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Annual Report: 0414450

Page 3 of 5

why these techniques don't work well for robust speech processing applications.

Our initial SVM-based speaker recognition system provides a small improvement over the GMM baseline, a finding that is consistent with what
others in the community have found.

Our attempts at adding several nonlinear features independently have not yet provided an improvement in performance. We have certified our
implementations against previously published work, so our results conflict with previously published results. We continue to explore and
analyze these experiments.

Training and Development:
Several of our students have improved their technical writing skills through publications and documentation related to this project.

All students are learning a strict software engineering process we use in our lab, and have increased their knowledge considerably.

All graduate students have received special training through a graduate level course in Natural Language Processing that we were able to offer
in conjunction with this project.

Outreach Activities:
We have hosted several open houses for a local high school that specializes in mathematics and sciences: The Mississippi School for
Mathematics and Science. It is one of the best math and science schools in the country and attracts the best students from all over Mississippi.

We also presented a lecture at the Math Club at the same institution. This presentation emphasized the value of math in the engineering
disciplines.
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SoutheastCon, p. 192, vol. 1, (2006). Published, 

S. Patil, S. Srinivasan, S. Prasad, R. Irwin, G. Lazarou and J. Picone, "Sequential State-Space Filters for Speech Enhancement", Proceedings of
IEEE SoutheastCon
, p. 240, vol. 1, (2006). Published, 

Books or Other One-time Publications

J. Picone, "Risk Minimization Approaches in Speech Recognition", (2006). Book, Submitted
Editor(s): Idea Group Inc., USA
Collection: Kernel Methods in bioengineering, communications, and signal processing
Bibliography: G. Camps-Valls, J.L. Rojo-Álvarez, and M. Martínez-Ramón, "Kernel Methods in bioengineering, communications, and signal
processing," The Idea Group, Inc., Hershey Pennsylvania, USA
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http://www.ece.msstate.edu/research/isip/project/nsf_nonlinear
Description:
We always maintain a web site for every project we execute. This web site includes software, data, publications, etc., related to the project.

Other Specific Products

Product Type:
Teaching aids
Product Description:
A tutorial on particle filtering.
Sharing Information:
This work is disseminated via a URL:

http://www.cavs.msstate.edu/hse/ies/whats_new/2005_06/

Product Type:
Teaching aids
Product Description:
We have developed a number of tutorials on key core technologies for this project.
Sharing Information:
These tutorials are available at:

 http://www.cavs.msstate.edu/hse/ies/projects/nsf_nonlinear/doc/

Product Type:
Software (or netware)
Product Description:
We have augmented our pattern recognition applet to include three time series analysis techniques: linear prediction, Kalman filtering, and
Particle filtering.
Sharing Information:
The applet is available at:

http://www.cavs.msstate.edu/hse/ies/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html

Product Type:
Software (or netware)
Product Description:
We have developed baseline implementations of several techniques for estimating nonlinearities in a signal. These are provided in MATLAB
and used as reference implementations for our C++ code.
Sharing Information:
This software is located at:

http://www.cavs.msstate.edu/hse/ies/projects/nsf_nonlinear/downloads/software/matlab/

Contributions
Contributions within Discipline: 
We have replicated previously published work on particle filtering, Kalman filtering, and Lyapunov exponent estimation. We have applied
these techniques to more comprehensive speech databases as a first step in characterizing their performance on a large-scale application.

We have provided reference implementations of Lyapunov exponents, Correlation Dimenions, and the Embedding Dimension for use in speech
recognition experiments.
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We have evaluated these features on both speaker recognition and speech recognition tasks.

Contributions to Other Disciplines: 
We have made software available as part of our public domain system, and also released a number of tutorials on our web site.

Contributions to Human Resource Development: 
We have introduced two undergraduate students to speech research. Both are showing great promise and plan to pursue graduate studies.

A third undergraduate will enter graduate school in Spring'2006 and continue working on this project.

Contributions to Resources for Research and Education: 
A project web site has been developed and maintained.

Contributions Beyond Science and Engineering: 

Special Requirements

Special reporting requirements: None
Change in Objectives or Scope: None
Unobligated funds: $ 0.00

Animal, Human Subjects, Biohazards: None

Categories for which nothing is reported: 
Contributions: To Any Beyond Science and Engineering



09/30/06 — 08/31/07: RESEARCH ACTIVITIES 

The primary goal of this project is to develop novel nonlinear modeling techniques for speech and 
speaker recognition systems. While there have been tremendous advances in speech processing systems 
brought about by predominantly linear models, for the past several years these improvements have been 
marginal and have reached a point of stagnation. To build futuristic recognition machines that achieve and 
even go beyond the capabilities of the human auditory system, it behooves speech engineers to look 
beyond the linear modeling paradigm. However, two questions arise when considering nonlinear models 
for speech: 1) do we really need a nonlinear model; i.e., how do we know that nonlinearities are present in 
speech signals? 2) how to build tractable nonlinear models for speech? 

Earlier in this project, we have shown a significant presence of nonlinearities in speech signals and 
their potential in broad phone classification. This answers the first question. Encouraged by this, we have 
concentrated our efforts to make use of the nonlinearities in a tractable way, and channeled our research 
in three different directions. First, we have continued to work with the nonlinear invariants which we had 
earlier used to prove the presence of nonlinear effects in speech. We now model these invariant features 
using conventional HMM techniques for speech recognition. In our second route to attain our goal, we 
use a nonlinear MixAR (Mixture of Autoregressive) model that uses the conventional wisdom of linear 
models along with novel nonlinear modeling capabilities, for speaker recognition. Thirdly, we consider 
the use of Linear Dynamical Models (LDM) as a convenient starting point, and hope to replace it’s linear 
filter part with a nonlinear one. 

A. Continuous Speech Recognition with Nonlinear Dynamical Invariants 

Last year, we estimated statistical models for various sustained phones using nonlinear dynamical 
invariants and computed the KL divergence between these models. These are called invariants because 
they remain constant under transformations of the phase space as long as these transformations are 
smooth. We were able to show that these invariants contained a high level of discriminative information 
between different phone classes. Since these invariants describe the nonlinear content of speech, they can 
be combined with traditional linear acoustic information to produce a more accurate acoustic model. 

This year, we combine these nonlinear invariants with the traditional MFCC feature vector in order to 
model the nonlinear acoustic information contained within speech. We test this new feature vector with 
data recorded in a clean environment as well as data with significant additive noise. The goal is to 
produce acoustic models that are more robust to channel variations and noise conditions. 

A.1 Review of Nonlinear Dynamical Invariants 

It is difficult to extract nonlinear properties from a time-series representation of an observable from a 
non-linear system using traditional Fourier-based techniques. An alternate representation of the system, 
the phase space representation, is required [1]. This represents the temporal evolution of the system’s 
states. The path created by this evolution of states is called the system’s trajectory, and the set of points in 
the state space that are accumulated in the limit as ��t  is called the attractor of the system [1] [2] [3]. 
In order to estimate the system’s phase space representation from the observed time-series, we use a 
method called Phase Space Reconstruction. This method uses a technique called embedding in order to 
construct the phase space. There are two common types of embedding.  The simplest form of embedding 
is time-delay embedding which uses time-delayed copies of the original scalar time series as components 
of the reconstructed phase space (RPS). This form of the RPS is represented by: 
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where m is the embedding dimension and is the embedding time delay. Each row in the matrix X is a 
point in the RPS [1].  

The second type of embedding is called Singular Value Decomposition (SVD). This method consists 
of two steps: First, a dimensionality, or window size, is chosen and the scalar time series is embedded into 
this higher dimensional space using time-delay embedding and a delay of one sample. Next, the 
embedded matrix is reduced in dimensionality by a linear transformation. We use SVD for embedding 
because it is the preferred embedding technique for noise-corrupted data [4]. 

Our experiments have focused on three specific nonlinear dynamical invariants: Lyapunov exponents, 
fractal dimension, and Kolmogorov-Sinai entropy. These invariants are described below. 

A.1.1 Lyapunov Exponent 
Lyapunov exponents measure the separation over time of trajectories with infinitesimally close initial 

points [1]. Suppose a system’s evolution function is defined by f. We need to analyze: 
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where x(0) is the initial point. To quantify this separation, we assume that the growth rate over time of 
the separation of trajectories is exponential. From this assumption, we define the exponents, i� as: 
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where J is the Jacobian of the system as the point p traverses the attractor. The Lyapunov exponent is 
computed by applying the above calculation to the points on the reconstructed attractor, and averaging 
this separation over the entire attractor. Literally, Lyapunov exponents provide some idea of the amount 
of chaos in a system.  

A.1.2 Fractal Dimension 
A fractal is defined as an object that is self-similar, in geometrical structure for example, at various 

resolutions [5] [6]. Fractal dimension is used to describe the fractal structure and the fractal dimension of 
an attractor can be estimated using a technique called correlation dimension. This technique uses the 
power-law relation between the correlation integral of an attractor and the neighborhood radius of the 
analysis hyper-sphere to provide an estimate of the fractal dimension: 
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where x�  is a point on the attractor (which has N such points). The correlation integral is essentially a 
measure of the average number of points within a neighborhood of radius �  over the entire attractor. To 
avoid temporal correlations in the time series from producing an underestimated dimension, we use 
Theiler’s correction for estimating the correlation integral. 

A.1.3 Kolmogorov-Sinai Entropy 
Entropy is a well-known measure used to quantify the amount of disorder in a system [7], and has also 

been associated with the amount of information stored in general probability distributions. Numerically, 
the Kolmogorov-Sinai entropy can be estimated as the second order Renyi entropy ( 2K  ) and, like 
correlation dimension, can be related to the correlation integral of the reconstructed attractor [5] by: 
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where D is the fractal dimension of the system’s attractor, d is the embedding dimension and is the 
time-delay used for attractor reconstruction. This results in the relation 
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In practical situations, however, the values of � and d are restricted by the resolution of the attractor 
and the length of the observed time series. 

A.2 Phonetic Classification Experiments 

Last year, we successfully showed that nonlinear dynamical invariants can discriminate between 
different phone classes. We demonstrated this using a small database of sustained phonemes, extracting 
invariants from each phone, estimating a GMM, and measuring the KL-Divergence between these 
models. The results suggested that these invariants contain useful information about the non-linear 
characteristics of speech that is not present in linear acoustic features. 

This year, we decided to investigate whether or not this nonlinear information could be combined with 
traditional linear acoustic data, such as MFCCs, to better model speech signals. Our overall goal was to 
show that we could use dynamical invariants to improve the recognition performance of a continuous 
speech recognition task. As a first step in our investigation, we ran a set of closed-loop phonetic 
classifications experiments on Wall Street Journal (WSJ) large-vocabulary continuous speech recognition 
corpus. The purpose of these experiments was to show that the addition of dynamical invariants to the 
standard MFCC feature vector would improve the classification of signal frames as their corresponding 
phones within continuous speech. 

The WSJ corpus consists of high-quality recordings of speech read from newspaper articles appearing 
in the Wall Street Journal. The data set used for these experiments consists of 7,138 16 kHz-sampled 
utterances from 83 speakers totaling 14 hours of speech. Standard MFCC features were extracted from 
each utterance using a 10ms frame and a 25ms overlapping window. The feature vector consists of 13 



features: absolute energy and 12 MFCCs. Since these initial experiments attempt to classify each frame 
independently, the first and second derivatives are not used as features.  

The three nonlinear dynamical invariants described previously are also extracted from the data. Last 
year, our pilot experiments found the optimal parameter values for each of the invariant computation 
algorithms for speech data. These were found using the sustained phone speech corpus described earlier. 
Using these parameters, we compute the invariants and append each to the standard 13-dimensional 
MFCC feature vector to form three new feature vectors with 14 elements each. This results in a total of 
four feature vectors: one containing the 13 MFCCs which we will use as a baseline, and three containing 
a combination of MFCCs and invariants.  

Using time-aligned phonetic transcriptions of the corpus, we estimate a 16-mixture GMM for each of 
the 40 phones contained in the lexicon. The time-alignments for the transcriptions were obtained via a 
forced alignment method using our public-domain speech recognition toolkit. Using a closed-loop 
experimental apparatus, we used the trained GMMs to classify each frame of the training data as one of 
the 40 phonemes. The results in Table 1 below show the average relative classification improvement of 
each MFCC/invariant combination compared to the MFCC baseline results.  

Figure 1 shows examples of the 
relative improvement for each phone 
class using each of the three different 
feature combinations. 

All three feature combinations 
result in classification improvements 
for affricates and stops, suggesting a 
significant amount of useful nonlinear 
information present in these phone 
types. Fricatives, however, suffered a 
drop in classification accuracy. This is 
most likely attributed to the unvoiced subset of fricatives (s, sh, f, th) since they are highly chaotic. This 
results in invariant values with wide variance which do not seem to contribute to the linear acoustic 
information. Nasal and glide classification accuracy showed little or no improvement. Vowels showed a 
slight improvement for all feature combinations.  

The addition of the Lyapunov exponent resulted in a classification accuracy improvement for 
affricates, strops, and nasals.  Correlation entropy resulted in a fairly consistent improvement for all 
phone classes except for fricatives, suggesting that it may contain the most speech-relative nonlinear 
acoustic information. Correlation dimension resulted in significant classification improvements for 
affricates and stops, but suffered a decrease in classification accuracy for fricatives, nasals, glides. In 
general, however, the relative improvements are much higher than accuracy decreases. This provides 
sufficient justification for a set of continuous speech recognition experiments using these feature 
combinations. 

A.3 Continuous Speech Recognition Experiments 

For our speech recognition experiments, we use a corpus developed by the Aurora Working Group.  
This corpus is based on the DARPA Wall Street Journal large vocabulary recognition corpus described in 
the previous section and consists of utterances recorded in clean conditions as well as a variety of additive 
noise conditions with random SNRs between 5 and 15 dB. More specific details about this corpus can be 
found in [7]. Experiments were performed on both the clean and noisy test sets.  

Correlation
Dimension 

Lyapunov
Exponent

Correlation
Entropy

Affricates 10.3% 2.9% 3.9% 
Stops 3.6% 4.5% 4.2% 
Fricatives -2.2% -0.6% -1.1% 
Nasals -1.5% 1.9% 0.2% 
Glides -0.7% -0.1% 0.2% 
Vowels 0.4% 0.4% 1.1% 

Table 1 - Relative Phone Classification Improvement 
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b.
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d.
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Figure 1 - Examples of relative improvement for select phones in different classes: Affricates (a), Stops (b),
Fricatives (c), Nasals (d), Glides (e), and Vowels (f). 

These experiments were performed using the a speech recognition system developed by our group that 
we refer to as the prototype system. This system uses context-dependent hidden-Markov models to model 



acoustics and N-gram language models with backoff probabilities [7]. The acoustic models for these 
experiments were trained using the clean Aurora training set. Using features extracted from this data, a set 
of context dependent triphone models were estimated. A standard 3-state left-to-right topology with self-
loops on each states was used for the models. Each state consists of an underlying 4-mixture GMM. The 
following sections present the results obtained on both the clean and noisy test sets. 

A.3.1 Clean Speech Data 

Table 2 contains the speech recognition results for the clean test set using the different feature 
combinations. 

All feature combinations resulted in a WER improvement over the baseline MFCC results. In 
general, the results reflect the findings in the phonetic classification experiments in A.2. The 
most significant improvement resulted from the addition of correlation entropy. Correlation 
dimension shows the second best improvement, followed by lyapunov exponents. An experiment 
combining MFCCs with all three invariants was also performed, but did not show as much of a 
WER improvement as any of the three individual invariants. This suggests the presence of a  
large amount of overlapping information across the three invariants. 

A.3.2 Noisy Speech Data 

The Aurora corpus consists of six different test sets with different additive noise conditions that are 
likely to be encountered in real applications. The noise conditions include airport noise, random babble, 
car noise, restaurant noise, street noise, and train noise. The purpose of this set of experiments is to 
determine whether or not these invariants, when added to MFCCs, are more robust to mismatches 
between the training and test data. The models used for these experiments are the same that were used for 
those in A.3.1 which were trained using clean training data. Table 3 contains the results of the speech 
recognition experiments. 

 Surprisingly, this first set of experiments suggest that the addition of an invariant damages the WER 
in most cases. The only exceptions to this occur with the correlation entropy invariant in the case of 
airport, car, and train noise, and even in these cases, the WER improvement is small. These initial results 
contradict our original theory that the addition of these invariants would result in more robust models. 
This theory was based on the fact that invariants remain constant under smooth transformations of the 
phase space, and that changes in channel conditions result in such a transformation. Additional 
experiments are required in order to fully understand these results. 

WER (%) Relative 
Improvement (%) 

MFCCs 13.5 -- 
MFCCs+CD 12.2 9.6 
MFCCs+LE 12.5 7.4 
MFCCs+CE 12.0 11.1 
MFCCs+All 12.8 5.2 

Table 2 - Performance of Feature Combinations on Clean Test Set 



A.4 Future Directions 

Until now, we have run experiments with feature vectors consisting of the traditional 39 dimensional 
feature vector (12 MFCCs, absolute energy, first and second derivatives), combined with invariants. In 
order better symmetrize the feature vector, we will run experiments which also include the first and 
second derivative of the invariants. The hope is that the invariant derivatives contain additional acoustic 
data.

We were able to show in A.3.1 that invariants can improve the WER for the clean test set of the 
Aurora corpus. This is a strong indication that these nonlinear invariants contain additional information 
not present in traditional linear acoustics such as MFCCs.   

A deeper investigation is required in order to understand the noisy test data results in Table 3. The 
significant increase in WER after the addition of only a single feature was unexpected. The distributions 
of these invariants for the different noise conditions need to be analyzed and closely compared to the 
corresponding distributions for the clean data. We will also determine whether we can use post-
processing techniques to refine the nonlinear features and remove some of the effects introduced by noise. 

B. MixAR Modeling of Speech Signals for Speaker Recognition 

It has been a long standing tradition of the speech processing community to view the process of speech 
production in the form of a source-filter model [9]. This is based on the idea that speech can be thought of 
as the output of a source signal originating at or below the vocal cords filtered through the vocal tract. 
Almost all the models developed use this as the underlying principle in one way or the other, though the 
way the two components – the source and the filter – of this paradigm are treated, varies greatly. 

The most popular theme until now for the filter component (which is the more important of the two for 
recognition tasks) has been the linear autoregressive (AR) model [9]. This model is motivated by the fact 
that there exists significant correlation between consecutive speech samples, and hence each sample to a 
large degree should be predictable from knowledge of the past few samples. The linear AR model 
crystallizes this idea in its simplest form - predict each sample from a weighted sum of the past p
(called prediction order) samples and expressed mathematically as: 
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The weights )(i�  are called linear predictive coefficients (LPC’s), and they are indicative of the type 
of sounds they represent. Even the perceptually more relevant Mel-Frequency Cepstral Coefficients 

WER (%) 
Airport Babble Car Restaurant Street Train 

MFCCs 53.0 55.9 57.3 53.4 61.5 66.1 
MFCCs+CD 57.1 59.1 65.8 55.7 66.3 69.6 
MFCCs+LE 56.8 60.8 60.5 58.0 66.7 69.0 
MFCCs+CE 52.8 56.8 58.8 52.7 63.1 65.7 
MFCCs+All 58.6 63.3 72.5 60.6 70.8 72.5 

Table 3 - Performance of Feature Combinations on Noisy Test Sets 



(MFCCs), which have been shown to possess a high degree of discriminability that is useful in speech 
and speaker recognition, can also been viewed as variations on the theme of LPCs. 

However, recent studies on the properties of speech signal show the presence of a significant amount 
of nonlinearity that may have bearing on the perception of speech. Past experience in our own group in 
this project has taught us that the nonlinear effects alone may be strong enough even to discriminate 
between different classes of sounds. On the other hand, linear models have led us this far in the history of 
speech processing, that it would be unwise to abandon it altogether. Perhaps, our best hopes for a 
comprehensive speech model that encompasses both linear and nonlinear effects lie with those that 
capture the nonlinear effects sitting on top of existing linear models. Mixture of autoregressive models 
(MixAR) does exactly this. 

To the best of our knowledge, we are the first to apply MixAR [10] as a nonlinear speech signal model 
for speaker recognition. On a more fundamental level, unlike previous works that have used it only as a 
predictive model, we demonstrate MixAR as a novel pattern classifier. In addition, we also liberate the 
model from the constraint in the original formultaion that the orders for gate function and prediction filter 
are to be the same. In this way, another closely related model called the Mixture Autoregressive (MAR) 
model [11] is realized as a special case of MixAR model, with gate order zero. 

B.1 MixAR: A Nonlinear Time-Series Model 

The linear AR model was described above. A mixture of autoregressive (MixAR) model [10] is 
comprised of a mixture of several linear AR models, all of which are tied together probabilistically. A 
time series following a MixAR( );dm process is described mathematically by the equation: 
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The )(.; gjg � add up to one, and can be interpreted as a probability distribution over the m different 
AR models. Each AR component of the model can be thought of as a local AR structure, and the 
component’s role at a specific point in the time series is dictated by the gate function. 

As in [10] we choose multinomial logits from the neural networks literature for the gating functions. 
This is described as: 
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In the above, for purposes of clarity, we have shown only the constrained original formulation of 
MixAR, with both the gate and prediction orders equal. But our implementation does follow this 
constraint. With a gate order of zero, this degenerates to a mixture autoregressive model (MAR). 

For a probabilistic model to be useful in practice, certain theoretical regularity conditions like the 
existence and uniqueness of the probability measure are desirable, and these are also established for 
MixAR in [10]. This ensures, “for example that we can expect to find consistent parameter estimates, and 
also imply central limit theorems for estimators” [10]. 

A significant role is played by the gates in setting MixAR model apart from conventional linear AR 
models. The relative contributions of each AR component of MixAR are dictated by the gates, which in 
turn are functions of data. Hence, these gates achieve a data-dependent probabilistic mixing of individual 
AR models and act as sources of nonlinearity. However, it is to be noted that even when gate order is zero 
and MixAR degenerates to MAR, the model is still nonlinear. 

B.2 MixAR Model Parameter Estimation 

Given a set of parameters of a statistical model, the likelihood function of some data provides us with 
information about how likely it is that the data could have come from a probability distribution described 
by the model. A higher value for likelihood indicates a better match between the distribution of data and 
the model. Hence it is desirable to obtain a set of parameters for which this likelihood function of data is 
maximized. The popular method of estimating parameters of a statistical model by maximizing likelihood 
of given data is called the maximum likelihood estimation (MLE) [10]. It should be noted that in most 
cases MLE does not directly maximize the likelihood, but instead maximizes the log-likelihood which is 
typically easier to handle. Since the log function increases monotonically on its domain, the two solutions 
are equivalent. 

Other than a few specific cases, MLE for most statistical models, as that for MixAR, may not exist as 
closed-form solutions. For these models, expectation-maximization (EM) algorithm is a popular 
estimation method [13]. This algorithm is an iterative procedure that starts from an prior assumed initial 
set of parameters and repeatedly runs an E-step (expectation) followed by an M-step (maximization). The 
iterations are stopped once convergence of likelihood is reached. Fortunately, EM algorithm produces 
monotonic increase in the likelihood and hence, is guaranteed to converge at least to a local maximum. 

For a MixAR model, the log-likelihood of data is given by: 
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where ),(.; ��n is the Gaussian density function; jt , is the relative contribution of component j to

describe sample tX , and is described by the equation: 
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The E- and M- steps for MixAR MLE consist of the following [10][14]: 

1. Expectation Step: 

Compute k
jt , as in previous eqn. for the k th iteration 

2. Maximization Step: (Re-estimation) 
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Note that the maximization step for re-estimation of gate parameters does not have a closed-form 
expression, and needs to use a Newton-Raphson-like gradient ascent method. With this constraint, this 
algorithm actually comes under a class of more generalized form of EM called the generalized-EM 
(GEM).

B.3 Some Implementation Issues 

Nonlinear techniques are notoriously sensitive to initial conditions and convergence problems. Below 
we discuss several issues that have been investigated to improve the robustness of this technology. 

B.3.1 EM Training: Initialization 

To initialize the EM iterations, we need to initialize the MixAR parameters with reasonable values, 
otherwise the algorithm could converge to a very low local maximum. For this, we split the first window 



of data into m  sub-windows, and use the LP coefficients, mean and the prediction variance from each 
sub-window to initialize one component. Also, the gate parameters are all assigned equal weights by 
assigning a value of zero. 

B.3.2 EM Training: Accumulating Statistics 

 The basic implementation of the MixAR EM described above can lead to excessively large 
memory requirements. This is because each input sample of the signal is associated with an internal state 
vector k

jt , . When training with speech signals that could often be several minutes long, this becomes 
impractical. To circumvent this obstacle, data is split into smaller sized windows (typically a few 
seconds), the required statistics are computed for each window, and then the statistics are accumulated 
over all the windows. Except for marginal differences, the models trained this way were identical with 
that on the full data for all the data files we tested this on. Hence, we used this windowed method for 
performing EM. 

B.3.3 EM Training: Highly Unlikely Components 

With some initial conditions, it is possible that during EM training one or more components of the 
MixAR model can have very low likelihood that they practically play no role in modeling data. 
Effectively this means that only a fewer number of mixtures is used, and the rest are degenerate. To solve 
this issue we investigated the following method: 

Check for the log-likelihood of data for each component separately. If for some component this falls 
below a threshold, reinitialize this component by perturbing the parameters of the component with the 
highest likelihood, and assigning half its likelihood to both the components. Repeat this for all the 
components whose likelihood is lesser than the threshold. Re-run iterations with these new initial 
parameters, until all components have likelihoods greater than the threshold. 

One problem with this is that after every such reinitialization the algorithm might take several more 
iterations to converge, and this problem is compounded by the possibility of more than one 
reinitialization.

B.3.4 Testing: Scoring 

For all our experiments, we first use the simplest possible scoring method – comparison of log 
likelihoods (LL) of data given model. For fixed data, we assign it to the class whose MixAR has the 
largest LL. 

While this LL scoring method is simple, it is sometimes desirable to use some form of normalization 
to take into account of the varying degrees to which MixAR models fit data from different classes. We are 
currently working on developing more robust scoring methods. 

B.4 MixAR as a Pattern Classifier:  Example 2-way Classification 

To demonstrate the potential of MixAR modeling in pattern classification, we constructed a simple 
example. A 2-class problem was set up by synthesizing two threshold autoregressive (TAR) signals [15]  
to act as both train and test data. 
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We can see that the estimated values are close to the actual ones and this also serves as a sanity check 
to our implementation. Even the apparent relatively large differences in the standard deviation between 
the actual and estimated are only due to amplitude normalization. 

Next, with the estimated MixAR models, the log-likelihood score for all the four combinations of 
models and test signals were evaluated and are shown in Table 3. 

From this table it is clear that MixAR modeling can be used to separate signals from these two 
different models and hence demonstrates its potential application in pattern classification. 

B.5 MixAR Modeling for Speaker Recognition 

A statistical model used on a any novel application would require the model to undergo some 
modifications and tuning to best suit the task at hand. Hence we considered it prudent to try using MixAR 
modeling in a very simple speaker recognition task first. To this end, we start experimentation with a 
sustained-phone database. 

B.5.1 On Sustained-Phone Database 

The sustained phone database recorded 
in our lab consists of 7 speakers uttering 8 
phones 4 seconds long each. A speaker 
database was extracted from this by 
combining 2.9 seconds near the beginning 
of all the phones for training and the next 
2.9 seconds for testing, for each speaker. 

Table 3 – Log-likelihood scores for the 2-class problem 

Test Signal from 

Model I Model II 

Param. I 2.33 -34.29 

Param. II -10.88 1.5 



The next step was to check for convergence of the EM algorithm with number of iterations. This is 
achieved by a plot of the log-likelihood of data with the MixAR model trained after the end of each 
iteration and iteration number. The plot for one speaker for different values of parameter �  is shown in 
Figure 2. 

From this it can be deduced that a mid-range value of 0.5
�  shows best convergence performance 
and at this value, MixAR EM algorithm converges around 5 iterations. We chose to run 15 iterations for 
each training. The variations with parameter delta were only marginal, and we fixed a value of 0.001 after 
some experimentation. 

A popular tool used for studying performance of a speaker recognition system is the detection error 
tradeoff (DET) plot [16]. Two kinds of errors that plague speaker recognition systems are false alarms (an 
impostor is detected as the correct speaker) and missed detections (the correct speaker is rejected as an 
impostor). The DET curve is obtained by varying a threshold parameter and computing the number of 
false-alarms and missed detections at each value of the threshold. The closer the curve is towards the 
origin better the recognition performance is. 

The DET curve for the sustained phone database with MixAR(8, 10) is given in Fugyre 3. While there 
is still room for improvement, this preliminary investigation shows that MixAR model holds much 
promise for speaker recognition. 

B.5.2 On Continuous Speech: NIST-2001 database 

Encouraged by our results with MixAR modeling on sustained phone database, we next turned to the 
popular NIST-2001 development database [16]. This contains 60 train speakers and 78 test speakers, and 
several utterances in the test database were recorded in different noisy conditions. Again to keep things as 
simple as possible in our initial stages, we decided to use the training part only for forming both the train 
and test data. For each speaker utterance, the first 65 seconds were used for training and the next 25 
seconds for testing. 

The speaker recognition performance for MixAR(8,10) with our modified NIST-2001 database is 
shown in Figure 4. We used the same set of algorithmic parameters for EM as for the experiment on 
sustained phone database. Here again, though the performance of the current MixAR system cannot 
compete with those from the state of the art systems, it is encouraging enough to warrant further 
investigations into MixAR modeling of speech. 

Figure 3 – DET curve for the sustained-phone 
database for MixAR(8; 10)

Figure 2 – EM convergence results for one speaker from
sustained-phone database for different values of �  for
MixAR(8, 10)



B.6 Future Directions 

While we have the basic implementation of MixAR 
model, there are various improvements that need to be 
done to tune it optimally for speech. The first step 
along these lines is to experiment more thoroughly 
with the algorithmic parameters of MixAR EM for 
ensuring better and faster convergence. One model 
parameter in particular that we would like to 
experiment with is the gate order. It would be 
interesting to observe how the performance varies with 
increasing gate orders, starting from zero (this 
corresponds to a MAR model). 

Secondly, a better algorithm needs to be developed 
for dealing with components that show very low 
likelihoods during EM procedure. Moreover, 
investigations with different initialization strategies are needed to be done to check the sensitivity of the 
MixAR EM algorithm on speech to initial conditions. 

On the testing side, more robust scoring methods must be researched upon. In addition, the effects of 
silence frames on both EM training and also testing have to be studied and appropriate modifications 
made to minimize them. Finally, the resilience to noise on the speaker recognition performance needs to 
be studied. 

Our experience so far with MixAR suggests that after the current major concerns are addressed, 
MixAR can serve as a noise-robust speech model very useful in speaker recognition applications. 

C. Linear Dynamic Models for Speech Recognition 

Linear Dynamic Model (LDM) is a recently emerged and promising technique for speech recognition. 
The fundamental idea of an LDM is to describe a linear dynamic system as underlying states and 
observables, with an observation equation to link the internal states to the observables, and a state 
equation to capture the time-evolution of the states. Suppose ty  is p-dimension observation vector and 

tx  is q-dimension internal state vector [18][19], the LDM equations are specified as follows: 
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In these equations, H and F are linear transformation matrices; t�  and t!  are uncorrelated white 

Gaussian noise to drive the linear stochastic system; sequence of observation ty  and sequence of 

underlying states tx  are finite dimensional and following multivariate Gaussian distribution for every 
specific time t. The first equation maps the output observation to the internal states. The second equation 
is the autogressive state process which describes how state evolves from one time-frame to the next. 

Figure 4 – DET curve for speaker recognition for 
modified NIST 2001 database with MixAR(8; 10)



In comparison to the Hidden Markov Model, in which Gaussian mixtures model the output 
distribution and spatial correlations present in speech parameters are frequently ignored through the use of 
diagonal covariance matrices, LDMs incorporates the dynamic evolution of hidden states for a segment or 
phoneme. On a fundamental level, we first demonstrate LDMs as a novel pattern classifier for speech 
recognition. After that, our sustained-phone database was chosen to run phonetic speech recognition 
experiments on, for which we got promising results. In the sustained-phone speech recognition 
experiments, LDMs shows good performance on phoneme classification especially for fricatives. As we 
increased the training dataset, we noticed significant performance improvements as shown by the 
confusion matrix. Our experience until now with LDMs suggest that we could expect LDMs to be an 
acoustic model competitive with the current state of the art HMM systems. 

C.1 State Inference 

The Kalman filter and Rauch-Tung-Striebel (RTS) smoother can be used to infer underlying system 

states given an N-length observation sequence ty  and model parameters of a LDM. Filtering provides 
an estimate of the state distribution at time t given all the observation up to and including that time, and 
smoothing gives a corresponding estimate of the underlying state conditioned on the entire observation 
[19][21][22]. All the necessary recursions are summarized below. 
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For the smoothing part, we are using the fixed interval RTS smoother to compute the required 
statistics once all data has been observed. RTS smoother adds a backward pass that follows the standard 
Kalman filter forward recursion. In addition, in both the forward and the backward pass, we need some 
additional recursions for the computation of the cross-covariance [18][23]. All the necessary recursions 
are summarized below.  
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Results are summarized in Figures 5 and 6. 



C.2 Parameter Estimation 

For a specific LDM, the hidden nature of the state makes the parameter estimation complicated. The 
LDM training procedure is unsupervised learning process so that the model needs to describe the 
unconditional probability density of the observations. In 1982 Shumway & Stoffer provides the solution 
for transformation matrix H and Digalakis, Rohlicek & Ostendorf give the estimate solution for all the 
LDM parameters [19][26]. Assuming that there are no constrains on the structure of the transformation 
matrices, the parameter estimation is as follows: 
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C.3 Implementation Issues 

Below we describe issues we are facing with the EM convergence and robustness. 

C.3.1 Expectation-Maximization (EM) 

During an LDM training procedure, the expectation-maximization (EM) algorithm is used for finding 
the maximum likelihood estimates of parameters for a specific word or phone, where the model depends 
on unobserved latent variables [24]. EM alternates between performing an expectation (E) step, which 
computes an expectation of the likelihood by including the latent variables as if they were observed, and 
maximization (M) step, which computes the maximum likelihood estimates of the parameters by 
maximizing the expected likelihood found on the E step. The parameters found on the M step are then 
used to begin another E step, and the process is repeated [19][25]. 

Figure 5 – State inference Figure 6 – State inference with RTS smoother 



Digalakis et al. (1992) provides the EM algorithm and how it can be used in speech recognition [18]. 
The E step algorithm consists of computing the conditional expectations of the complete-data sufficient 
statistics for standard ML parameter estimation. Therefore, the E step involves computing the 
expectations conditioned on observation and model parameters. The RTS smoother as described before 

can be used to compute the complete-data estimates of the state statistics NtX | , Nt|� , and Ntt |1, �� . EM for 

LDMs then consists of evaluating the ML parameter estimates replacing tx ,
T

tt xx , and
T

tt xx 1� with their 
expectations [19][27]. 
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C.3.2 EM Convergence 

In order to apply LDM as an acoustic model for speech classification, first we need to train LDM 
model for each phone or word. The EM training process is one of the most important procedures. 
Theoretically, the EM algorithm is supposed to converge as with additional iterations. The LDM model 
parameters can be regarded as statistically close enough to the real values once the EM recursion 
converges.

Our first LDM prototype is a synthetic prototype of 2-dimensional observation and 4-dimensional 
internal state built under Matlab. In the convergence test, we keep increasing the times of EM recursions 
and calculate the likelihood value of trained model after each recursion. We found that the EM likelihood 
curve increases quickly and will stabilize. 

However, in real life the EM trained model parameters do not always converge. This is acceptable as 
long as the EM training converges to a point sufficiently close. We explored different dimensions of the 
internal state from 1 to 10 to optimize the dimension. For this specific model, 7-dimensional state 
performs best and has good stability as we can see from Figures 7 and 8. 

Figure 7 – EM log-likelihood evolution. 
Figure 8 – EM evolution as a function of the 
dimension of the internal state. 



C.3.3 Towards Improving Robustness 

Through the course of the project, we have investigated quite a few ways to improve the robustness of 
the EM training process. One major problem is that matrix computation result might lead to a singular 
matrix after several matrix inversion steps due to computational issues. The EM likelihood curve then 
goes negative and is nolonger stable. In this case, we check and add a small diagonal matrix before matrix 
inversing and the “singular matrix” problem is solved. 

Another problem is that linear transforming matrix F might get too big and negatively impacts LDM 
system stability as we increase the number of EM recursions. Such behavior may not be apparent over 
small numbers of frames, but it becomes especially important in the situation where the state is not reset 
between models. Here singular value decomposition (SVD) is introduced to constrain |F| < 1 which 
prohibit the exponential growth of LDM state evolution [19]. 

After this modification, our LDM training was quite robust and we were able to train models from any 
of our training data. 

C.4 Two-class Synthetic Signal Classification 

In order to gain insight into the effectiveness of LDM for pattern classification and speech recognition, 
we first explored a 2-class synthetic signal classification experiment. In this pilot experiment, we 
constructed 2 LDM models with a 1-dimensional observation and a 1-dimensional internal state. The 
parameters of Model 1 are F = [0.3], H = [0.7], C = [0.07], D = [0.06], v = [0], w = [0], pi = [5], lambda = 
[0.2]; parameters of Model 2 are F = [0.7], H = [0.3], C = [0.03], D = [0.02], v = [0], w = [0], pi = [7], 
lambda = [0.1]. We created observation vectors from these two models and ran 50 EM iterations to train 
the models. In the end we tested using the same observation vectors to see if LDM can classify these two 
signals. Though it appears to be a simple task, it might be one of the best ways to evaluate LDM and the 
implementation itself is a challenging task. 

Table 4 shows the combinations of log-likelihood scores of two test signals and two LDM models. We 
can see from Figure 9 that the confusion matrix is diagonal which proves good performance. After these 
experiments, we tried a 2-dimensional observation and 4-dimensional hidden state model and got very 
similar result. It is clear that LDM modeling can be used to separate signals from these two different 
models and we found that LDM has a great potential for efficiency. 

Table 4 – Log-likelihood scores for the 2-class 
problem 

Test Signal from 

Model 1 Model 2 

Param. 1 -0.2493 -1.3965 

Param. 2 -6.3240 0.3499 
Figure 9 – 2-class confusion matrix 



C.5 Sustained 8-phone Classification 

Real speech signals differ with synthetic signals and usually additional work will be needed when we 
apply pattern recognition models to real speech. Following the synthetic signal classification experiments, 
we were studied LDM using our sustained phone database. The sustained phone database is composed of 
7 speakers (4 male and 3 female) with eight phones recorded for each speaker. Each speaker produced 
sustained sounds, which is 4 seconds long for three vowels (/aa/, /ae/, /eh/), two nasals (/m/, /n/) and three 
fricatives (/f/, /sh/, /z/) at a sampling rate of 16,000 Hz. Standard 13-MFCC features were extracted and 
used for both training and testing. 

Our first experiment was to train LDM phone models using speaker [sap] and use another speaker 
[mc] to test. We specified LDM models as 20-dimensional internal state for both training and testing. For 
this experiment, three fricatives (/f/, /sh/, /z/) were recognized but three vowels (/aa/, /ae/, /eh/) and two 
nasals (/m/, /n/) were not. The recognition accuracy was 3/8 or 37.5%. It is reasonable because we only 
trained LDM models using one utterance. 

Next, we increased the training dataset into 5 speakers [cm], [if], [mp], [sap], [sp] and used another 
speaker [mc] to test. After adding 4 speakers to the trained LDM models, we observed a performance 
enhancement. Three fricatives (/f/, /sh/, /z/) were again recognized. For vowels, it succeeded in 
classifying /aa/. /ae/ was confused with /m/ and /n/ but the likelihood scores were close. /eh/ was confused 
with /ae/ but the likelihood values were fairly close. /m/ was confused with /n/ but the likelihood values 
were also close. The recognition accuracy was 4/8 or 50%. We could expect better performance if we 
increased the size of the training dataset. 

Finally, we trained phone models using 5 speakers [cm], [if], [mp], [sap], [sp] and chose one of the 
speakers [sap] to test. In this preliminary experiment, the test phones were contained in the training 
database, so we expected very good performance. The confusion matrix is shown in Figure 10. The 
accuracy is summarized in Table 5. The preliminary experiments are promising, and we are now turning 
our attention to larger, more realistic training databases. 

 Table 5 – Results for the 8-class problem 

Training Testing Correction 
Rate

speaker [sap] speaker
[mc] 37.5% 

speakers [sap], 
[cm], [if], [mp], [sp] 

speaker
[mc] 50.0% 

speakers [sap], 
[cm], [if], [mp], [sp] 

speaker
[sap] 87.5% 

Figure 10 – 8-phone confusion matrix. 



Our pilot experiments have demonstrated that LDM can be a novel pattern classifier and has very good 
potential for speech recognition. Until now, we only ran experiments on a sustained phone database. In 
order to investigate LDM for large vocabulary continuous speech recognition and speaker recognition, we 
will run experiments on corpora like the NIST speaker recognition corpus that we have been using in 
previous experiments. 
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