
09/30/07 — 08/31/08: RESEARCH ACTIVITIES 

The primary goal of this project is to develop novel nonlinear modeling techniques for speech and 
speaker recognition systems. In previous years of this project, we have explored various classical 
nonlinear models with limited success. This year we focused on two approaches, a nonlinear mixture 
autoregressive model and a linear dynamic model. We also completed experiments on adding nonliear 
features to the acoustic feature vector. 

An overarching challenge in this project has been dealing with the nonstationarity of the speech signal. 
We have explored several models that, if given ample amounts of data, appear capable of modeling 
nonlinar behavior. The parameter estimates of these models converge over time scales of seconds. 
However, the speech signal varies on the order of 10 to 30 msec. Some phonemes crucial to good 
recognition and verification performance last only a few tens of milliseconds, on the order of a few 
frames of data. We have yet to find success at estimating parameters of these nonlinear models over such 
short durations of speech. In such cases, one only has a few hundred samples with which to compute the 
model parameters. Worse, coarticulation phenomena often impinge on these samples, making it very 
difficult to estimate phonemes with short duration. This is one of the great challenges of speech 
processing – estimating model parameters from a signal that is evolving on very short time scales. We 
even attempted to oversample the signal in an effort to increase the amount of data, but even this 
approach suffers from some well-known drawbacks. 

One of the reasons we shifted the focus of the original proposal from recognition to verification was to 
provide a longer time epoch over which parameters could be estimated. Unfortunately, though in 
verification you have access to a long speech utterance, the fact that the signal model is continually 
evolving during this time makes it difficult to separate out speaker variations from phoneme variations. 
Nonlinear models attempting to directly estimate long-term suprasegmental parameters related to the 
speaker’s identity also did not perform well. 

Therefore, in the final year of this project we focused on approaches that blend well with the 
traditional, piecewise linear approximation that has been so successful in speech recognition. We also 
attempted to leverage as much of the hidden Markov model infrastructure as possible. In this report, we 
summarize findings of the three approaches mentioned above. One M.S. thesis is available that describes 
the feature extraction work in more detail; two PhD theses are under development that describe the other 
work in greater detail. All are available from our web site while under construction in an effort to 
disseminate the project information as quickly as possible. 

A. Continuous Speech Recognition with Nonlinear Dynamic Invariants 

This year we completed our work on nonlinear dyanmic invariants, culminating with the publication 
of an M.S. thesis [1] and submissions to several conferences including INTERSPEECH 2008 [2][4]. We 
have previously reported our general approach was to combine traditional MFCCs with nonlinear 
dynamic invariants in an effort to produce a more robust feature vector for continuous speech recognition.  

We continued our analysis of three standard dynamic invariants: Lyapunov exponents, fractal 
dimension, and Kolmogorov entropy. Lyapunov exponents associated with a trajectory provide a measure 
of the average rates of convergence and divergence of nearby trajectories. Fractal dimension is a measure 
that quantifies the number of degrees of freedom and the extent of self-similarity in the attractor’s 
structure. Kolmogorov entropy defined over a state-space, measures the rate of information loss or gain 
over the trajectory. These measures search for a signature of chaos in the observed time series. Since 
these measures quantify the structure of the underlying nonlinear dynamic system, they are prime 
candidates for feature extraction of a signal with strong nonlinearities. The motivation behind studying 



such invariants from a signal processing perspective is to capture the relevant nonlinear dynamic 
information from the time series – something that is ignored in conventional spectral based analysis. 

Our preliminary experiments provided strong support that the addition of these nonlinear invariants 
the standard MFCC feature vector will improve the accuracy of speech recognition tasks. We next 
evaluated these features on two sets of continuous speech recognition experiments involving the Aurora 4 
task (a variant of the WAJ 5K task). 

The recognition results for the clean test set were very encouraging. Each of the MFCC/invariant 
feature combinations resulted in a significant recognition performance increases over the baseline MFCC 
experiments. Correlation entropy resulted in the largest relative improvement of 11.1%. The recognition 
results for the noisy test sets were less encouraging as each experiment resulted in a performance decrease 
(higher error rate) compared to the baseline. These results contradict our theory that the addition of 
invariants would result in a feature vector that is more robust to noisy conditions unseen in the training 
set. We also examined more closely some state-space filtering methods which we hoped would enhance 
the algorithms’ robustness to noise. These also did not result in any improvements. This work is described 
in greater detail in [1]. 

B. MixAR Modeling of Speech Signals for Speaker Recognition 

Gaussian mixture models are a very successful method for modeling the output distribution of a state 
in a hidden Markov model (HMM). However, this approach is limited by the assumption that the 
dynamics of speech features are linear and can be modeled with static features and their derivatives. In 
this work, a nonlinear mixture autoregressive model is used to model state output distributions (MAR-
HMM). This model can handle both static and dynamic features. 

The MAR-HMM model we have developed is a generalized version of [5] that has been extended to 
handle vector observations, so that we can operate on the speech feature vector stream rather than speech 
samples. One property of MAR that is of particular relevance is the ability of MAR to model nonlinearity 
in time series. Though the individual component AR processes are linear, the probabilistic mixing of 
these AR processes constitutes a nonlinear model. In a GMM, the distribution remains invariant to the 
past samples due to the static nature of the model. For MAR, the conditional distribution given past data 
varies with time. This model is capable of modeling both the conditional means and variances. Thus, 
MAR can model time series that evolve nonlinearly. 

To better understand the efficacy of the MAR-HMM model, we evaluated its performance on two 
simple pattern recognition tasks. The first task represents data with known nonlinearities. The MAR, with 
just 2 components and 8 parameters, achieved 100% classification accuracy using only static features. 
The GMM approach using only static features was unable to do much better than a random guess strategy 
since the two classes have similar static marginal distribution. With the inclusion of delta coefficients, the 
GMM performance increases significantly, but even in this case it achieved only 85% accuracy with 28 
parameters. Though delta features capture some amount of dynamic information in the features, it is still 
only a linear approximation, and we cannot capture their nonlinear evolution with just GMMs. 

The second task was a simple phone classification task. To test the efficacy of MAR-HMMs in speech 
modeling, we made 16 kHz recordings of three distinct phones – “aa” (vowel), “m” (nasal), and “sh” 
(sibilant). For each phone and for each speaker, 35 recordings were made to serve as training database, 
while another 15 were reserved for testing. Silence was removed so that we could focus on the ability of 
the approach to model speech. 



We evaluated the performances of 2-, 4-, 8-, and 16 mixture GMM-HMM and MAR-HMM with the 
13 dimensional static MFCC features. For an equal number of parameters, MAR outperformed GMM 
significantly. For instance, MAR-HMM achieved a phone classification accuracy of 94.4% with only 320 
parameters while a GMM system using 432 parameters could only achieve a 93.3%. 

To determine whether MAR is more effective at exploiting dynamics than what GMM can achieve 
using dynamic features, we also performed another experiment with 39-dimensional features containing 
both static as well as velocity and acceleration coefficients. In this case, the results were not conclusive. 
While MAR-HMM showed an accuracy rate of 97.8% with 472 parameters, GMM-HMM attained only 
96.7% accuracy with 632 parameters. 

Unfortunately, the performance of MAR-HMM saturated with an increase in the number of 
parameters. For example, MAR-HMM at 1888 parameters achieved only 98.9% accuracy while GMM-
HMM achieved 100% with 1264 parameters. We suspect that this could be due to the fact that our 
parameter estimation and likelihood computation procedures assume that the features are independent. It 
is well-known that the static MFCC features are uncorrelated (at least, theoretically), but obviously the 
delta features are correlated with the static ones. While this should also cause problems for GMM, the 
problem is more acute for MAR because in this case, unlike GMMs, we employ the past history 
explicitly. 

This work is described in detail in a paper that will be presented at INTERSPEECH’2008 [6]. 

C. Linear Dynamic Models for Speech Recognition 

Last year we proposed Linear Dynamic Models (LDMs) as an alternative to hidden Markov models 
(HMMs) for robust speech recognition in noisy environments. HMMs in speech recognition typically 
utilize a diagonal covariance matrix assumption in which correlations between feature vectors for 
adjacent frames are ignored. LDMs use a state space-like formulation that explicitly models the evolution 
of hidden states using an autoregressive process. This smoothed trajectory model allows the system to 
better track speech dynamics in noisy environments. 

This year we refined this model and completed its evaluation on a complex speech recognition task – 
the Aurora 4 task. This task is attractive because it contains speech degraded by a variety of noise 
condictions (digitally) and it removes the language model problem by using a closed-set 5K language 
model. An HMM baseline system was used to generate alignments at the phone level. Each phone 
instance was treated as one segment. A total of 40 LDM phone models, one classifier per model, were 
used to cover the pronunciations. Each classifier was trained using the segmental features derived from 
13-dimensional frame-level feature vectors comprised of 12 cepstral coefficients and absolute energy. 
The full training set has as many as 30k training examples per classifier. Each phone-level classifier was 
trained as a one-vs-all classifier. The classifiers were used to predict the probability of an acoustic 
segment. 

The HMM system achieves up to 46.9% and 36.8% accuracy for the clean evaluation data and noisy 
evaluation data respectively. The LDM classifiers achieved superior performance to the HMM classifiers 
with a classification accuracy of 49.2% for the clean evaluation data and 39.2% for the noisy evaluation 
data. This represents a 4.9% relative and a 6.5% relative increase in performance over a comparable 
HMM system with 3-state models. 

We are currently developing a HMM/LDM hybrid decoder architecture to model the frame correlation 
using LDMs as well as utilizing HMMs techniques for phone segment alignment. Preliminary 
experiments will be presented on the Alphadigits (AD) and Resource Management (RM) speech corpora. 



This HMM/LDM hybrid decoder architecture will be a good evaluation of LDMs on continuous speech 
recognition tasks, and can be compared to other hybrid decoders we have developed that utilize other 
nonlinear statistical models (e.g., support vector machines and relevance vector machines). 

D. Additional Comments 

Progress in the final year of this project was slowed somewhat because the two PhD graduate students 
working on the project had opportunities to do internships. Mr. Sundar Srinivasan spent Summer’2008 at 
Motorola’s research lab working on rapid adaptation techniques in speech recognition. Mr. Tao Mao 
spent the summer with Intel’s speech research group working on methods for speeding up speech 
recognition on Intel processors. He will continue there through December 2008. These students were 
identified by these employers based on their work on this project. For each of them, it was their first 
chance to do an internship during their graduate studies, so the PIs felt it was worthwhile to let them 
pursue these opportunities. Each had a very productive summer. 

As a result, we applied and received an extension of the project through December 2008. This will 
allow Mr. Srinivasan to present his work at INTERSPEECH, and to complete some experiments on 
larger-scale speech processing tasks. He is expected to complete his disseration by August 2009. 

Mr. Tao will complete his graduate studies as a graudate teaching assistant in the ECE Department at 
MS State. This will allow him to complete his dissertation on the work previously described. He is 
expected to graduate by December 2009. 

The final report for this project will be delivered by the end of the 2008 calendar year, when we expect 
to have expended all of the funds. 
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