoctoral Researcher: We have hired one postdoctoral researcher for the primary project. This person is 
responsible for managing annotations of the EEG signal data, the EEG reports, and all related information 
developed by the annotators. We expect this postdoc to transition to a new project in February 2018. 

Graduate Students: We have allocated one graduate student to the project in the final year. This student will 
continue conducting research into improved deep learning methods. 

Undergraduate Students: We have allocated funds for one undergraduate on this project. In the third year of 
this project this student will share time between publishing project-related information to the web and 
generating annotated data. 

Travel: Participation in professional conferences, particularly for students, is an important part of the 
development process. A typical conference trip for a full-time staff person (PI or postdoc) averages about $2K, 
and approximately $1.5K for a graduate student or undergraduate student. In the third year, we have allocated 
$16K for travel for the primary project and $5K for the supplemental grant. These trips will include major 
neuroengineering conferences such as the IEEE EMBS Conference on Neural Engineering and first-tier 
machine learning conferences such as the Neural Information Processing Systems (NIPS) conference. We 
also plan to encourage our students to present at smaller regional conferences such as the IEEE Signal 
Processing in Medicine and Biology Symposium (which we host). We plan to present papers at these 
conferences as part of our participation. We have also allocated funds to attend the All-Hands meeting in Fall 
2017. We will send the two PIs and four graduate students to this conference, and will be demonstrating a 
functional cohort retrieval system. 

Commodities: The commodities budget includes $1750 for publications-related expenses, conference-related 
promotional materials, and incidental computer maintenance costs. 

Consultants: We have reserved $25K for costs associated with neurologists serving as consultants. These 
neurologists will review queries and provide feedback on the relevance of the returned results, and overall user 
interface issues. We compensate them at $85/hr. 

Additional Notes: 

The on-campus research rate effective for the duration of this project is 56%. The fringe benefit rates used are 
as follows, also set at the beginning of the three-year project: 
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Category Academic 
Year Summer 

Faculty 28.30% 28.30% 
Postdoc 28.30% 28.30% 
Graduate Students 16.90% 16.90% 
Undergraduate Students (Summer) 8.20% 8.20% 
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OMB Number: 4040-0001

Expiration Date: 06/30/2016

RESEARCH & RELATED BUDGET - SECTION A & B

ORGANIZATIONAL DUNS*:  8001881610000
Budget Type*:        ❍ Project       ● Subaward/Consortium

Enter name of Organization: University of Texas at Dallas

Start Date*:  06-01-2017           End Date*: 05-31-2018

A. Senior/Key Person

# Prefix First Name* Middle

Name

Last Name* Suffix Project Role* Base

Salary ($)

Calendar

Months

Academic

Months

Summer

Months

Requested

Salary ($)*

Fringe

Benefits ($)*

Funds Requested ($)*

1. Dr Sanda Harabagiu Subcontractor:
Natural
Language
Processing
Expert

180,828.00 0.0 3.0 45,207.00 9,041.00 54,248.00

Total Funds Requested for all Senior Key Persons in the attached file

Additional Senior Key Persons: File Name: Total Senior/Key Person 54,248.00

Mime Type:

B. Other Personnel

Number of

Personnel*

Project Role* Calendar Months Academic Months Summer Months Requested Salary ($)* Fringe Benefits* Funds Requested ($)*

Post Doctoral Associates
2 Graduate Students 16.8 31,466.00 4,720.00 36,186.00

Undergraduate Students
Secretarial/Clerical

2 Total Number Other Personnel Total Other Personnel 36,186.00

Total Salary, Wages and Fringe Benefits (A+B) 90,434.00

RESEARCH & RELATED Budget {A-B} (Funds Requested)
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RESEARCH & RELATED BUDGET - SECTION C, D, & E

ORGANIZATIONAL DUNS*:   8001881610000

Budget Type*:        ❍ Project       ● Subaward/Consortium

Enter name of Organization: University of Texas at Dallas

Start Date*:  06-01-2017          End Date*:  05-31-2018

C. Equipment Description
 

List items and dollar amount for each item exceeding $5,000

Equipment Item Funds Requested ($)*

Total funds requested for all equipment listed in the attached file 0.00

Total Equipment 0.00

Additional Equipment:       File Name:

Mime Type:

D. Travel Funds Requested ($)*

1. Domestic Travel Costs ( Incl. Canada, Mexico, and U.S. Possessions) 2,750.00
2. Foreign Travel Costs 0.00

Total Travel Cost 2,750.00

E. Participant/Trainee Support Costs Funds Requested ($)*

1. Tuition/Fees/Health Insurance 0.00
2. Stipends 0.00
3. Travel 0.00
4. Subsistence 0.00
5. Other:  

0   Number of Participants/Trainees Total Participant Trainee Support Costs 0.00

RESEARCH & RELATED Budget {C-E} (Funds Requested)
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RESEARCH & RELATED BUDGET - SECTIONS F-K

ORGANIZATIONAL DUNS*:   8001881610000

Budget Type*:        ❍ Project       ● Subaward/Consortium

Enter name of Organization: University of Texas at Dallas

Start Date*:  06-01-2017          End Date*:  05-31-2018

F. Other Direct Costs Funds Requested ($)*

1. Materials and Supplies 721.00
2. Publication Costs 0.00
3. Consultant Services 0.00
4. ADP/Computer Services 0.00
5. Subawards/Consortium/Contractual Costs 0.00
6. Equipment or Facility Rental/User Fees 0.00
7. Alterations and Renovations 0.00

Total Other Direct Costs 721.00

G. Direct Costs Funds Requested ($)*

Total Direct Costs (A thru F) 93,905.00

H. Indirect Costs

Indirect Cost Type Indirect Cost Rate (%) Indirect Cost Base ($) Funds Requested ($)*

1. F&A 53.0 93,905.00 49,770.00

Total Indirect Costs 49,770.00

Cognizant Federal Agency 

(Agency Name, POC Name, and POC Phone Number)

I. Total Direct and Indirect Costs Funds Requested ($)*

Total Direct and Indirect Institutional Costs (G + H) 143,675.00

J. Fee Funds Requested ($)*

 0.00

K. Budget Justification* File Name:

11_budget_justification_v00_utd.pdf

Mime Type:

(Only attach one file.)

RESEARCH & RELATED Budget {F-K} (Funds Requested)
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Salaries and Wages: Salaries for all personnel are based upon current University of Texas at Dallas 
academic and staff salary scales.  Prof. Sanda Harabagiu, Principal Investigator, will provide the overall 
direction and management of the Aim 3: Defining Hierarchical epileptiform Activity Descriptors (HAD) 
for EEGs, and Aim 4: Automated Tagging of HADs in medical texts of the project entitled “Scalable 
EEG Interpretation Using Deep Learning and Schema Descriptors” as well as participating in the 
technical research and publication activities. Prof. Sanda Harabagiu, will collaborate closely with 
Professors Joseph Picone and Iyad Obeid from Temple University as well as the physicians from Temple 
Hospital involved in the project. She will work closely with Prof. Picone and Obeid to design the 
Hierarchical epileptiform Activity Descriptors developed for Aim 3 as well as on the automatic tagging of 
the TAG descriptors on the EEG reports from Temple University in her work. In addition, she will 
collaborate on the evaluation of the patient cohort retrieval system that uses the TAG meta-data as well as 
the evaluation of the results of the automatic retrieval of relevant medical articles that will inform the 
scalable interpretation of EEGs. Prof. Harabagiu will also supervise the research of two graduate PhD 
students. This research will form the core of two PhD dissertations. We request summer salary support for 
Prof. Sanda Harabagiu at a level of 3 months for the duration of the project. However, Prof. Harabagiu 
shall direct the research of this project throughout the year. We request salary support for 2 graduate 
research assistants. The graduate research assistants will have a support each year at 50% time during the 
academic year, and at 50% time during the summer months.  The role of one graduate research assistant 
will be develop deep learning methods that will populate the schemas associated Hierarchical 
epileptiform Activity Descriptors by learning the nodes and the relations in the schema hierarchy 
developed for Aim 4. The second PhD student will focus on developing the deep learning methods that 
will automatically produce HAD tags both in the EEG reports and in medical articles describing the 
interpretation of EEGs and use the tags both in the patient cohort retrieval system and in a system capable 
to retrieve relevant medical articles in support of the interpretation of EEGs, developed in Aim 4. The two 
PhD students that will be assigned to work on this project will be paid at $2100/month for their activity. 
Benefits:  Employee benefits were estimated using the published University of Texas at Dallas rates.  
Benefit rates used in this proposal are 20% of salary of the PI and 15% for graduate students during the 
academic year and summer months.  

Travel:  A total of 3 domestic trips are requested yearly to attend technical meetings and workshops that 
are relevant to the project’s overall research, and for scientific exchange.  Domestic trips are estimated at 
$1500 each roundtrip.  Expenses include estimates for airfare, ground transportation, hotel 
accommodations, registration for conferences and workshops (if applicable), and per diem. Relevant 
conferences where we anticipate publishing the results are the annual AMIA symposium  and the annual 
AMIA Summit on Clinical Research.. 

Materials and Supplies:  We have not budgeted any materials and supplies for FY3. 

Publications Costs/page charges:  A total of $721 is requested for the cost of preparing and publishing 
the results of the work conducted under the award.  

Other: Tuition reimbursement is requested for the graduate research assistants at a level of $0 per year. 
Under agreement by The University of Texas at Dallas, tuition for “doctorally qualified” PhD students, 
who are supported by an RA on an externally funded grant, will have their tuition paid by the Provost.  
The students proposed to be used on this project qualify for this benefit, and therefore, no tuition is being 
requested. 

Indirect Costs:  Indirect costs were estimated in accordance with UTD’s rate agreement, which was 
approved by DHHS, the Federal Cognizant Audit Agency for UTD on 9/01/08.  The organized research 
F&A cost rate of 53% MTDC was used based on the nature of the proposed work. 
	

 

Budget Justification Attachment                                                                                Page 4

RPPR DRAFT

Page 43RPPR


	A. OVERALL COVER PAGE
	B. OVERALL ACCOMPLISHMENTS
	    B.2. acc_main_v01.pdf
	    B.4. training_v00.pdf
	C. OVERALL PRODUCTS
	D. OVERALL PARTICIPANTS
	E. OVERALL IMPACT
	F. OVERALL CHANGES
	G. OVERALL SPECIAL REPORTING REQUIREMENTS
	H. OVERALL Budget
	R&R Budget
	    Budget Justification
	Subaward Budget 1



