
09/01/2000 — 12/31/06: RESEARCH AND EDUCATIONAL ACTIVITIES 

The overall goal of this ITR was to create a strong synergy between speech recognition (ASR) and natural 
language processing (NLP). At the time this project began, integration of ASR and NLP was in its 
infancy, particularly for conversational speech applications. Over the duration of this project, two 
significant things happened. First, through the parallel efforts of DoD-funded research, community-wide 
focus on converstaional speech was achieved. Progress was impressive as error rates on tasks such as 
Switchboard and Call Home English decreased from 50% to 10%. ASR technology was now producing 
transcripts that were useful to NLP systems, and could support information retrieval applications 
involving important quantities such as named entities. 

Second, NLP research began to focus on the problem of parsing speech recognition output, which lacks 
punctuation and formatting that was previously considered crucial to high performance parsing. This 
latter issue was the main focus of this ITR, and to some extent served as a beacon for the community. We 
produced resources that were extremely valuable, such as the extensions to the Penn Treebank that were 
released in 2003 (reconciliation of the ISIP Switchboard segmentations and transcriptions with the Penn 
Treebank segmentations and transcriptions). We introduced the mainstream community to advanced 
statistical modeling techniques such as Support Vector Machines and enhanced these for NLP 
applications. 

Further, in line with the primary goal of the ITR program, this project created close collaborations 
between groups who did not previously work together. The PIs collaborated on a number of new 
initiatives as offshoots of this project, including applications in parsing, information retrieval, and 
homeland security. A subset of the PIs participated in conversational speech evaluations and workshops 
(e.g., DARPA EARS). Hence, we can conclude that this project created new synergies and new research 
directions that will continue beyond the timeframe of this project. 

In this final report, we briefly describe some of the significant findings of our research below. 

A. Laboratory for Linguistic Information Processing, Brown University 

Learning general functional dependencies, i.e. functions between arbitrary input and output spaces, is one 
of the main goals in supervised machine learning. Recent progress has to a large extent focused on 
designing flexible and powerful input representations, for instance by using kernel-based methods such as 
Support Vector Machines. We have addressed the complementary issue of problems involving complex 
outputs such as multiple dependent output variables and structured output spaces. In the context of this 
project we have mainly dealt with the problem of label sequence learning, a class of problems where 
dependencies between labels take the form of nearest neighbor dependencies along a chain or sequence of 
labels. The latter is a natural generalization of categorization or multiclass-classification that has many 
applications in the context of natural language processing and information extraction. Special cases 
include part-of-speech tagging, named entity recognition, and speech-accent prediction. More 
specifically, we have developed and empirically investigated several extensions of state-of-the-art 
categorization algorithms such as AdaBoost, Support Vector Machines, and Gaussian Process 
classification. We have designed and implemented several scalable learning algorithms that combine 
standard optimization techniques employed in the context of the above mentioned methods with dynamic 
programming techniques that account for the nearest neighbor dependencies. Experimental evaluations on 
a wide variety of tasks have shown the competitiveness of these methods compared to existing techniques 
like Hidden Markov Models and Conditional Random Fields.  

A second line of research conducted in the context of the present ITR has dealt with ways to 
systematically exploit class hierarchies and taxonomies. The main question we have investigated is 



whether or not a priori knowledge about the relationships between classes helps in improving 
classification accuracy, in particular in cases with many classes and few training examples. This is highly 
relevant for applications like word sense disambiguation and text categorization, where the number of 
classes can easily be in the tens of thousands. To that extend we have focused on a hierarchical version of 
the well-known perceptron learning algorithm as well as an extension of multiclass Support Vector 
Machines. We have shown that this approach can be effective in situations with sparse training data. 

B. Center for Language and Speech Processing, Johns Hopkins University 

The Structured Language Model (SLM) aims at making a prediction of the next word in a given word 
string by making a syntactical analysis of the preceding words. However, it faces the data sparseness 
problem because of the large dimensionality and diversity of the information available in the syntactic 
parses. A neural network model is better suited to tackle the data sparseness problem and its use has been 
shown to give significant improvements in perplexity and word error rate over the baseline SLM (Emami 
et al, 2003). 

In this work we have investigated a new method of training the neural net based SLM. Our model makes 
use of a neural network for that component of the SLM that is responsible for predicting the next work 
given the previous words and their partial syntactic structure.  We have investigated both a mismatched 
and a matched training scenario.  In matched training, the neural network is trained on partial parses 
similar to those that are likely to be encountered during evaluation.  On the other hand in the mismatched 
scenario, faster training time is achieved but at the cost of mismatch between training and evaluation and 
hence, possible degradation in performance. 

The Structured Language Model works by assigning a probability P(W,T) to every sentence W and every 
possible binary parse T of W. The joint probability P(W,T) of a word sequence W and a complete parse T 
is broken into: 
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where  1 1k kW T− −   is the word-parse (k-1)-prefix, kt  is the tag assigned to kw  by the TAGGER, 
1kN −  is the number of operations the CONSTRUCTOR executes at sentence position k before 

passing control to the PREDICTOR, and 
k
ip  denotes the i-th CONSTRUCTOR operation carried 

out at position k in the word string. 

Subsequently, the language model probability assignment for the word at position k+1 in the 
input sentence is made using: 
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which ensures a proper probability normalization over strings 
*W  where kS  is the set of all 

parses built and retained by the model at the current stage k. 



Neural networks are very suitable for modeling conditional discrete distribution with large 
vocabularies. These models work by first assigning a continuous feature vector with every token 
in the vocabulary, and then using a standard multi-layered neural net to get the conditional 
distribution at the output, given the input feature vectors.  Training is achieved by searching for 
parameters Θ  of the neural network and the values of feature vectors that maximize the 
penalized log-likelihood of the training corpus: 
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np y x x x −⋅ ⋅ ⋅ Θ  is the probability of word 

ty  (network output at time t), N is the 
training data size and R(Θ ) is a regularization term, L-2 norm squared of the parameters in our 
case. 

We have used a neural net to model the SCORER component of the SLM. By the SCORER we 

refer to the model 1( | )k k kP w W T+ . The neural net SCORER's parameters can be obtained by 
training it on the events extracted from the gold standard (usually one best) parses obtained from 
an external source (humans or an automatic parser).  However, there would be a mismatch 
during evaluation since the partial parses during that phase are not provided and have to be 
hypothesized by the SLM itself. We have called the SCORER trained in this manner the 
mismatched SCORER. 

On the other hand, one can train the model on partial parses hypothesized by the baseline SLM, 
thus maximizing the proper log-likelihood function. We have called this procedure the matched 
training of the SCORER. 

Experimental results have shown considerable improvement in both perplexity and WER when 
using a neural net based SLM, specially in the case of matched SCORER training. On the UPenn 
section of the WSJ corpus, perplexity reductions of 12% and 19% over the baseline SLM (with a 
perplexity of 132) have been observed when using the mismatched and matched neural net 
models respectively. 

For the WER experiments, the neural net bases models were used to re-rank an N-best list output 
by a speech recognizer on the WSJ DARPA'93 HUB1 test set (with a 1-best WER of 13.7%). 
The mismatched and matched neural net models reduced the SLM baseline WER of 12.6% to 
12.0% and 11.8% (for relative improvements of 4.8% and 6.3%) respectively. 

In summary, neural network models showed to be capable of taking advantage of the richer probabilistic 
dependencies extracted through syntactic analysis. In our case the use of a neural net for the SCORER 
component of the Structured Language Model resulted in considerable improvements in both perplexity 
and Word Error Rate (WER) with the best results achieved when using a training procedure matched with 
the evaluation. 



C. Signal, Speech, and Language Interpretation Lab, University of Washington 

Prosody can be thought of as the "punctuation" in spoken language, particularly the indicators of phrasing 
and emphasis in speech.  Most theories of prosody have a symbolic (phonological) representation for 
these events, but a relatively flat structure. In English, for example, two levels of prosodic phrases are 
usually distinguished: intermediate (minor) and intonational (major) phrases [Beckman & Pierrehumbert, 
1986].  While there is evidence that both phrase-level emphasis (or, prominence) of words and prosodic 
phrases (perceived groupings of words) provide information for syntactic disambiguation [Price et al., 
1991], the most important of these cues seems to be the prosodic phrases or the boundary events marking 
them. While prior work has looked at the use of prosody in automatic parsing of isolated sentences, a key 
component of our work involved sentence detection as well, since our goal is to handle continuous 
conversational speech. Hence, the focus of our work has been on automatically recognizing sentence 
boundaries and sentence-internal prosodic phrase structure and investigating methods for integrating that 
structure in parsing. 

To support these efforts, we also worked on analysis of acoustic cues to prosodic structure. The most 
important (and best understood) acoustic correlates of prosody are continuous-valued, including 
fundamental frequency (F0), energy, and duration cues.  Particularly at phrase boundaries, cues include 
significant falls or rises in fundamental frequency accompanied by word-final duration lengthening, 
energy drops, and optionally a silent pause.  In addition, however, there is evidence of spectral cues to 
prosodic events, so some of our work explored these cues, which also have implications for improving 
speech recognition. 

Our approach to integrating prosody in parsing is to use symbolic boundary events that have categorical 
perceptual differences, including prosodic break labels that build on linguistic notions of intonational 
phrases and hesitation phenomena but also higher level structure.  These events are predicted from a 
combination of the continuous acoustic features, rather than using the acoustic features directly, because 
the intermediate representation simplifies training with high-level (sparse) structures. Just as most 
automatic speech recognition (ASR) systems use a small inventory of phones as an intermediate level 
between words and acoustic feature to have robust word models (especially for unseen words), the small 
set of word boundary events are also useful as a mechanism for generalizing the large number of 
continuous-valued acoustic features to different parse structures. This approach is currently somewhat 
controversial because of the high cost of hand labeling, and to some extent because of its association with 
a particular linguistic theory. However, the specific subset of labels used in this work are relatively theory 
neutral and language independent, and a key contribution of this work is the use of weakly supervised 
learning to reduce the cost of prosodic labeling. 

An alternative approach, as in [Noth et al, 2000], is to assign categorical "prosodic" labels defined in 
terms of syntactic structure and presence of a pause, without reference to human perception, and 
automatically learn the association of other prosodic cues with these labels.  While this approach has been 
very successful in parsing speech from human-computer dialogs, we expect that it will be problematic for 
conversational speech because of the longer utterance and potential confusion between fluent and 
disfluent pauses. 

C.1 Data, Annotation and Development 

The usefulness of speech databases for statistical analysis is substantially increased when the database is 
labeled for a range of linguistic phenomena, providing the opportunity to improve our understanding of 
the factors governing systematic suprasegmental and segmental variation in word forms.  Prosodic labels 
and phonetic alignments are available for some read speech corpora, but only a few limited samples of 
spontaneous conversational speech have been prosodically labeled.  To fill this gap, a subset of the 



Switchboard corpus of spontaneous telephone-quality dialogs was labeled using a simplification of the 
ToBI system for transcribing pitch accents, boundary tones and prosodic constituent structure [Pitrelli 
et al., 1994]. The aim was to cover phenomena that would be most useful for automatic transcription and 
linguistic analysis of conversational speech.  This effort was initiated under another research grant, but 
completed with partial support from this NSF ITR grant. 

The corpus is based on about 4.7 hours of hand-labeled conversational speech (excluding silence and 
noise) from 63 conversations of the Switchboard corpus and 1 conversation from the CallHome corpus. 
The orthographic transcriptions are time-aligned to the waveform using segmentations available from 
Mississippi State University (http://www.cavs.msstate.edu/hse/ies/projects/switchboard/index.html) and a 
large vocabulary speech recognition system developed at the JHU Center for Language and Speech 
Processing for the 1997 Language Engineering Summer Workshop (www.clsp.jhu.edu/ws97) [Byrne et 
al., 1997].  All conversations were analyzed using a high quality pitch tracker [Talkin, 1995] to obtain F0 
contours, then post-processed to eliminate errors due to crosstalk.  The prosody transcription system 
included: i) breaks (0-4), which indicate the depth of the boundary after each word; ii) phrase prominence 
(none, *, *?); and iii) tones, which indicate syllable prominence and tonal boundary markers.  It also 
provides a way to deal with the disfluencies that are common in spontaneous conversational speech (a p 
diacritic associated with the prosodic break), and to indicate labeler uncertainty about a particular 
transcription. The annotation does not include accent tone type, primarily to reduce transcription costs and 
because we hypothesized that the phrase tones would be relevant to dialog act representations which may 
be relevant for question-answering. For further information on the corpus and an initial distributional 
analysis, see [Ostendorf et al. 2001]. 

The prosodically labeled subset of Switchboard overlaps with the subset of that corpus annotated with 
Treebank parses, but there is a mismatch in the orthographic transcriptions because the Treebank parses 
were based on an earlier version of transcripts and the prosodic annotation was based on the higher 
quality corrections done by Prof. Picone's group (ISIP) at Mississippi State.  In addition, we made use of 
the DARPA EARS metadata annotations that overlapped with the Treebank parses, which where again 
based on the higher quality transcriptions. To be able to use all of these resources, we used an alignment 
of words provided by the ISIP team, and mapped the Treebank parse information to the more recent word 
transcriptions, which could then be aligned with the EARS metadata annotations. Differences in 
transcriptions were handled by: dropping the parse information for deletions, transferring it as is for word 
substitutions, and treating it as "missing" information for insertions in the corrected transcripts.  While 
most of the differences between the Treebank and corrected word transcriptions involved simple 
substitutions (or deletions) that had little or no impact on the parse (e.g. "a" vs. "the"), there were some 
cases where the transfer introduced noise into the collection of parses. The most frequent such cases were 
in disfluent regions, where transcribers tend to have more difficulties, including missed word fragments or 
repetitions ("I I" vs. "I I I").  An additional difference between the Treebank parses and the EARS 
metadata annotations is the marking of sentence boundaries.  Since speakers frequently begin sentences 
with conjunctions, the metadata conventions often split up constituents marked as compound sentences in 
Treebank. Because the metadata labelers listened to the speech and the Treebank labelers did not, we 
chose to use the metadata constituents, which in most cases involved simply dropping a top-level (S) 
node, but in some cases involved adding a top-level node called "SUGROUP". 

C.2 Automatic Labeling of Prosodic Structure 

An important part of the effort was development of an automatic prosodic labeling system that would 
provide cues to improve parsing. In addition, the resulting system was inspected to analyze possible 
dependencies between prosodic and parse structures in conversational speech. In the experiments, we 
used decision tree classifiers with different combinations of acoustic, punctuation, parse, and disfluency 
cues. While more sophisticated techniques, such as HMMs and maximum entropy models, have been 



used for related tasks of sentence boundary detection (see [Liu et al., 2005] for a brief survey), we chose 
decision trees because they are easy to inspect for learning about the prosody-syntax relationship and 
because this simplified the weakly supervised learning experiments, which were the focus of our efforts.  

For the prosody/syntax analyses, we designed trees to predict prosodic labels from syntactic structure, as 
well as trees to predict prosodic structure from a combination of syntactic and acoustic cues.  For 
purposes of providing information to a parser, we designed trees to predict prosodic constituents from 
acoustic cues and part-of-speech (POS) tags, but as an intermediate step in designing these trees we also 
used syntactic cues in designing trees as part of the weakly supervised training.  More specifically, a 
small set of labeled data was used to train prosody models based on both text and acoustic cues, which 
were then used in combination to automatically label a large set of data that had not been hand-annotated 
with prosodic structure, and finally new (separate) acoustic-based prosody models were designed from 
this larger data set for use in parsing new data. 

Experiments were conducted on the Switchboard corpus, using the prosodically annotated subset 
described above for initial training and evaluation (independent subsets for each). Then the full 
Switchboard training set was incorporated using various methods for weakly supervised learning, as 
described below. The prosodic constituent labels were merged into 3 classes: major intonational phrase 
boundary (4), hesitation boundary (1p, 2p), and all other fluent word boundaries.  We grouped minor 
intonational phrase boundaries (3) with the default word boundary class, because preliminary experiments 
showed that they were almost never predicted by the decision trees (even with sampled training to 
account for the low frequency) and because they were most often confused with the default word class in 
4-class prediction experiments. The simple 3-class system also has the advantage that it is relatively 
theory neutral and language independent in that essentially all languages have a notion of fluent and 
disfluent segmentation. 

The acoustic cues included normalized F0, energy and duration cues based on those used in [Kim et al., 
2004] and similar to those used in other metadata detection studies [Shriberg et al., 2000].  Text-based 
cues -- including punctuation, parse structure and disfluency markers -- were taken from the annotations 
available from the Linguistic Data Consortium, aligned to the word transcriptions as described above. The 
parse features included right-to-left and left-to-right relative depth, part-of-speech, label of the left and 
right syntactic constituents, and parenthetical markers.  In addition, disfluency interruption points and 
flags for filled pauses and sentence-initial conjunctions were used as features.  Punctuation as inserted by 
a human transcriber (including incomplete sentences) and estimated speaker turn boundaries (defined 
simply as a word boundary with a silence of length greater than 4s) were also used. 

The baseline system trained on hand-labeled data has error rates of 9.6% when all available cues are used 
(both syntax and prosody) and 16.7% when just acoustic and POS cues are used.  This can be compared 
to an error rate of 30% when the default class is assigned to all word boundaries.  We considered three 
different weakly supervised training techniques for adding data without prosodic labels (but with hand-
labeled syntactic structure) into the training set: EM, co-training, and self-training.  The co-training 
algorithm used classifiers designed on either acoustic or syntactic cues, and it differed slightly from the 
standard method in that we used an information-theoretic distance on the tree posteriors to determine 
when to omit samples with conflicting classifier decisions.  The self-training algorithm used bagging with 
uniform class sampling to deal with data skew [Liu et al., 2004]. In all cases, only 1-2 iterations were 
needed.  Both the co-training and EM approaches gave improved performance over the baseline, with the 



EM algorithm giving the best results of 14.2% error for the acoustic-only trees, which corresponds to a 
15% reduction in error rate over supervised training. The self-training strategy actually hurt performance.1 

From analysis of the resulting trees, we find that punctuation and repair points are correlated with 
prosodic breaks and hesitations, as expected.  Silence duration is the most useful individual acoustic 
feature, but alone it is not a reliable predictor of prosodic phrases, since there are many prosodic phrases 
that do not occur at silences and because silences are frequently associated with hesitations. Aside from 
syntactic structure, the most important text features for predicting prosodic constituents are punctuation, 
disfluency edit point markers, filler words (sentence-initial coordinating conjunctions, discourse markers, 
filled pauses), and turn boundaries. Some important syntactic features include depth of subtrees on the left 
and right sides of the boundary, previous and next syntactic constituent tag, length of closing phrase, and 
part-of-speech tags. These features were relevant when associated with the target word boundary, but 
frequently also with the next or previous word boundary. Surprisingly, the label of the joining constituent 
is not useful.  This analysis provided input into the parse reranking work described in the next section. 

Due to the success of the weakly supervised training on prosodic phrase boundary detection, we have 
recently started investigating use of the same technique for training models of prosodic prominence. 
Initial results show only a 4% reduction in error rate for the system based on acoustic cues, from 22% to 
21% error.  Despite the high error rate, however, the automatically annotated prominence appears to be 
useful in topic identifications in preliminary experiments associated with a separate NSF project (IIS-
0121396). 

C.3 Prosody and Parsing 

Parsing speech can be useful for a number of tasks, including information extraction and question 
answering from audio transcripts. However, parsing conversational speech presents a different set of 
challenges than parsing text: sentence boundaries are not well-defined, punctuation is absent, and 
presence of disfluencies (edits and restarts) impact the structure of language. Most prior work on parsing 
conversational speech has focused on handling disfluencies [Hindle 1983; Mayfield 1995; Charniak & 
Johnson, 2001], but experiments relied on hand-marked sentence boundaries and made use of punctuation 
as in text-based parsers.  While utterance-level segmentation may be reasonable to assume in current 
human-computer dialog systems, it is not realistically available in recognized conversational speech. 
Hence, our work looked at the problem of parsing text with disfluencies and without punctuation. 

We have investigated three main issues in the use of prosody in parsing: the impact of automatic sentence 
segmentation, the usefulness of interruption points, and the usefulness of automatically detected sub-
sentence prosodic constituent boundaries (described above). In all cases, we use a two-stage architecture 
where metadata (constituent boundaries) are first detected with a combination of prosodic and simple text 
features, and then these symbolic events (or their posterior probabilities) are used in parsing. Our 
approach focuses on categorical boundary events, which are predicted from a combination of acoustic 
features, rather than using the acoustic features directly. As argued earlier, the intermediate representation 
simplifies training with sparse structures.  Key research issues include whether the metadata should be 
treated as "words" or as features on words, whether edits should be represented with an independent 
component, and how to represent uncertainty of the metadata classifiers.  Our work has begun 
investigating all of these questions, but some remain unanswered and are being pursued in ongoing work. 

                                                      

1 The results reported here are in some cases worse than those reported in an earlier progress report, because they are based on a 
larger data set.  Due to a data processing bug, several files were omitted from earlier studies. In addition, because of the larger 
amount of data used and the richer feature sets, the trees are much larger than those described in prior reports. 



The data used in this work is the Treebank portion of the Switchboard corpus of conversational telephone 
speech, which includes sentence-like unit boundaries (SUs) as well as the reparandum and interruption 
point of disfluencies.  The data consists of 816 hand-transcribed conversation sides (566K words), of 
which we reserve 128 conversation sides (61K words) for evaluation testing according to the 1993 NIST 
evaluation choices.  In all cases, training was based on hand-labeled SUs.  Parses were evaluated using 
SU boundaries rather than the standard punctuation-based units that the Treebank is based on, so the gold 
standard parses and parse evaluation metric were modified to incorporate the SUs. 

The most exhaustive series of experiments looked at the impact of automatic segmentation on parsing.  
For this particular effort, we chose to work with the complete word sequence, i.e. including all of the 
words within edit regions, to allow experimentation with multiple parsers. In initial work [Kahn et al., 
2004], we used the structured language model (SLM) as a parser with a simple pause-based segmentation 
and automatically detected SUs (69% vs. 35% slot error rate, respectively), showing a significant 
improvement in parsing performance when using the automatic SUs.  We then confirmed the findings 
with results on the same segmentation alternatives but using two state-of-the-art statistical parsers trained 
on conversational speech: the Bikel [Bikel, 2004] 2 and Charniak [Charniak & Johnson, 2001] 3 parsers.  
Figure 1 shows the relative performance of each parser for the two different segmentations, comparing to 
the oracle performance for each using hand-annotated SUs.  In order to have a single number for 
performance, we use the F-measure calculated from bracket precision and recall.  (Trends with separate 
precision and recall measures and with bracket crossing statistics follow the same patterns.)  For all three 
parsers, there is a significant gain in performance due to using the explicit SU detection algorithm, with 
more than half of the performance loss associated with the pause-based segmenter recovered when 
moving to the more sophisticated SU detection system. As SU detection improves, we would expect 
further performance gains.  Also important is the observation that the impact of increased SU error is not 
lessened by using a better parser: the best oracle results were achieved with the Bikel parser, but it was 
much more sensitive to SU errors than the 
SLM. 

In trying to understand the role of IPs in 
parsing, we ran several experiments, 
including some with and without human-
annotated punctuation.  Without 
punctuation, there was a small increase in 
parsing performance of the SLM using IPs 
When the SUs are automatically detected. 
We were not able to confirm these gains 
with other parsers; however, recent work in 
[Johnson, Charniak & Lease, 2004] shows a 
benefit to edit detection from using IPs 
which presumably would lead to improved 
parsing in their two-stage processing 
strategy [Johnson & Charniak, 2004].  
Including punctuation and IPs in 
experiments with the SLM showed an 

                                                      

2 http://www.cis.upenn.edu/~dbikel/download.html (Version 0.9.9). For this work, we trained the Bikel 
parser on the Switchboard Treebank parses with the Collins settings. 

3 ftp://ftp.cs.brown.edu/pub/nlparser/ (August 2004) 

 
Figure 1. Relative performance of different parsers for the RT03 
MDE SU detection system and a simple pause-based system, in 
each case comparing the F-measure to that obtained with oracle 
SUs. 



interesting trade-off of bracket precision and 
recall using the two different cues, as illustrated 
in Figure 2.  We saw the improved precision 
associated with using both punctuation and IPs as 
possible evidence that sub-sentence prosodic 
constituents might be useful. 

In all of the above work, metadata is 
incorporated as "word" tokens, similar to the 
standard mechanism for parsers to incorporate 
punctuation.  For sentence segmentation with a 
reasonably reliable segmenter, this may make 
sense, but certainly for sub-sentence prosodic 
constituents there is the potential for the gains 
associated with adding prosody to be offset by a 
loss from the extra words blocking part of the 
history that might be used in a statistical model 
of word dependence. We conjecture that this may in part explain the negative results obtained in [Gregory 
et al., 2004], since our analyses of the prosody prediction trees provides some evidence that sub-sentence 
prosodic constituents may be useful in parsing. (The direct use of acoustic features may also be 
problematic.) In addition, the use of metadata events as "words" requires a hard decision in the first stage 
of detection, and many results in speech processing suggest that soft decisions (e.g. using class posteriors) 
are more effective.  

To address these problems, we developed an extension to the SLM that uses prosodic constituents as 
hidden conditioning variables, similar to headword conditioning in the SLM.  However, since our 
subsequent work obtained much better baseline performance with other parsers, we decided to explore a 
parse reranking framework [Johnson et al., ms. in prep.] as an alternative method for incorporating 
automatically detected prosodic constituents.  The approach uses a maximum entropy reranking model 
and introduces new features based on counts of syntactic constituent types weighted by the posterior 
probability of different prosodic events.  Experiments with this new approach are in progress, now under 
other funding, and we anticipate having results in early 2005.  This series of experiments will also look at 
the question of whether a separate stage of edit detection benefits parsing compared to simply 
incorporating the edit structure in the parser with the same status as other constituents. 

C.4 PROSODY AND ACOUSTIC MODELING 

Most research on the use of prosody in automatic speech processing has focused on F0, energy and 
duration correlates to prosodic structure. However, there is evidence from long standing acoustic, 
articulatory and perceptual studies of speech suggesting that there are spectral correlates as well.  For that 
reason, we conducted an analysis of our prosodically labeled conversational speech data using acoustic 
parameters and clustering techniques that are standard in speech recognition. We found that prosodic 
factors are associated with acoustic differences that can be learned in standard speech recognition 
systems.  Both prosodic phrase structure and phrasal prominence seem to provide distinguishing cues, 
with some phones being affected much more than others (as one would expect from the linguistics 
literature).  We hypothesized that we would find that constituent onsets were important at all levels 
(syllable, word and prosodic phrase).  Instead, we found that onset is more important for syllables, but 
constituent-final position is more important at higher levels.  Prosodic prominence had a smaller affect 
than phrase structure in terms of increasing likelihood of the training data, but seemed to result in more 
separable models when it did play a role. 

 

Figure 2. Precision-recall trade-offs associated with using 
punctuation, oracle IPs or both in addition to SUs in parsing. 



Finally, we found evidence that segmental cues can help distinguish fluent from disfluent phrase 
boundaries, in that segments associated with these categories are frequently placed in different clusters. 
These differences can be leveraged in a “multiple pronunciation” acoustic model to aid in detecting fluent 
vs. disfluent prosodic boundaries, though additional prosodic cues are necessary to separate these from 
unmarked word boundaries.  A limitation of this work was that it was based on hand-labeled data, and 
therefore did not take advantage of the full training data set needed for designing a state-of-the-art 
recognition system.  However, with our recent developments in prosodic annotation, we will be able to 
assess the usefulness on a much larger corpus in the future. 

D. Institute for Signal and Information Processing, Mississippi State University 

Hidden Markov models (HMMs) with Gaussian emission densities are the prominent modeling technique 
in speech recognition. HMMs suffer from an inability to learn discriminative information and are prone to 
overfitting and overparameterization. Recent work in machine learning has focused on models, such as 
the support vector machine (SVM), that automatically control generalization and parameterization as part 
of the overall optimization process. SVMs, however, require ad hoc (and unreliable) methods to couple it 
to probabilistic speech recognition systems. We have applied a probabilistic Bayesian learning machine 
termed the relevance vector machine (RVM) as the core statistical modeling unit in a speech recognizer. 
The RVM is shown to provide superior performance compared to HMMs and SVMs in terms of both 
accuracy and sparsity on a continuous alphadigit task. 

Computer speech recognition is typically posed as a statistical pattern recognition problem based on 
Bayesian methods in which the acoustic model and language model are treated as separate statistical 
models. The focus of our work has been the acoustic model, which maps sequences of features vectors to 
probabilities that these vectors were produced by a given linguistic unit, such as phone. In most state of 
the art recognition systems, a hidden Markov model (HMM) is used as the acoustic model. The popularity 
of the HMM representation is based on an HMMs ability to simultaneously model the temporal 
progression of speech (speech is usually seen as a “left-to-right” process) and the acoustic variability of 
the speech observations. The temporal variation is modeled via an underlying Markov process while the 
acoustic variability is modeled by an emission distribution at each state in the Markov chain.  

The most commonly used emission distribution is the Gaussian mixture model (GMM). While 
combinations of HMMs and Gaussian mixture models have been extremely successful, there are two 
fundamental limitations of these approaches: (1) the parametric form of the underlying distribution is 
assumed to be Gaussian, (2) the maximum likelihood (ML) approach, which is typically used to estimate 
model parameters, does not explicitly improve the discriminative ability of the model. The ML approach 
maximizes the probability of the correct model while implicitly ignoring the probability of the incorrect 
model. Ideally, a training approach should force the model toward in-class training examples while 
simultaneously driving the model away from out-of-class training examples. Methods such as maximum 
mutual information and minimum classification error have been developed to incorporate discriminative 
training directly into the standard HMM/GMM framework. However, their success has been limited due 
primarily to their considerable computational costs. 

The weaknesses of the HMM/GMM system have led researchers to explore other models, such as hybrid 
connectionist systems, which merge the power of artificial neural networks (ANNs) and HMMs. 
HMM/ANN hybrids have shown promise in terms of performance but have not yet found  widespread use 
due to some serious problems. First, ANNs are prone to overfitting the training data if allowed to blindly 
converge. To avoid overfitting, a cross-validation set is often used to define a stopping point for training. 
This is wasteful of data and resources — a serious consideration in speech where the amount of labeled 
training data is limited. ANNs also typically converge much slower than HMMs. Most importantly, the 



HMM/ANN hybrid systems have not shown the substantial improvements in recognition accuracy over 
HMM/GMM systems that would be necessary to force a paradigm shift. 

The approaches developed in this work draw significantly from the HMM/ANN hybrid systems. 
However, we seek methods which are automatically immune to overfitting without the artificial 
imposition of a cross-validation set as well as methods which can automatically learn the appropriate 
model structure as part of the overall optimization process. One such model that has come to the forefront 
of pattern recognition research is the support vector machine (SVM). The support vector paradigm is 
based upon structural risk minimization (SRM) in which the learning process is posed as one of 
optimizing some risk function. The optimal learning machine is the one whose free parameters are set 
such that the risk is minimized. 

Finding a minimum of the risk function is typically impossible due to the unknown distribution. Instead, 
it has been shown that a relationship exists between the actual risk, which is related to the empirical risk 
(i.e. the training set error which can be measured) and the Vapnik-Chervonenkis (VC) dimension. The VC 
dimension is a measure of the capacity of a learning machine to learn any training set and is typically 
closely related to the complexity of the learning machine’s structure. With this result, we can guarantee 
both a small empirical risk (training error) and good generalization — an ideal situation for a learning 
machine. 

In their most basic form SVMs use the SRM principle to impose an order on the optimization process by 
ranking candidate separating hyperplanes based on the margin they induce. For separable data, the 
optimal linear hyperplane is the one that maximizes the margin. The true power of the SVM, however, 
lies in how it deals with nonlinear class separating surfaces. Providing for a nonlinear decision region is 
accomplished using kernels. The optimization process yields a decision function where the sign of can be 
used to classify examples as either in-class or out-of-class. The decision function is formed from only 
those training vectors that lie on the margin or in overlap regions. In practice, the proportion of the 
training set that becomes support vectors is small, making the classifier sparse. Consequently, the training 
process,  along with the training set, directly optimize the complexity of the learning machine. In contrast, 
ANN systems often make a priori assumptions about the form of the model. 

SVMs have had great success on static classification tasks. However, it is only recently, that these 
techniques have been applied to continuous speech recognition. While the SVMs provide an excellent 
classification paradigm, they suffer from two serious drawbacks that hamper their effectiveness in speech 
recognition. First, while sparse, the size of the SVM models (number of non-zero weights) tends to scale 
linearly with the quantity of training data. For a large speaker independent corpus this effect is 
prohibitive. Second, the SVMs are binary classifiers. In speech recognition this is an important 
disadvantage since there is significant overlap in the feature space which can not be modeled by a yes/no 
decision boundary. Further, the combination of disparate knowledge sources (such as linguistic models, 
pronunciation models, acoustic models, etc.) requires a method for combining the scores produced by 
each model so that alternate hypotheses can be compared. Thus, we require a probabilistic classification 
which reflects the amount of uncertainty in our predictions. 

We have investigated a Bayesian model termed the relevance vector machine (RVM) which is similar in 
form to the SVM but which addresses these two problems. The essence of an RVM is a fully probabilistic 
model with an automatic relevance determination prior over each model parameter. Thus, sparseness in 
the RVM model is explicitly sought in a probabilistic framework. 



D.1 Sparse Bayesian Methods 

Supervised learning in speech recognition implemented via a maximum likelihood approach is the 
dominant approach for finding values of the parameters in our model that best match the training data. 
Our expectation in data modeling is that given sufficient training data, the model would generalize to 
unseen test sets. Two levels of inference must be implemented to accomplish this. First, assuming that a 
particular model is true, we seek to infer the values for the parameters of the model that best fit the data at 
hand. This is exactly the training process used in the ANN hybrids. Second, we must decide which model 
is most appropriate given the data at hand, i.e. model comparison. 

A simple approach to model comparison might dictate that we simply choose the model that fits the data 
best — the maximum likelihood solution. However, a more complex model can always fit the data better. 
Jaynes describes an extreme interpretation of this problem where we would always choose the so-called 
Sure Thing hypothesis, under which exactly the training set and only the training set is possible. Though it 
is the maximum likelihood solution, the Sure Thing hypothesis is intuitively displeasing and is counter to 
our desire for a solution which generalizes. We avoid choosing the Sure Thing hypothesis by expressing 
an a priori preference for simpler solutions using the principle of Occam’s Razor. MacKay and others 
have formalized this preference mechanism through the use of Bayesian methods. These provide a natural 
and quantitative embodiment of Occam’s razor. The first level of inference requires that we find the best-
fit parameters. The second level of inference requires the comparison of competing hypotheses. If we 
assume that the competing hypotheses are a priori equiprobable then the best hypothesis is chosen by 
evaluating the evidence. The evidence is computed by marginalization across the model parameters. 

The evidence provides a natural trade-off between the best-fit likelihood and the Occam factor. This 
concept is closely related to other methods such as the Minimum Description Length and the Bayesian 
Information Criteria where the model is directly penalized by the number of parameters used. A similar 
idea was also incorporated into SVM models, which penalize the models with too large a capacity (VC 
dimension). However, while the SVM models are forced to estimate the penalty via cross-validation 
schemes, Bayesian techniques automatically determine and apply the penalty in a fully probabilistic 
framework. 

Assuming we have no prior knowledge that would cause us to favor a particular prior, we can find the 
optimal value for by evaluating the evidence. If we did have prior knowledge, we would simply repeat the 
inference over using the prior. At some level of the inference, we will arrive at a point where our prior 
knowledge is too weak to apply and then we evaluate the evidence. This extreme application of the 
Bayesian prior as a control parameter is known as the method of automatic relevance determination 
(ARD). It is so named because the prior over the input unit weights in a neural network can ‘shut-off’ 
those input dimensions which are irrelevant to the problem at hand. ARD is at the heart of the relevance 
vector machines that will be described next. 

D.2 Support Vector Machine 

SVM is powerful tool for distinguishing each class with a nonlinear system basis function. The 
fundamental idea of an SVM is to project the input space vectors to a high-dimensional feature space 
using a nonlinear map, which is defined as kernel function [Wan et al., 2003]. The Structural Risk 
Minimization (SRM) principle enables one to implement the SVM, since the SRM defines the boundary 
for training model errors and confidence interval via the VC dimension. The hyperplane will separate the 
class depending on the binary or n-class cases while SVM reduces the empirical risk. The power of SVMs 
lies in their ability to transform data to a higher dimensional space and construct a linear binary classifier 
in the higher dimensional space [Ganapathiraju et al., 2002]. A linear hyperplane in the higher 
dimensional space transforms to a complex nonlinear decision region in the input feature space.  



For improving the efficiency and performance of SVM, the score-space kernel has been investigated for 
computation and performance. Wan [5] has proposed the score-space kernel method that simulates the 
human disriminiation process. In terms of speaker recognition system, humans distinguish identity using 
the intonation, accent, and frequently occuring words. Since the speech utterance for one speaker is highly 
correlated between segments of speech, taking the score of whole utterance as factor will improve the 
system. The following sections briefly explain the score-space approach.  

D.2.1 Generative Kernel Function 

The kernel function is derived from a generative probability model [Jaakkola et al., 1999]. Even though 
discriminative methods are proved to be superior to the generative models for classification problems, 
generative methods are excellent for extracting information from input features. Kernel methods are 
suitable for using discriminative classification with a generative probability model. Suppose, the training 
set is composed of Xi and the corresponding binary targets are Yi. The targets of new training examples 
are obtained from a weighted sum of the training targets.  The estimated targets are consisted of 
estimating of weights and kernel functions. The weights represent the overall importance of the each 
training example Xi, and the kernel function compute the closeness of the pair of datasets. The estimated 
target process is represented by:  
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The kernel function should be derived by a probabilistic method. The probabilistic method measures the 
difference between input sample Xi and test sample X. The training targets can be assumed to have a 
logistic regression distribution, and the targets are estimated given input data X and parameter vector θ. 
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By assigning a distribution for θ like a zero mean Gaussian with a full covariance matrix ∑, the posterior 
distribution for training targets can reduce the complexity of model. The maximum a posteriori (MAP) 
estimate for the parameters θ given a training set of examples is found by maximizing the following 
penalized log likelihood: 
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where the constant c does not depend on θ. The similarity between data Xi and X can be captured by 
taking the gradient space of the model. The gradient of the generative model with respect to a parameter 
describes how that parameter contributes to the process of generating a particular data set. The posterior 
distribution over training targets are finally estimated by  
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Comparing the equation (1) and (4), the kernel function can de replaced by XXXXK T
ii Σ=),( . 

Through these processes the generative properties are involved in kernel functions, and SVM is able to 
exploit the generative and discriminative properties at the same time. 

D.2.2 Score-Space Kernels 



We investigated a more specific kernel function which enables us to classify variable length sequences of 
input vectors in a space of fixed dimension, called the score-space [Wan et al., 2003]. The score-space 
kernel uses any parametric generative model to classify whole sequences. The space to which sequences 
are mapped is called the score-space, so named because it is defined by and derived from the likelihood 
score, p(X|M,θ) of a generative model M. Given a set of k generative models the generic formulation of 
the mapping of a sequence, X={x1, …,xNl }, to the score-space is 
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This equation consists of score-argument )})|(({ kk Xpf θ , which is a function of scores of a set of 

generative model, and score-mapping operator ^
F

Ψ , which maps the scalar score-argument to the score-

space. Any function may be used as a score-argument. We deal with two specific cases that lead to the 
likelihood score-space kernel and the likelihood ratio score-space kernel. By setting the score-argument to 
be the log likelihood of a single generative model, M, parameterized by θ, and choosing the first 
derivative score-operator, we obtain the mapping for the likelihood score space. 
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Each component of the score-space, )(XΨ , corresponds to the derivative of the log likelihood score with 
respect to one of the parameters of the model. This mapping is known as the Fisher mapping. The 
gradient of the log likelihood with respect to a parameter describes how that parameter contributes to the 
process of generating a particular speaker model. For the exponential family of distributions, these 
gradients form sufficient statistics for the models. This gradient space also naturally preserves all the 
structural assumptions that the model encodes about the generation process. When the gradients are small 
then likelihood has reached a local maximum and vice versa.    

Using the first derivative with argument score-operator and the same score-argument the mapping 
becomes 
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The score-space space defined by this mapping is identical to the Fisher mapping with one extra 
dimension which consists of the log likelihood score itself. This mapping has the benefit that the 
performance of a classifier using these mappings will have a minimum test performance that equals the 
original generative model, M. The inclusion of the derivatives as “extra features” should give additional 
information for the classifier to use. 

An alternative score-argument is the ratio of two generative models, M1 and M2, 
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where θ = [θ1 θ2]. The corresponding mapping using the first derivative score-operator is, 
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and using the first derivative with argument score-operator, 
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A likelihood ratio forces the classifier to model the class boundaries more accurately. The discrimination 
information encoded in the likelihood ratio score should also be in its derivatives. 

D.3 Relevance Vector Machine 

The classification problem still needs a better approach than SVM to generalize the model for sparse 
solutions. The use of a probabilistic Bayesian learning enables more sparse and accurate training [Tipping 
et al., 2001]. Some noted disadvantages of the support vector learning methodology are: 

 SVM uses a large number of basis functions because the number of support vectors increases with 
the number of data sets [Burges et al., 1997].  

 SVM does classify the class with a hyperplane, which is binary decision, but it would be better to 
predict the outputs based on the probabilistic methods. The posterior distribution, p(t|x) where t 
= target label of class, of the training data help to classify the unknown inputs [Tipping et al., 
2001]. 

The RVM based on the probabilistic Bayesian approach overcomes the above limitations. The essence of 
an RVM is a fully probabilistic model with an automatic relevance determination prior over each model 
parameter. The sparseness in the RVM model is explicitly sought in a probabilistic model framework. 
The following section explains the framework of the RVM. A new approach to improve the RVM 
algorithm will be explained after framework of RVM section. 

D.3.1 RVM Framework 

The framework of RVM is originally due to Tipping [Tipping et al., 2001]. RVM and SVM share a 
similar framework as described in equation (11) below. The training output y is a linearly weighted sum 
with a basis function, Ф(x). The target function given each input data, {xn, tn}n=1, is expressed by equation 
(12), and Єn denotes the zero-mean Gaussian. In RVM, the estimating target function uses the Bayesian 
approach given the prior distribution over the weights for each hyperparameter. RVM requires the 
likelihood function over targets given weight parameter value, and the target needs to form a distribution 
to lessen the computational complexity. The target function is assumed to be logistic sigmoid function, 
and the distribution over target given weight forms the Bernoulli distribution like equation (13). 
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The solutions for equation (13) can be approximated by Laplace’s method, which was first proposed by 
Mackay. The weight parameters are controlled by the individual hyperparameter to moderate the strength 
of the prior distribution. For fixed values of the hyperparamter of α, the weights indicate the mean value 
of the posterior distribution of the equation (14). Since p(w|t, α)∝ p(t|w)p(w| α), the maximum value of 
weight parameter can be approximate by this relation. 
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By using Laplace’s method, we obtain a quadratic approximation to the posterior distribution. The result 
of Laplace’s method forms a Hessian matrix: 
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where B is a diagonal matrix with variance of the target function, B = diag(β1, β2, …, βN) with βn = 
)}]({1)}[({ nn xyxy σσ − , ),()( nn xxKx =φ , and A = diag(α1, α2, …, αN). The Hessian matrix is then 

negated and inverted to find the covariance and mean of the Gaussian approximation using Cholesky 
decomposition method.  
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The covariance and weight parameter is approximated by the value of a hyperparamter α at each iteration. 
This is the way to train the model to find the covariance and the mean value of the input data. In the next 
section, we discuss how to improve the efficiency of the current RVM algorithm. 

D.3.2 Towards Improving the Efficiency 

Through the course of this project, we have investigated many ways to improve the efficiency of the 
RVM parameter estimation process. Most of these focused on active learning type approaches in which 
subsets of the data were identified and processed, and then the results of the estimates of these subsets 
were merged. Through this process, we were able to increase training set sizes two orders of magnitude to 
hundreds of thousands of vectors. However, this is still not adequate for speech recognition applications, 
where the ability to train on millions of vectors is required. Therefore, we began reexamining the 
computational efficiency of the training process.  

The RVM training procedure attempts to reduce the unnecessary weight parameters in every iteration. 
With the large input data sets, the Cholesky decomposition step needs large amounts of memory and 
computation time to compute the inverse of the Hessian matrix. Tipping and Faul have defined a 
constructive approach where the model begins with only a single parameter specified [Tipping et al., 
2003]. Parameters are then added to the system in a constructive fashion while still satisfying the original 
optimization function.  

Li and Sung proposed the Sequential Bootstrapped SVM method [Li et al., 2005]. This method finds the 
convex hull in the given samples to reduce the size of the support vectors. They assumed the support 



vectors are placed in the convex hull of each sample distributions on linearly separable classes. Since the 
RVM takes much computation to find the local optima with slow convergence, finding a convex hull 
from given sample may boost the convergence rate to find the local optima points. 

One major problem that we faced during RVM training was that it involved a steepest descent 
optimization problem that required the use of Cholesky decomposition. This latter method requires that 
the original matrix be a positive definite matrix (i.e., the determinant of the matrix should be greater than 
zero, or equivalently all the eigenvalues be positive). However, numerical roundoff errors in it’s entries 
can easily cause near-positive semi-definite matrices (i.e., matrices whose determinant though positive is 
very small) to be non-positive definite, and thus causing the training procedure to fail. 

To resolve this issue, we implemented a modified Cholesky algorithm [Schnabel & Eskow, 1990]. This 
works by adding controlled amounts of noise to the matrix to make it positive definite. To minimize the 
effect of this noise on the optimization performance, it should be as small as possible. The modified 
Cholseky algorithm tries to achieve an optimal trade-off between producing a positive-definite matrix and 
perturbing the matrix entries to a minimal extent. It is based on the well-known Gershgorin circle theorem  
from numerical linear algebra that provides bounds on the location of eigenvalues as a function of the off-
diagonal entries of the matrix [Horn & Johnson, 1990]. 

After this modification, our RVM training was quite robust and we were able to train models from any of 
our training data. 

D.4 Experiments on Speech Recognition 

RVMs have had significant success in several classification tasks. These tasks have, however, involved 
relatively small quantities of static data. Speech recognition, on the other hand, involves processing a very 
large amount of temporally evolving signals. In order to gain insight into the effectiveness of RVMs for 
speech recognition, we explored two tasks. We first experimented on the Deterding static vowel 
classification task which is a common benchmark used for new classifiers. Second, we applied the 
techniques described above to a complete small vocabulary recognition task. Comparison with SVM 
models are given below. For each task, the RVMs outperformed the SVM models both in terms of model 
sparsity and error rate. 

In our first pilot experiment, we applied SVMs and RVMs to a publicly available vowel classification 
task, Deterding Vowels. This was a good data set to evaluate the efficacy of static classifiers on speech 
classification data since it has been used as a standard benchmark for several nonlinear classifiers for 
several years. In this evaluation, the speech data was collected at a 10 kHz sampling rate and low pass 
filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters, giving a 10 dimensional 
input space. A window duration of 50 msec was used for generating the features. The training set 
consisted of 528 frames from eight speakers and the test set consisted of 462 frames from a different set 
of seven speakers. The speech data consisted of 11 vowels uttered by each speaker in a h*d context. 
Though it appears to be a simple task, the small training set and significant confusion in the vowel data 
make it a very challenging task. 

Table 1 shows the results for a range of nonlinear classification schemes on the Deterding vowel data. 
From the table, the SVM and RVM are both superior to nearly all other techniques. The RVM achieves 
performance rivaling the best performance reported on this data (30% error rate) while exceeding the 
error performance of SVMs and the best neural network classifier. Importantly, the RVM classifiers 
achieve superior performance to the SVM classifiers while utilizing nearly an order of magnitude fewer 
parameters. While we do not expect the superior error performance to be typical (on pure classification 



tasks) we do expect the superior sparseness to be typical. This sparseness property is particularly 
important when attempting to build systems which are practical to train and test. 

A hybrid recognition architecture was also developed that is a parallel of our SVM hybrid. Each phone-
level classifier (either an SVM or RVM dichotomous classifier) is trained as a one-vs-all classifier. The 
classifiers are used to predict the probability of an acoustic segment. For the SVM hybrid, a sigmoid 
posterior fit is used to map the SVM distance to a probability. The RVM output is naturally probabilistic 
so no link function is needed. 

The HMM system is used to generate alignments at the phone level. Each phone instance is treated as one 
segment. Since each segment could span a variable duration, we divide the segment into three regions in a 
set ratio and construct a composite vector from the mean vectors of the three regions. In our experiments 
empirical evidence showed that a 3-4-3 proportion generally gave optimal performance. The classifiers in 
our hybrid systems operate on composite vectors. For decoding, the segmentation information is obtained 
from a baseline HMM system —a cross-word triphone system with 8 Gaussian mixtures per state. 
Composite vectors are generated for each of the segments and posterior probabilities are hypothesized 
that are used to find the best word sequence using the Viterbi decoder. The HMM system also outputs a 
set of N-best hypotheses. The posterior probabilities for each hypothesis are determined and the most 
likely entry of the N-best list is produced. 

The performance of RVMs on the static classification of vowel data gave us good reason to expect the 
performance on continuous speech would be appreciably better than that of the SVM system in terms of 
sparsity and on par with the SVM system in terms of accuracy. Our initial tests of this hypothesis have 
been on a telephone alphadigit task. Recent work on both alphabet and alphadigit systems has taken a 
focus on resolving the high rates of recognizer confusion for certain word sets. In particular, the E-set 
(B,C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K, H, EIGHT). The problems occur mainly because 
the acoustic differences between the letters of the sets are minimal. For instance, the letters B and D differ 
primarily in the first 10-20 ms during the consonant portion of the letter. 

The OGI Alphadigit Corpus is a telephone database collected from approximately 3000 subjects. Each 
subject was a volunteer responding to a posting on the USEnet. The subjects were given a list of either 19 
or 29 alphanumeric strings to speak. The strings in the lists were each six words long, and each list was 
“set up to balance phonetic context between all letter and digit pairs.” There were 1102 separate 
prompting strings which gave a balanced coverage of vocabulary and contexts. The training, cross-
validation and test sets consisted of 51544, 13926 and 3329 utterances respectively, each balanced for 
gender. The data sets have been chosen to make them speaker independent. 

The hybrid SVM and RVM systems have been benchmarked on the OGI alphadigit corpus with a 
vocabulary of 36 words. A total of 29 phone models, one classifier per model, were used to cover the 
pronunciations. Each classifier was trained using the segmental features derived from 39-dimensional 
frame-level feature vectors comprised of 12 cepstral coefficients, energy, delta and acceleration 
coefficients. The full training set has as many as 30k training examples per classifier. However, the 
training routines employed for the RVM models are unable to utilize such a large set as mentioned earlier. 
The training set was, thus, reduced to 10,000 training examples per classifier (5,000 in-class and 5,000 
out-of class). 



The test set was an open-loop speaker independent set with 3329 sentences. The composite vectors are 
also normalized to the range -1 to 1 to assist in convergence of the SVM classifiers. Both the SVM and 
RVM hybrid systems use identical RBF kernels with the width parameter set to 0.5. The trade-off 
parameter for the SVM system was set to 50. The sigmoid posterior estimate for the SVM was 
constructed using a held-out set of nearly 14000 utterances. The results of the RVM and SVM systems 
are shown in Table 2. The important columns to notice in terms of performance are the error rate, average 
number of parameters and testing time. In all three, the RVM system outperforms the SVM system. It 
achieves a slightly better error rate of 14.8% compared to 15.5%. This error rate is obtained in over an 
order of magnitude fewer parameters. This naturally translates to well over an order of magnitude better 
runtime performance. However, the RVM does require significantly longer to train. Fortunately, that 
added training time is done off-line. 

D.5 Experiments on Speaker Recognition 

Speaker recognition is divided into two fundamental tasks: identification and verification. Identification 
involves determining who is speaking from a group of known speakers. It is often refered to as closed-set 
identification. In contrast, the verification is called as open-set verification because it distinguishes the 
claimed speaker from a group of unknown speakers [4]. We chose to evaluate SVMs and RVMs on 
speaker recognition because we had a baseline HMM system available. The performance of the SVM was 
compared to our HMM with GMM speaker recognition. 

NIST 2001 speaker recognition evaluation data was used for all the experiments described in this 
section [NIST et al., 2003]. All utterances in the development data set were approximately 2 minutes in 
length. The development set contained 60 utterances for training and 78 utterances for testing. These 
utterances were taken from the Switchboard corpus. A standard 39-dimension MFCC feature vector was 
used. 

The SVM classifier requires information about in-class and out-of class data for every speaker in the 
training set. Suppose a model ‘x’ has to be trained for utterance ‘x’, in which case the in-class data for 
training will contain all the 39 dimensional MFCC feature set for the utterance ‘x’, and the out-of-class 
data is obtained by randomly picking “n” feature vectors from all the remaining utterances in the training 
data set. The size of “n” was determined in such a way that the out-of-class data had twice the number of 
MFCC vectors when compared to the in-class data. This is an approximation and hence will not contain 
all the information required to represent the true out-of-class distribution, but this sort of approximation 
was necessary to make the SVM training computationally feasible. Hence, it has to be kept in mind that 
the performance of this system is based on classifiers that were exposed to only a small subset of data 
during training.  

During testing, the test MFCC vectors are used as input to compute the distance using the functional form 
of the model. A distance is computed for every single test vector, and finally an average distance for the 
entire feature vector set is computed. The average distance is used for final decision making. An ideal 
decision threshold is zero for SVM classifiers, but for speaker verification tasks we can determine a 

 
Table 1. Performance comparison of SVMs and RVMs on an alphadigit recognition data. The RVMs yield a large reduction 
in the parameter count while attaining superior performance. 



threshold where the detection cost function is minimum (DCF) [NIST et al., 2003]. 

The first set of experiments was conducted to determine the optimum value of γ for the RBF kernel. It 
was observed that for γ values between 2.5 to 0.02 there was very little variation in the distance scores for 
the test utterances. Performance was stable between 0.03 and 0.01 as shown in the DET [Martin et al., 
1997] curves of Figure 1. The minimum DCF points were obtained for each of these curves and it was 
observed that for γ =0.019 we obtained the lowest minimum DCF. The minimum DCF for various values 
of γ are shown in Table 1. The Equal Error Rate was 16% with a γ of 0.019 and the penalty parameter set 
to 50. It can be observed from the DET plot that there is very marginal change in performance for changes 

in the γ values in the selected range. The most significant improvement in performance was observed only 
with a γ value of 0.019 and the effect of this improvement also reflected in an improvement in minimum 
DCF value as shown in Table 1.  

We compared the results obtained on the SVM based speaker verification system with the baseline HMM 
system. The baseline system used 16-mixture Gaussians as the underlying classifier. An impostor model 
was trained on all the utterances in the development train set while the speaker models were built using 
the corresponding speaker utterance and constructing 16-mixture Gaussians. During testing, a likelihood 
ratio was computed between the speaker model and the impostor model. The likelihood ratio was defined 
as: 

mod)_|(logmod)_|(log impxPspxPLR −=   (18) 

where LR is the likelihood ratio, “x” is the input test vector, “sp_mod” and “imp_mod” are the speaker 
and impostor models respectively. The equal error rate obtained on the HMM baseline system was close 
to 25% and the Min DCF was 0.1838. A comparative DET plot between SVM and baseline HMM system 

 
Figure 1. DET curves for various values of the RBF kernel param
eter γ 

Figure 2. A comparison of HMM and SVM performance 
 

HMM SVM 
  

EER 
25% 

EER 
16% 

Min DCF 
0.1838 

Min DCF 
0.1320 

Table 2. Comparision of SVM based speaker 
verification system with the baseline HMM system 

Gamma(C=50) Min DCF 
  

0.010 0.2125 
0.015 0.2168 
0.019 0.1320 
0.030 0.2305 

Table 1. Minimum DCF as a function of γ 



is shown in Figure 2 and their comparative performances are listed in Table 2. 

D.6 Summary 

This work is the first application of sparse Bayesian methods to speaker and continuous speech 
recognition. By using an automatic relevance determination mechanism, we are able to achieve state-of-
the-art performance in extremely sparse models. Further, this is accomplished while maintaining a purely 
probabilistic framework. We also achieve performance better than the popular SVM kernel classifier 
while using an order of magnitude fewer parameters for both a static classification task and a continuous 
speech task. However, this runtime efficiency comes at a large up front cost during training. Thus, most 
of our work at this point is focused on more efficient training schemes so that we can move to larger 
vocabulary tasks. To this end, we have developed an iterative subset refinement approach which attempts 
to optimize the global criteria by locally optimizing the model on small subsets of the total training set. 
The subset models are incrementally used to generate a model of the full training set. 

We are continuing our work on learning machines in speech recognition, and are now exploring new 
nonlinear statistical models under separate funding. This ITR project was our first opportunity to explore 
such risky and innovative methods. 
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F. Appendix 



03/31/05 — 09/30/06: RESEARCH AND EDUCATIONAL ACTIVITIES 

This report covers a one-year period for which the original grant was extended. Due to administrative 
issues related to the starting date of the extension, though this report technically covers the period from 
03/31/2005 to 09/30/2006, most of the work was performed from 01/01/2006 to 09/30/2006. During this 
period, staffing included two MS-level graduate students (J. Suh and S. Lee) who performed the research, 
one undergraduate (E. Trammel) who supported research activities and dissemination through the web, 
and PI summer salary to supervise the project. 

This ITR award was a multi-institution award Johns Hopkins, Brown University, University of 
Washington, and Mississippi State University. MS State was the PI. For the extension period, only 
MS State contributed. MS State’s role in the overall project was acoustic modeling for speech 
recognition. Specifically, we explored the use of new machine learning techniques, such as Support 
Vector Machines (SVM) and Relevance Vector Machines (RVM), in the context of a system that 
integrated natural language parsing and speech recognition. 

Their were two main goals of the work during this period: (1) continue our explorations into improving 
the efficiency of SVM and RVM training; (2) apply these to a task less demanding in terms of training to 
further validate the impact of these techniques. For (1), our main focus was investigation of a relatively 
new approach to applying SVMs known as score-space kernels. We also examined new ways to estimate 
the Hessian matrix for RVMs, which is a major computational bottleneck. For (2), we examined the 
impact of this technology on a well-known speaker recognition task to which a number of machine 
learning algorithms have been applied. Both efforts are in progress at the time this report was generated. 

G. Machine Learning for Speech Recognition 

Generative methods such as a Hidden Markov models (HMM) combined with Gaussian Mixture models 
(GMM) have been the dominant method for acoustic modeling of speech. Though the performance of 
speech recognition has been improved based on these generative methods, these methods are limited in 
their ability to discriminate. Hence, we have focused on the development of a discriminative models 
based on Support Vector Machines (SVM) and Relevance Vector Machines (RVM). A new method has 
been introduced to boost generalization of the acoustic model. We have applied a probabilistic Bayesian 
learning machine termed the RVM as the core statistical modeling unit [1]. These algorithms are bein 
used in applications involving both speech and speaker recognition. 

SVM is a relatively mature classification technique originally developed by Vapnik and his 
colleagues [1]. It has a good generalization ability which is achieved by deriving an optimal hyperplane 
with maximum margin between two classes. In many applications, the theory of SVM has been shown to 
provide higher performance than traditional learning machines and has been introduced as a powerful tool 
for solving classification problems [2]. Due to these advantages, the SVM has been applied to many 
classification or recognition fields, such as text categorization, object recognition, speaker verification, 
and face detection in images [3]. The support vector paradigm is based upon structural risk minimization 
(SRM) in which the learning process is posed as one of optimizing some risk function. The optimal 
learning machine is the one whose free parameters are set such that the risk is minimized [1].   

However, SVMs still have two problems. First, while sparse, the size of the SVM models (number of 
non-zero weights) tends to scale linearly with the quantity of training data. Second, the SVMs are binary 
classifiers. We require a probabilistic classification which reflects the amount of uncertainty in our 
predictions [1]. In speech recognition this is an important disadvantage since there is significant overlap 
in the feature space which can not be modeled by a yes/no decision boundary. Thus, we require a 
probabilistic classification which reflects the amount of uncertainty in our predictions. The essence of an 



Relevance Vector Machine (RVM) is a fully probabilistic model with an automatic relevance 
determination prior over each model parameter [1]. 

G.1 Support Vector Machine 

SVM is powerful tool for distinguishing each class with a nonlinear system basis function. The 
fundamental idea of an SVM is to project the input space vectors to a high-dimensional feature space 
using a nonlinear map, which is defined as kernel function [5]. The Structural Risk Minimization (SRM) 
principle enables one to implement the SVM, since the SRM defines the boundary for training model 
errors and confidence interval via the VC dimension. The hyperplane will separate the class depending on 
the binary or n-class cases while SVM reduces the empirical risk. The power of SVMs lies in their ability 
to transform data to a higher dimensional space and construct a linear binary classifier in the higher 
dimensional space [6]. A linear hyperplane in the higher dimensional space transforms to a complex 
nonlinear decision region in the input feature space.  

For improving the efficiency and performance of SVM, the score-space kernel has been investigated for 
computation and performance. Wan [5] has proposed the score-space kernel method that simulates the 
human disriminiation process. In terms of speaker recognition system, humans distinguish identity using 
the intonation, accent, and frequently occuring words. Since the speech utterance for one speaker is highly 
correlated between segments of speech, taking the score of whole utterance as factor will improve the 
system. The following sections briefly explain the score-space approach.  

G.1.1 Generative Kernel Function 

The kernel function is derived from a generative probability model [7]. Even though discriminative 
methods are proved to be superior to the generative models for classification problems, generative 
methods are excellent for extracting information from input features. Kernel methods are suitable for 
using discriminative classification with a generative probability model. Suppose, the training set is 
composed of Xi and the corresponding binary targets are Yi. The targets of new training examples are 
obtained from a weighted sum of the training targets.  The estimated targets are consisted of estimating of 
weights and kernel functions. The weights represent the overall importance of the each training example 
Xi, and the kernel function compute the closeness of the pair of datasets. The estimated target process is 
represented by:  
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The kernel function should be derived by a probabilistic method. The probabilistic method measures the 
difference between input sample Xi and test sample X. The training targets can be assumed to have a 
logistic regression distribution, and the targets are estimated given input data X and parameter vector θ. 

)(),|( XYXYP Tθσθ =   where 1)1()( −−+= yeyσ   (2) 

By assigning a distribution for θ like a zero mean Gaussian with a full covariance matrix ∑, the posterior 
distribution for training targets can reduce the complexity of model. The maximum a posteriori (MAP) 
estimate for the parameters θ given a training set of examples is found by maximizing the following 
penalized log likelihood: 
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where the constant c does not depend on θ. The similarity between data Xi and X can be captured by 
taking the gradient space of the model. The gradient of the generative model with respect to a parameter 
describes how that parameter contributes to the process of generating a particular data set. The posterior 
distribution over training targets are finally estimated by  

∑ Σ=
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Comparing the equation (1) and (4), the kernel function can de replaced by XXXXK T
ii Σ=),( . 

Through these processes the generative properties are involved in kernel functions, and SVM is able to 
exploit the generative and discriminative properties at the same time. 

G.1.2 Score-Space Kernels 

We investigated a more specific kernel function which enables us to classify variable length sequences of 
input vectors in a space of fixed dimension, called the score-space [5]. The score-space kernel uses any 
parametric generative model to classify whole sequences. The space to which sequences are mapped is 
called the score-space, so named because it is defined by and derived from the likelihood score, p(X|M,θ) 
of a generative model M. Given a set of k generative models the generic formulation of the mapping of a 
sequence, X={x1, …,xNl }, to the score-space is 
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This equation consists of score-argument )})|(({ kk Xpf θ , which is a function of scores of a set of 
generative model, and score-mapping operator ^

F
Ψ , which maps the scalar score-argument to the score-

space. Any function may be used as a score-argument. We deal with two specific cases that lead to the 
likelihood score-space kernel and the likelihood ratio score-space kernel. By setting the score-argument to 
be the log likelihood of a single generative model, M, parameterized by θ, and choosing the first 
derivative score-operator, we obtain the mapping for the likelihood score space. 

),|(log)( θθ MXPX ∇=Ψ   (6) 

Each component of the score-space, )(XΨ , corresponds to the derivative of the log likelihood score with 
respect to one of the parameters of the model. This mapping is known as the Fisher mapping. The 
gradient of the log likelihood with respect to a parameter describes how that parameter contributes to the 
process of generating a particular speaker model. For the exponential family of distributions, these 
gradients form sufficient statistics for the models. This gradient space also naturally preserves all the 
structural assumptions that the model encodes about the generation process. When the gradients are small 
then likelihood has reached a local maximum and vice versa.    

Using the first derivative with argument score-operator and the same score-argument the mapping 
becomes 
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The score-space space defined by this mapping is identical to the Fisher mapping with one extra 
dimension which consists of the log likelihood score itself. This mapping has the benefit that the 
performance of a classifier using these mappings will have a minimum test performance that equals the 
original generative model, M. The inclusion of the derivatives as “extra features” should give additional 
information for the classifier to use. 

An alternative score-argument is the ratio of two generative models, M1 and M2, 
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where θ = [θ1 θ2]. The corresponding mapping using the first derivative score-operator is, 
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and using the first derivative with argument score-operator, 
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A likelihood ratio forces the classifier to model the class boundaries more accurately. The discrimination 
information encoded in the likelihood ratio score should also be in its derivatives. 

G.2 Relevance Vector Machine 

The classification problem still needs a better approach than SVM to generalize the model for sparse 
solutions. The use of a probabilistic Bayesian learning enables more sparse and accurate training [8]. 
Some noted disadvantages of the support vector learning methodology are: 

 SVM uses a large number of basis functions because the number of support vectors increases with 
the number of data sets [9].  

 SVM does classify the class with a hyperplane, which is binary decision, but it would be better to 
predict the outputs based on the probabilistic methods. The posterior distribution, p(t|x) where t = 
target label of class, of the training data help to classify the unknown inputs [8]. 

The RVM based on the probabilistic Bayesian approach overcomes the above limitations. The essence of 
an RVM is a fully probabilistic model with an automatic relevance determination prior over each model 
parameter. The sparseness in the RVM model is explicitly sought in a probabilistic model framework. 
The following section explains the framework of the RVM. A new approach to improve the RVM 
algorithm will be explained after framework of RVM section. 

G.2.1 RVM Framework 

The framework of RVM is originally due to Tipping [8]. RVM and SVM share a similar framework as 
described in equation (11) below. The training output y is a linearly weighted sum with a basis function, 



Ф(x). The target function given each input data, {xn, tn}n=1, is expressed by equation (12), and Єn denotes 
the zero-mean Gaussian. In RVM, the estimating target function uses the Bayesian approach given the 
prior distribution over the weights for each hyperparameter. RVM requires the likelihood function over 
targets given weight parameter value, and the target needs to form a distribution to lessen the 
computational complexity. The target function is assumed to be logistic sigmoid function, and the 
distribution over target given weight forms the Bernoulli distribution like equation (13). 

∑
=

==
1

)()();(
n

T
nn xwxwwxy φφ  (11) 

nnn wxyt ε+= );(   (12) 

∏
=

−−=
1

1)}];({1[)};({)|(
n

t
n

t
n

nn wxywxywtP σσ   (13) 

The solutions for equation (13) can be approximated by Laplace’s method, which was first proposed by 
Mackay. The weight parameters are controlled by the individual hyperparameter to moderate the strength 
of the prior distribution. For fixed values of the hyperparamter of α, the weights indicate the mean value 
of the posterior distribution of the equation (14). Since p(w|t, α)∝ p(t|w)p(w| α), the maximum value of 
weight parameter can be approximate by this relation. 
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By using Laplace’s method, we obtain a quadratic approximation to the posterior distribution. The result 
of Laplace’s method forms a Hessian matrix: 
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where B is a diagonal matrix with variance of the target function, B = diag(β1, β2, …, βN) with βn = 
)}]({1)}[({ nn xyxy σσ − , ),()( nn xxKx =φ , and A = diag(α1, α2, …, αN). The Hessian matrix is then 

negated and inverted to find the covariance and mean of the Gaussian approximation using Cholesky 
decomposition method.  
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The covariance and weight parameter is approximated by the value of a hyperparamter α at each iteration. 
This is the way to train the model to find the covariance and the mean value of the input data. In the next 
section, we discuss how to improve the efficiency of the current RVM algorithm. 

G.2.2 Towards Improving the Efficiency 

Through the course of this project, we have investigated many ways to improve the efficiency of the 
RVM parameter estimation process. Most of these focused on active learning type approaches in which 
subsets of the data were identified and processed, and then the results of the estimates of these subsets 
were merged. Through this process, we were able to increase training set sizes two orders of magnitude to 
hundreds of thousands of vectors. However, this is still not adequate for speech recognition applications, 



where the ability to train on millions of vectors is required. Therefore, we began reexamining the 
computational efficiency of the training process.  

The RVM training procedure attempts to reduce the unnecessary weight parameters in every iteration. 
With the large input data sets, the Cholesky decomposition step needs large amounts of memory and 
computation time to compute the inverse of the Hessian matrix. Tipping and Faul have defined a 
constructive approach where the model begins with only a single parameter specified [10]. Parameters are 
then added to the system in a constructive fashion while still satisfying the original optimization function.  

Li and Sung proposed the Sequential Bootstrapped SVM method [11]. This method finds the convex hull 
in the given samples to reduce the size of the support vectors. They assumed the support vectors are 
placed in the convex hull of each sample distributions on linearly separable classes. Since the RVM takes 
much computation to find the local optima with slow convergence, finding a convex hull from given 
sample may boost the convergence rate to find the local optima points. 

Our work on incorporating these methods is in progress. In parallel with this work, we decided to explore 
a speaker recognition application which was less demanding on the size of the training data, and could be 
used to diagnose problems with the core algorithms. 

H. Experiments on Speaker Recognition 

Speaker recognition is divided into two fundamental tasks: identification and verification. Identification 
involves determining who is speaking from a group of known speakers. It is often refered to as closed-set 
identification. In contrast, the verification is called as open-set verification because it distinguishes the 
claimed speaker from a group of unknown speakers [4]. We chose to evaluate SVMs and RVMs on 
speaker recognition because we had a baseline HMM system available. The performance of the SVM was 
compared to our HMM with GMM speaker recognition. 

H.1 SVM Baseline 

NIST 2001 speaker recognition evaluation data was used for all the experiments described in this 
section [12]. All utterances in the development data set were approximately 2 minutes in length. The 
development set contained 60 utterances for training and 78 utterances for testing. These utterances were 
taken from the Switchboard corpus. A standard 39-dimension MFCC feature vector was used. 

The SVM classifier requires information about in-class and out-of class data for every speaker in the 
training set. Suppose a model ‘x’ has to be trained for utterance ‘x’, in which case the in-class data for 
training will contain all the 39 dimensional MFCC feature set for the utterance ‘x’, and the out-of-class 
data is obtained by randomly picking “n” feature vectors from all the remaining utterances in the training 
data set. The size of “n” was determined in such a way that the out-of-class data had twice the number of 
MFCC vectors when compared to the in-class data. This is an approximation and hence will not contain 
all the information required to represent the true out-of-class distribution, but this sort of approximation 
was necessary to make the SVM training computationally feasible. Hence, it has to be kept in mind that 
the performance of this system is based on classifiers that were exposed to only a small subset of data 
during training.  

During testing, the test MFCC vectors are used as input to compute the distance using the functional form 
of the model. A distance is computed for every single test vector, and finally an average distance for the 
entire feature vector set is computed. The average distance is used for final decision making. An ideal 
decision threshold is zero for SVM classifiers, but for speaker verification tasks we can determine a 
threshold where the detection cost function is minimum (DCF) [12]. 



The first set of experiments was conducted to determine the optimum value of γ for the RBF kernel. It 
was observed that for γ values between 2.5 to 0.02 there was very little variation in the distance scores for 
the test utterances. Performance was stable between 0.03 and 0.01 as shown in the DET [13] curves of 
Figure 1. The minimum DCF points were obtained for each of these curves and it was observed that for γ 
=0.019 we obtained the lowest minimum DCF. The minimum DCF for various values of γ are shown in 
Table 1. The Equal Error Rate was 16% with a γ of 0.019 and the penalty parameter set to 50. It can be 
observed from the DET plot that there is very marginal change in performance for changes in the γ values 

in the selected range. The most significant improvement in performance was observed only with a γ value 
of 0.019 and the effect of this improvement also reflected in an improvement in minimum DCF value as 
shown in Table 1.  

We compared the results obtained on the SVM based speaker verification system with the baseline HMM 
system. The baseline system used 16-mixture Gaussians as the underlying classifier. An impostor model 
was trained on all the utterances in the development train set while the speaker models were built using 
the corresponding speaker utterance and constructing 16-mixture Gaussians. During testing, a likelihood 
ratio was computed between the speaker model and the impostor model. The likelihood ratio was defined 
as: 

mod)_|(logmod)_|(log impxPspxPLR −=   (18) 

where LR is the likelihood ratio, “x” is the input test vector, “sp_mod” and “imp_mod” are the speaker 
and impostor models respectively. The equal error rate obtained on the HMM baseline system was close 
to 25% and the Min DCF was 0.1838. A comparative DET plot between SVM and baseline HMM system 
is shown in Figure 2 and their comparative performances are listed in Table 2. 

 
Figure 1. DET curves for various values of the RBF kernel param
eter γ 

Figure 2. A comparison of HMM and SVM performance 
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EER 
25% 

EER 
16% 

Min DCF 
0.1838 

Min DCF 
0.1320 

Table 2. Comparision of SVM based speaker 
verification system with the baseline HMM system 

Gamma(C=50) Min DCF 
  

0.010 0.2125 
0.015 0.2168 
0.019 0.1320 
0.030 0.2305 

Table 1. Minimum DCF as a function of γ 



I. Educational Activities 

Our lab maintains a public domain speech recognition software environment and research infrastructure 
that has been a key mechanism for dissemination of information. We continued to upgrade our SVM and 
RVM capabilities as part of our general purpose toolkit available at: 
http://www.ece.msstate.edu/research/isip/projects/speech/software/. The SVM baseline system described 
in this report is available as part of this toolkit. 

We also maintain a Java applet that encapsulates many pattern recognition principles at: 
http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_rec
ognition/current/index.html. This applet, which has been under development for several years, contains 
the most recent instantiation of our SVM and RVM training processes. 

In addition to these resources, a number of lecture and presentation materials are available online at: 
http://www.ece.msstate.edu/research/isip/publications/seminars/. These document our intermediate 
progress and contain some tutorials on some of the underlying theory. 

We conducted a individual study course in natural language processing in Fall’2005 that incorporated 
many of the concepts we were exposed to throughout this ITR project. Materials from this course are 
available at: http://www.ece.msstate.edu/research/isip/publications/courses/ece_7000_nlp/. 

J. Conclusions 

In this portion of the project, we have focused on improving the efficiency of learning machines such as 
SVMs and RVMs. SVM-based acoustic modeling requires less computation time for training and testing 
compared to an HMM in the speaker recognition problem. Unfortunately, training is more 
computationally demanding. The RVM requires more computation and memory for training, but 
improves classification performance. Work on improving the efficiency of an RVM continues. 

The unexpected transition of our lab from the Center for Advanced Vechicular Systems to the Department 
of Electrical and Computer Engineering, which resulted in a loss of access to the university’s 
supercomputing infrastructure, had a significant impact on our ability to run computationally-expensive 
RVM simulations. Our department has a very limited small cluster that is proving to be unstable. We also 
lost valuable time making this transition because we had to port our software and data infrastructure. This 
transition was completed over the summer, but the loss in computational infrastructure remains an issue.  
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08/15/04 — 03/31/05: RESEARCH AND EDUCATIONAL ACTIVITIES 

The overall goal of this ITR was to create a strong synergy between speech recognition (ASR) and natural 
language processing (NLP). At the time this project began, integration of ASR and NLP was in its 
infancy, particularly for conversational speech applications. Over the duration of this project, two 
significant things happened. First, through the parallel efforts of DoD-funded research, community-wide 
focus on converstaional speech was achieved. Progress was impressive as error rates on tasks such as 
Switchboard and Call Home English decreased from 50% to 10%. ASR technology was now producing 
transcripts that were useful to NLP systems, and could support information retrieval applications 
involving important quantities such as named entities. 

Second, NLP research began to focus on the problem of parsing speech recognition output, which lacks 
punctuation and formatting that was previously considered crucial to high performance parsing. This 
latter issue was the main focus of this ITR, and to some extent served as a beacon for the community. We 
produced resources that were extremely valuable, such as the extensions to the Penn Treebank that were 
released in 2003 (reconciliation of the ISIP Switchboard segmentations and transcriptions with the Penn 
Treebank segmentations and transcriptions). We introduced the mainstream community to advanced 
statistical modeling techniques such as Support Vector Machines and enhanced these for NLP 
applications. 

Further, in line with the primary goal of the ITR program, this project created close collaborations 
between groups who did not previously work together. The PIs collaborated on a number of new 
initiatives as offshoots of this project, including applications in parsing, information retrieval, and 
homeland security. A subset of the PIs participated in conversational speech evaluations and workshops 
(e.g., DARPA EARS). Hence, we can conclude that this project created new synergies and new research 
directions that will continue beyond the timeframe of this project. 

In this final report, we briefly describe some of the significant findings of our research below. 

A. Laboratory for Linguistic Information Processing, Brown University 

Learning general functional dependencies, i.e. functions between arbitrary input and output spaces, is one 
of the main goals in supervised machine learning. Recent progress has to a large extent focused on 
designing flexible and powerful input representations, for instance by using kernel-based methods such as 
Support Vector Machines. We have addressed the complementary issue of problems involving complex 
outputs such as multiple dependent output variables and structured output spaces. In the context of this 
project we have mainly dealt with the problem of label sequence learning, a class of problems where 
dependencies between labels take the form of nearest neighbor dependencies along a chain or sequence of 
labels. The latter is a natural generalization of categorization or multiclass-classification that has many 
applications in the context of natural language processing and information extraction. Special cases 
include part-of-speech tagging, named entity recognition, and speech-accent prediction. More 
specifically, we have developed and empirically investigated several extensions of state-of-the-art 
categorization algorithms such as AdaBoost, Support Vector Machines, and Gaussian Process 
classification. We have designed and implemented several scalable learning algorithms that combine 
standard optimization techniques employed in the context of the above mentioned methods with dynamic 
programming techniques that account for the nearest neighbor dependencies. Experimental evaluations on 
a wide variety of tasks have shown the competitiveness of these methods compared to existing techniques 
like Hidden Markov Models and Conditional Random Fields.  

A second line of research conducted in the context of the present ITR has dealt with ways to 
systematically exploit class hierarchies and taxonomies. The main question we have investigated is 



whether or not a priori knowledge about the relationships between classes helps in improving 
classification accuracy, in particular in cases with many classes and few training examples. This is highly 
relevant for applications like word sense disambiguation and text categorization, where the number of 
classes can easily be in the tens of thousands. To that extend we have focused on a hierarchical version of 
the well-known perceptron learning algorithm as well as an extension of multiclass Support Vector 
Machines. We have shown that this approach can be effective in situations with sparse training data. 

B. Center for Language and Speech Processing, Johns Hopkins University 

The Structured Language Model (SLM) aims at making a prediction of the next word in a given word 
string by making a syntactical analysis of the preceding words. However, it faces the data sparseness 
problem because of the large dimensionality and diversity of the information available in the syntactic 
parses. A neural network model is better suited to tackle the data sparseness problem and its use has been 
shown to give significant improvements in perplexity and word error rate over the baseline SLM (Emami 
et al, 2003). 

In this work we have investigated a new method of training the neural net based SLM. Our model makes 
use of a neural network for that component of the SLM that is responsible for predicting the next work 
given the previous words and their partial syntactic structure.  We have investigated both a mismatched 
and a matched training scenario.  In matched training, the neural network is trained on partial parses 
similar to those that are likely to be encountered during evaluation.  On the other hand in the mismatched 
scenario, faster training time is achieved but at the cost of mismatch between training and evaluation and 
hence, possible degradation in performance. 

The Structured Language Model works by assigning a probability P(W,T) to every sentence W and every 
possible binary parse T of W. The joint probability P(W,T) of a word sequence W and a complete parse T 
is broken into: 
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Subsequently, the language model probability assignment for the word at position k+1 in the 
input sentence is made using: 
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which ensures a proper probability normalization over strings 
*W  where kS  is the set of all 

parses built and retained by the model at the current stage k. 



Neural networks are very suitable for modeling conditional discrete distribution with large 
vocabularies. These models work by first assigning a continuous feature vector with every token 
in the vocabulary, and then using a standard multi-layered neural net to get the conditional 
distribution at the output, given the input feature vectors.  Training is achieved by searching for 
parameters Θ  of the neural network and the values of feature vectors that maximize the 
penalized log-likelihood of the training corpus: 
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ty  (network output at time t), N is the 
training data size and R(Θ ) is a regularization term, L-2 norm squared of the parameters in our 
case. 

We have used a neural net to model the SCORER component of the SLM. By the SCORER we 

refer to the model 1( | )k k kP w W T+ . The neural net SCORER's parameters can be obtained by 
training it on the events extracted from the gold standard (usually one best) parses obtained from 
an external source (humans or an automatic parser).  However, there would be a mismatch 
during evaluation since the partial parses during that phase are not provided and have to be 
hypothesized by the SLM itself. We have called the SCORER trained in this manner the 
mismatched SCORER. 

On the other hand, one can train the model on partial parses hypothesized by the baseline SLM, 
thus maximizing the proper log-likelihood function. We have called this procedure the matched 
training of the SCORER. 

Experimental results have shown considerable improvement in both perplexity and WER when 
using a neural net based SLM, specially in the case of matched SCORER training. On the UPenn 
section of the WSJ corpus, perplexity reductions of 12% and 19% over the baseline SLM (with a 
perplexity of 132) have been observed when using the mismatched and matched neural net 
models respectively. 

For the WER experiments, the neural net bases models were used to re-rank an N-best list output 
by a speech recognizer on the WSJ DARPA'93 HUB1 test set (with a 1-best WER of 13.7%). 
The mismatched and matched neural net models reduced the SLM baseline WER of 12.6% to 
12.0% and 11.8% (for relative improvements of 4.8% and 6.3%) respectively. 

In summary, neural network models showed to be capable of taking advantage of the richer probabilistic 
dependencies extracted through syntactic analysis. In our case the use of a neural net for the SCORER 
component of the Structured Language Model resulted in considerable improvements in both perplexity 
and Word Error Rate (WER) with the best results achieved when using a training procedure matched with 
the evaluation. 



C. Signal, Speech, and Language Interpretation Lab, University of Washington 

Prosody can be thought of as the "punctuation" in spoken language, particularly the indicators of phrasing 
and emphasis in speech.  Most theories of prosody have a symbolic (phonological) representation for 
these events, but a relatively flat structure. In English, for example, two levels of prosodic phrases are 
usually distinguished: intermediate (minor) and intonational (major) phrases [Beckman & Pierrehumbert, 
1986].  While there is evidence that both phrase-level emphasis (or, prominence) of words and prosodic 
phrases (perceived groupings of words) provide information for syntactic disambiguation [Price et al., 
1991], the most important of these cues seems to be the prosodic phrases or the boundary events marking 
them. While prior work has looked at the use of prosody in automatic parsing of isolated sentences, a key 
component of our work involved sentence detection as well, since our goal is to handle continuous 
conversational speech. Hence, the focus of our work has been on automatically recognizing sentence 
boundaries and sentence-internal prosodic phrase structure and investigating methods for integrating that 
structure in parsing. 

To support these efforts, we also worked on analysis of acoustic cues to prosodic structure. The most 
important (and best understood) acoustic correlates of prosody are continuous-valued, including 
fundamental frequency (F0), energy, and duration cues.  Particularly at phrase boundaries, cues include 
significant falls or rises in fundamental frequency accompanied by word-final duration lengthening, 
energy drops, and optionally a silent pause.  In addition, however, there is evidence of spectral cues to 
prosodic events, so some of our work explored these cues, which also have implications for improving 
speech recognition. 

Our approach to integrating prosody in parsing is to use symbolic boundary events that have categorical 
perceptual differences, including prosodic break labels that build on linguistic notions of intonational 
phrases and hesitation phenomena but also higher level structure.  These events are predicted from a 
combination of the continuous acoustic features, rather than using the acoustic features directly, because 
the intermediate representation simplifies training with high-level (sparse) structures. Just as most 
automatic speech recognition (ASR) systems use a small inventory of phones as an intermediate level 
between words and acoustic feature to have robust word models (especially for unseen words), the small 
set of word boundary events are also useful as a mechanism for generalizing the large number of 
continuous-valued acoustic features to different parse structures. This approach is currently somewhat 
controversial because of the high cost of hand labeling, and to some extent because of its association with 
a particular linguistic theory. However, the specific subset of labels used in this work are relatively theory 
neutral and language independent, and a key contribution of this work is the use of weakly supervised 
learning to reduce the cost of prosodic labeling. 

An alternative approach, as in [Noth et al, 2000], is to assign categorical "prosodic" labels defined in 
terms of syntactic structure and presence of a pause, without reference to human perception, and 
automatically learn the association of other prosodic cues with these labels.  While this approach has been 
very successful in parsing speech from human-computer dialogs, we expect that it will be problematic for 
conversational speech because of the longer utterance and potential confusion between fluent and 
disfluent pauses. 

C.1 Data, Annotation and Development 

The usefulness of speech databases for statistical analysis is substantially increased when the database is 
labeled for a range of linguistic phenomena, providing the opportunity to improve our understanding of 
the factors governing systematic suprasegmental and segmental variation in word forms.  Prosodic labels 
and phonetic alignments are available for some read speech corpora, but only a few limited samples of 
spontaneous conversational speech have been prosodically labeled.  To fill this gap, a subset of the 



Switchboard corpus of spontaneous telephone-quality dialogs was labeled using a simplification of the 
ToBI system for transcribing pitch accents, boundary tones and prosodic constituent structure [Pitrelli 
et al., 1994]. The aim was to cover phenomena that would be most useful for automatic transcription and 
linguistic analysis of conversational speech.  This effort was initiated under another research grant, but 
completed with partial support from this NSF ITR grant. 

The corpus is based on about 4.7 hours of hand-labeled conversational speech (excluding silence and 
noise) from 63 conversations of the Switchboard corpus and 1 conversation from the CallHome corpus. 
The orthographic transcriptions are time-aligned to the waveform using segmentations available from 
Mississippi State University (http://www.cavs.msstate.edu/hse/ies/projects/switchboard/index.html) and a 
large vocabulary speech recognition system developed at the JHU Center for Language and Speech 
Processing for the 1997 Language Engineering Summer Workshop (www.clsp.jhu.edu/ws97) [Byrne et 
al., 1997].  All conversations were analyzed using a high quality pitch tracker [Talkin, 1995] to obtain F0 
contours, then post-processed to eliminate errors due to crosstalk.  The prosody transcription system 
included: i) breaks (0-4), which indicate the depth of the boundary after each word; ii) phrase prominence 
(none, *, *?); and iii) tones, which indicate syllable prominence and tonal boundary markers.  It also 
provides a way to deal with the disfluencies that are common in spontaneous conversational speech (a p 
diacritic associated with the prosodic break), and to indicate labeler uncertainty about a particular 
transcription. The annotation does not include accent tone type, primarily to reduce transcription costs 
and because we hypothesized that the phrase tones would be relevant to dialog act representations which 
may be relevant for question-answering. For further information on the corpus and an initial distributional 
analysis, see [Ostendorf et al. 2001]. 

The prosodically labeled subset of Switchboard overlaps with the subset of that corpus annotated with 
Treebank parses, but there is a mismatch in the orthographic transcriptions because the Treebank parses 
were based on an earlier version of transcripts and the prosodic annotation was based on the higher 
quality corrections done by Prof. Picone's group (ISIP) at Mississippi State.  In addition, we made use of 
the DARPA EARS metadata annotations that overlapped with the Treebank parses, which where again 
based on the higher quality transcriptions. To be able to use all of these resources, we used an alignment 
of words provided by the ISIP team, and mapped the Treebank parse information to the more recent word 
transcriptions, which could then be aligned with the EARS metadata annotations. Differences in 
transcriptions were handled by: dropping the parse information for deletions, transferring it as is for word 
substitutions, and treating it as "missing" information for insertions in the corrected transcripts.  While 
most of the differences between the Treebank and corrected word transcriptions involved simple 
substitutions (or deletions) that had little or no impact on the parse (e.g. "a" vs. "the"), there were some 
cases where the transfer introduced noise into the collection of parses. The most frequent such cases were 
in disfluent regions, where transcribers tend to have more difficulties, including missed word fragments or 
repetitions ("I I" vs. "I I I").  An additional difference between the Treebank parses and the EARS 
metadata annotations is the marking of sentence boundaries.  Since speakers frequently begin sentences 
with conjunctions, the metadata conventions often split up constituents marked as compound sentences in 
Treebank. Because the metadata labelers listened to the speech and the Treebank labelers did not, we 
chose to use the metadata constituents, which in most cases involved simply dropping a top-level (S) 
node, but in some cases involved adding a top-level node called "SUGROUP". 

C.2 Automatic Labeling of Prosodic Structure 

An important part of the effort was development of an automatic prosodic labeling system that would 
provide cues to improve parsing. In addition, the resulting system was inspected to analyze possible 
dependencies between prosodic and parse structures in conversational speech. In the experiments, we 
used decision tree classifiers with different combinations of acoustic, punctuation, parse, and disfluency 
cues. While more sophisticated techniques, such as HMMs and maximum entropy models, have been 



used for related tasks of sentence boundary detection (see [Liu et al., 2005] for a brief survey), we chose 
decision trees because they are easy to inspect for learning about the prosody-syntax relationship and 
because this simplified the weakly supervised learning experiments, which were the focus of our efforts.  

For the prosody/syntax analyses, we designed trees to predict prosodic labels from syntactic structure, as 
well as trees to predict prosodic structure from a combination of syntactic and acoustic cues.  For 
purposes of providing information to a parser, we designed trees to predict prosodic constituents from 
acoustic cues and part-of-speech (POS) tags, but as an intermediate step in designing these trees we also 
used syntactic cues in designing trees as part of the weakly supervised training.  More specifically, a 
small set of labeled data was used to train prosody models based on both text and acoustic cues, which 
were then used in combination to automatically label a large set of data that had not been hand-annotated 
with prosodic structure, and finally new (separate) acoustic-based prosody models were designed from 
this larger data set for use in parsing new data. 

Experiments were conducted on the Switchboard corpus, using the prosodically annotated subset 
described above for initial training and evaluation (independent subsets for each). Then the full 
Switchboard training set was incorporated using various methods for weakly supervised learning, as 
described below. The prosodic constituent labels were merged into 3 classes: major intonational phrase 
boundary (4), hesitation boundary (1p, 2p), and all other fluent word boundaries.  We grouped minor 
intonational phrase boundaries (3) with the default word boundary class, because preliminary experiments 
showed that they were almost never predicted by the decision trees (even with sampled training to 
account for the low frequency) and because they were most often confused with the default word class in 
4-class prediction experiments. The simple 3-class system also has the advantage that it is relatively 
theory neutral and language independent in that essentially all languages have a notion of fluent and 
disfluent segmentation. 

The acoustic cues included normalized F0, energy and duration cues based on those used in [Kim et al., 
2004] and similar to those used in other metadata detection studies [Shriberg et al., 2000].  Text-based 
cues -- including punctuation, parse structure and disfluency markers -- were taken from the annotations 
available from the Linguistic Data Consortium, aligned to the word transcriptions as described above. The 
parse features included right-to-left and left-to-right relative depth, part-of-speech, label of the left and 
right syntactic constituents, and parenthetical markers.  In addition, disfluency interruption points and 
flags for filled pauses and sentence-initial conjunctions were used as features.  Punctuation as inserted by 
a human transcriber (including incomplete sentences) and estimated speaker turn boundaries (defined 
simply as a word boundary with a silence of length greater than 4s) were also used. 

The baseline system trained on hand-labeled data has error rates of 9.6% when all available cues are used 
(both syntax and prosody) and 16.7% when just acoustic and POS cues are used.  This can be compared 
to an error rate of 30% when the default class is assigned to all word boundaries.  We considered three 
different weakly supervised training techniques for adding data without prosodic labels (but with hand-
labeled syntactic structure) into the training set: EM, co-training, and self-training.  The co-training 
algorithm used classifiers designed on either acoustic or syntactic cues, and it differed slightly from the 
standard method in that we used an information-theoretic distance on the tree posteriors to determine 
when to omit samples with conflicting classifier decisions.  The self-training algorithm used bagging with 
uniform class sampling to deal with data skew [Liu et al., 2004]. In all cases, only 1-2 iterations were 
needed.  Both the co-training and EM approaches gave improved performance over the baseline, with the 



EM algorithm giving the best results of 14.2% error for the acoustic-only trees, which corresponds to a 
15% reduction in error rate over supervised training. The self-training strategy actually hurt performance.1 

From analysis of the resulting trees, we find that punctuation and repair points are correlated with 
prosodic breaks and hesitations, as expected.  Silence duration is the most useful individual acoustic 
feature, but alone it is not a reliable predictor of prosodic phrases, since there are many prosodic phrases 
that do not occur at silences and because silences are frequently associated with hesitations. Aside from 
syntactic structure, the most important text features for predicting prosodic constituents are punctuation, 
disfluency edit point markers, filler words (sentence-initial coordinating conjunctions, discourse markers, 
filled pauses), and turn boundaries. Some important syntactic features include depth of subtrees on the left 
and right sides of the boundary, previous and next syntactic constituent tag, length of closing phrase, and 
part-of-speech tags. These features were relevant when associated with the target word boundary, but 
frequently also with the next or previous word boundary. Surprisingly, the label of the joining constituent 
is not useful.  This analysis provided input into the parse reranking work described in the next section. 

Due to the success of the weakly supervised training on prosodic phrase boundary detection, we have 
recently started investigating use of the same technique for training models of prosodic prominence. 
Initial results show only a 4% reduction in error rate for the system based on acoustic cues, from 22% to 
21% error.  Despite the high error rate, however, the automatically annotated prominence appears to be 
useful in topic identifications in preliminary experiments associated with a separate NSF project (IIS-
0121396). 

C.3 Prosody and Parsing 

Parsing speech can be useful for a number of tasks, including information extraction and question 
answering from audio transcripts. However, parsing conversational speech presents a different set of 
challenges than parsing text: sentence boundaries are not well-defined, punctuation is absent, and 
presence of disfluencies (edits and restarts) impact the structure of language. Most prior work on parsing 
conversational speech has focused on handling disfluencies [Hindle 1983; Mayfield 1995; Charniak & 
Johnson, 2001], but experiments relied on hand-marked sentence boundaries and made use of punctuation 
as in text-based parsers.  While utterance-level segmentation may be reasonable to assume in current 
human-computer dialog systems, it is not realistically available in recognized conversational speech. 
Hence, our work looked at the problem of parsing text with disfluencies and without punctuation. 

We have investigated three main issues in the use of prosody in parsing: the impact of automatic sentence 
segmentation, the usefulness of interruption points, and the usefulness of automatically detected sub-
sentence prosodic constituent boundaries (described above). In all cases, we use a two-stage architecture 
where metadata (constituent boundaries) are first detected with a combination of prosodic and simple text 
features, and then these symbolic events (or their posterior probabilities) are used in parsing. Our 
approach focuses on categorical boundary events, which are predicted from a combination of acoustic 
features, rather than using the acoustic features directly. As argued earlier, the intermediate representation 
simplifies training with sparse structures.  Key research issues include whether the metadata should be 
treated as "words" or as features on words, whether edits should be represented with an independent 
component, and how to represent uncertainty of the metadata classifiers.  Our work has begun 
investigating all of these questions, but some remain unanswered and are being pursued in ongoing work. 

                                                      

1 The results reported here are in some cases worse than those reported in an earlier progress report, because they are based on a 
larger data set.  Due to a data processing bug, several files were omitted from earlier studies. In addition, because of the larger 
amount of data used and the richer feature sets, the trees are much larger than those described in prior reports. 



The data used in this work is the Treebank portion of the Switchboard corpus of conversational telephone 
speech, which includes sentence-like unit boundaries (SUs) as well as the reparandum and interruption 
point of disfluencies.  The data consists of 816 hand-transcribed conversation sides (566K words), of 
which we reserve 128 conversation sides (61K words) for evaluation testing according to the 1993 NIST 
evaluation choices.  In all cases, training was based on hand-labeled SUs.  Parses were evaluated using 
SU boundaries rather than the standard punctuation-based units that the Treebank is based on, so the gold 
standard parses and parse evaluation metric were modified to incorporate the SUs. 

The most exhaustive series of experiments looked at the impact of automatic segmentation on parsing.  
For this particular effort, we chose to work with the complete word sequence, i.e. including all of the 
words within edit regions, to allow experimentation with multiple parsers. In initial work [Kahn et al., 
2004], we used the structured language model (SLM) as a parser with a simple pause-based segmentation 
and automatically detected SUs (69% vs. 35% slot error rate, respectively), showing a significant 
improvement in parsing performance when using the automatic SUs.  We then confirmed the findings 
with results on the same segmentation alternatives but using two state-of-the-art statistical parsers trained 
on conversational speech: the Bikel [Bikel, 2004] 2 and Charniak [Charniak & Johnson, 2001] 3 parsers.  
Figure 1 shows the relative performance of each parser for the two different segmentations, comparing to 
the oracle performance for each using hand-annotated SUs.  In order to have a single number for 
performance, we use the F-measure calculated from bracket precision and recall.  (Trends with separate 
precision and recall measures and with bracket crossing statistics follow the same patterns.)  For all three 
parsers, there is a significant gain in performance due to using the explicit SU detection algorithm, with 
more than half of the performance loss associated with the pause-based segmenter recovered when 
moving to the more sophisticated SU detection system. As SU detection improves, we would expect 
further performance gains.  Also important is the observation that the impact of increased SU error is not 
lessened by using a better parser: the best oracle results were achieved with the Bikel parser, but it was 
much more sensitive to SU errors than the 
SLM. 

In trying to understand the role of IPs in 
parsing, we ran several experiments, 
including some with and without human-
annotated punctuation.  Without 
punctuation, there was a small increase in 
parsing performance of the SLM using IPs 
When the SUs are automatically detected. 
We were not able to confirm these gains 
with other parsers; however, recent work in 
[Johnson, Charniak & Lease, 2004] shows a 
benefit to edit detection from using IPs 
which presumably would lead to improved 
parsing in their two-stage processing 
strategy [Johnson & Charniak, 2004].  
Including punctuation and IPs in 
experiments with the SLM showed an 
                                                      

2 http://www.cis.upenn.edu/~dbikel/download.html (Version 0.9.9). For this work, we trained the Bikel 
parser on the Switchboard Treebank parses with the Collins settings. 

3 ftp://ftp.cs.brown.edu/pub/nlparser/ (August 2004) 

 
Figure 1. Relative performance of different parsers for the RT03 
MDE SU detection system and a simple pause-based system, in 
each case comparing the F-measure to that obtained with oracle 
SUs. 



interesting trade-off of bracket precision and 
recall using the two different cues, as illustrated 
in Figure 2.  We saw the improved precision 
associated with using both punctuation and IPs as 
possible evidence that sub-sentence prosodic 
constituents might be useful. 

In all of the above work, metadata is incorporated 
as "word" tokens, similar to the standard 
mechanism for parsers to incorporate 
punctuation.  For sentence segmentation with a 
reasonably reliable segmenter, this may make 
sense, but certainly for sub-sentence prosodic 
constituents there is the potential for the gains 
associated with adding prosody to be offset by a 
loss from the extra words blocking part of the 
history that might be used in a statistical model 
of word dependence. We conjecture that this may in part explain the negative results obtained in [Gregory 
et al., 2004], since our analyses of the prosody prediction trees provides some evidence that sub-sentence 
prosodic constituents may be useful in parsing. (The direct use of acoustic features may also be 
problematic.) In addition, the use of metadata events as "words" requires a hard decision in the first stage 
of detection, and many results in speech processing suggest that soft decisions (e.g. using class posteriors) 
are more effective.  

To address these problems, we developed an extension to the SLM that uses prosodic constituents as 
hidden conditioning variables, similar to headword conditioning in the SLM.  However, since our 
subsequent work obtained much better baseline performance with other parsers, we decided to explore a 
parse reranking framework [Johnson et al., ms. in prep.] as an alternative method for incorporating 
automatically detected prosodic constituents.  The approach uses a maximum entropy reranking model 
and introduces new features based on counts of syntactic constituent types weighted by the posterior 
probability of different prosodic events.  Experiments with this new approach are in progress, now under 
other funding, and we anticipate having results in early 2005.  This series of experiments will also look at 
the question of whether a separate stage of edit detection benefits parsing compared to simply 
incorporating the edit structure in the parser with the same status as other constituents. 

C.4 Prosody and Acoustic Modeling 

Most research on the use of prosody in automatic speech processing has focused on F0, energy and 
duration correlates to prosodic structure. However, there is evidence from long standing acoustic, 
articulatory and perceptual studies of speech suggesting that there are spectral correlates as well.  For that 
reason, we conducted an analysis of our prosodically labeled conversational speech data using acoustic 
parameters and clustering techniques that are standard in speech recognition. We found that prosodic 
factors are associated with acoustic differences that can be learned in standard speech recognition 
systems.  Both prosodic phrase structure and phrasal prominence seem to provide distinguishing cues, 
with some phones being affected much more than others (as one would expect from the linguistics 
literature).  We hypothesized that we would find that constituent onsets were important at all levels 
(syllable, word and prosodic phrase).  Instead, we found that onset is more important for syllables, but 
constituent-final position is more important at higher levels.  Prosodic prominence had a smaller affect 
than phrase structure in terms of increasing likelihood of the training data, but seemed to result in more 
separable models when it did play a role. 

 

Figure 2. Precision-recall trade-offs associated with using 
punctuation, oracle IPs or both in addition to SUs in 
parsing. 



Finally, we found evidence that segmental cues can help distinguish fluent from disfluent phrase 
boundaries, in that segments associated with these categories are frequently placed in different clusters. 
These differences can be leveraged in a “multiple pronunciation” acoustic model to aid in detecting fluent 
vs. disfluent prosodic boundaries, though additional prosodic cues are necessary to separate these from 
unmarked word boundaries.  A limitation of this work was that it was based on hand-labeled data, and 
therefore did not take advantage of the full training data set needed for designing a state-of-the-art 
recognition system.  However, with our recent developments in prosodic annotation, we will be able to 
assess the usefulness on a much larger corpus in the future. 

D. Institute for Signal and Information Processing, Mississippi State University 

Hidden Markov models (HMMs) with Gaussian emission densities are the prominent modeling technique 
in speech recognition. HMMs suffer from an inability to learn discriminative information and are prone to 
overfitting and overparameterization. Recent work in machine learning has focused on models, such as 
the support vector machine (SVM), that automatically control generalization and parameterization as part 
of the overall optimization process. SVMs, however, require ad hoc (and unreliable) methods to couple it 
to probabilistic speech recognition systems. We have applied a probabilistic Bayesian learning machine 
termed the relevance vector machine (RVM) as the core statistical modeling unit in a speech recognizer. 
The RVM is shown to provide superior performance compared to HMMs and SVMs in terms of both 
accuracy and sparsity on a continuous alphadigit task. 

Computer speech recognition is typically posed as a statistical pattern recognition problem based on 
Bayesian methods in which the acoustic model and language model are treated as separate statistical 
models. The focus of our work has been the acoustic model, which maps sequences of features vectors to 
probabilities that these vectors were produced by a given linguistic unit, such as phone. In most state of 
the art recognition systems, a hidden Markov model (HMM) is used as the acoustic model. The popularity 
of the HMM representation is based on an HMMs ability to simultaneously model the temporal 
progression of speech (speech is usually seen as a “left-to-right” process) and the acoustic variability of 
the speech observations. The temporal variation is modeled via an underlying Markov process while the 
acoustic variability is modeled by an emission distribution at each state in the Markov chain.  

The most commonly used emission distribution is the Gaussian mixture model (GMM). While 
combinations of HMMs and Gaussian mixture models have been extremely successful, there are two 
fundamental limitations of these approaches: (1) the parametric form of the underlying distribution is 
assumed to be Gaussian, (2) the maximum likelihood (ML) approach, which is typically used to estimate 
model parameters, does not explicitly improve the discriminative ability of the model. The ML approach 
maximizes the probability of the correct model while implicitly ignoring the probability of the incorrect 
model. Ideally, a training approach should force the model toward in-class training examples while 
simultaneously driving the model away from out-of-class training examples. Methods such as maximum 
mutual information and minimum classification error have been developed to incorporate discriminative 
training directly into the standard HMM/GMM framework. However, their success has been limited due 
primarily to their considerable computational costs. 

The weaknesses of the HMM/GMM system have led researchers to explore other models, such as hybrid 
connectionist systems, which merge the power of artificial neural networks (ANNs) and HMMs. 
HMM/ANN hybrids have shown promise in terms of performance but have not yet found  widespread use 
due to some serious problems. First, ANNs are prone to overfitting the training data if allowed to blindly 
converge. To avoid overfitting, a cross-validation set is often used to define a stopping point for training. 
This is wasteful of data and resources — a serious consideration in speech where the amount of labeled 
training data is limited. ANNs also typically converge much slower than HMMs. Most importantly, the 



HMM/ANN hybrid systems have not shown the substantial improvements in recognition accuracy over 
HMM/GMM systems that would be necessary to force a paradigm shift. 

The approaches developed in this work draw significantly from the HMM/ANN hybrid systems. 
However, we seek methods which are automatically immune to overfitting without the artificial 
imposition of a cross-validation set as well as methods which can automatically learn the appropriate 
model structure as part of the overall optimization process. One such model that has come to the forefront 
of pattern recognition research is the support vector machine (SVM). The support vector paradigm is 
based upon structural risk minimization (SRM) in which the learning process is posed as one of 
optimizing some risk function. The optimal learning machine is the one whose free parameters are set 
such that the risk is minimized. 

Finding a minimum of the risk function is typically impossible due to the unknown distribution. Instead, 
it has been shown that a relationship exists between the actual risk, which is related to the empirical risk 
(i.e. the training set error which can be measured) and the Vapnik-Chervonenkis (VC) dimension. The VC 
dimension is a measure of the capacity of a learning machine to learn any training set and is typically 
closely related to the complexity of the learning machine’s structure. With this result, we can guarantee 
both a small empirical risk (training error) and good generalization — an ideal situation for a learning 
machine. 

In their most basic form SVMs use the SRM principle to impose an order on the optimization process by 
ranking candidate separating hyperplanes based on the margin they induce. For separable data, the 
optimal linear hyperplane is the one that maximizes the margin. The true power of the SVM, however, 
lies in how it deals with nonlinear class separating surfaces. Providing for a nonlinear decision region is 
accomplished using kernels. The optimization process yields a decision function where the sign of can be 
used to classify examples as either in-class or out-of-class. The decision function is formed from only 
those training vectors that lie on the margin or in overlap regions. In practice, the proportion of the 
training set that becomes support vectors is small, making the classifier sparse. Consequently, the training 
process,  along with the training set, directly optimize the complexity of the learning machine. In contrast, 
ANN systems often make a priori assumptions about the form of the model. 

SVMs have had great success on static classification tasks. However, it is only recently, that these 
techniques have been applied to continuous speech recognition. While the SVMs provide an excellent 
classification paradigm, they suffer from two serious drawbacks that hamper their effectiveness in speech 
recognition. First, while sparse, the size of the SVM models (number of non-zero weights) tends to scale 
linearly with the quantity of training data. For a large speaker independent corpus this effect is 
prohibitive. Second, the SVMs are binary classifiers. In speech recognition this is an important 
disadvantage since there is significant overlap in the feature space which can not be modeled by a yes/no 
decision boundary. Further, the combination of disparate knowledge sources (such as linguistic models, 
pronunciation models, acoustic models, etc.) requires a method for combining the scores produced by 
each model so that alternate hypotheses can be compared. Thus, we require a probabilistic classification 
which reflects the amount of uncertainty in our predictions. 

We have investigated a Bayesian model termed the relevance vector machine (RVM) which is similar in 
form to the SVM but which addresses these two problems. The essence of an RVM is a fully probabilistic 
model with an automatic relevance determination prior over each model parameter. Thus, sparseness in 
the RVM model is explicitly sought in a probabilistic framework. 

D.1 Sparse Bayesian Methods 



Supervised learning in speech recognition implemented via a maximum likelihood approach is the 
dominant approach for finding values of the parameters in our model that best match the training data. 
Our expectation in data modeling is that given sufficient training data, the model would generalize to 
unseen test sets. Two levels of inference must be implemented to accomplish this. First, assuming that a 
particular model is true, we seek to infer the values for the parameters of the model that best fit the data at 
hand. This is exactly the training process used in the ANN hybrids. Second, we must decide which model 
is most appropriate given the data at hand, i.e. model comparison. 

A simple approach to model comparison might dictate that we simply choose the model that fits the data 
best — the maximum likelihood solution. However, a more complex model can always fit the data better. 
Jaynes describes an extreme interpretation of this problem where we would always choose the so-called 
Sure Thing hypothesis, under which exactly the training set and only the training set is possible. Though 
it is the maximum likelihood solution, the Sure Thing hypothesis is intuitively displeasing and is counter 
to our desire for a solution which generalizes. We avoid choosing the Sure Thing hypothesis by 
expressing an a priori preference for simpler solutions using the principle of Occam’s Razor. MacKay 
and others have formalized this preference mechanism through the use of Bayesian methods. These 
provide a natural and quantitative embodiment of Occam’s razor. The first level of inference requires that 
we find the best-fit parameters. The second level of inference requires the comparison of competing 
hypotheses. If we assume that the competing hypotheses are a priori equiprobable then the best 
hypothesis is chosen by evaluating the evidence. The evidence is computed by marginalization across the 
model parameters. 

The evidence provides a natural trade-off between the best-fit likelihood and the Occam factor. This 
concept is closely related to other methods such as the Minimum Description Length and the Bayesian 
Information Criteria where the model is directly penalized by the number of parameters used. A similar 
idea was also incorporated into SVM models, which penalize the models with too large a capacity (VC 
dimension). However, while the SVM models are forced to estimate the penalty via cross-validation 
schemes, Bayesian techniques automatically determine and apply the penalty in a fully probabilistic 
framework. 

Assuming we have no prior knowledge that would cause us to favor a particular prior, we can find the 
optimal value for by evaluating the evidence. If we did have prior knowledge, we would simply repeat the 
inference over using the prior. At some level of the inference, we will arrive at a point where our prior 
knowledge is too weak to apply and then we evaluate the evidence. This extreme application of the 
Bayesian prior as a control parameter is known as the method of automatic relevance determination 
(ARD). It is so named because the prior over the input unit weights in a neural network can ‘shut-off’ 
those input dimensions which are irrelevant to the problem at hand. ARD is at the heart of the relevance 
vector machines that will be described next. 

D.2 Relevance Vector Machines 

An application of the evidence framework to kernel machines is the relevance vector machine (RVM). As 
with SVMs, RVMs use a weighted linear combination of basis functions. Due to the large number of 
parameters in this mode l— one per observation — we must guard against overfitting of the model to the 
training data. SVMs use a control parameter to implicitly balance the trade-off between training error and 
generalization. RVMs take a Bayesian approach and explicitly define an ARD prior distribution over the 
weights. 

Each weight in the RVM model has an individual hyperparameter, , that is iteratively reestimated as part 
of the optimization process. As the hyperparameter grows larger, the prior on becomes infinitely peaked 
around zero, forcing to go to zero and, thus, contributing nothing to the summation. This process 



automatically embodies the principle of 
Occam’s Razor because it explicitly seeks the 
simplest model that satisfies the data 
constraints. In practice, the majority of the 
weights are pruned, resulting in an 
exceedingly sparse model with generalization 
abilities on par with SVMs. To complete the 
Bayesian specification of the model, we have 
to specify a prior probability. In practice we 
use a non-informative (flat) prior to indicate 
a lack of preference. 

The parameter estimation process is an 
iterative reduction process. That is, initially 
each vector of the system is allocated one 
parameter. As the procedure continues, vectors are pruned from the model when they are found to be 
irrelevant with respect to the remaining parameters. Integral to this iterative reestimation process is the 
computation of the inverse Hessian matrix. This operation requires the inversion of an MxM Hessian 
matrix where M is initially set to the size of training set. For larger training sets (on the order of a few 
thousand), this computation is prohibitive both in time and memory.  

D.3 Experiments 

RVMs have had significant success in several classification tasks. These tasks have, however, involved 
relatively small quantities of static data. Speech recognition, on the other hand, involves processing a very 
large amount of temporally evolving signals. In order to gain insight into the effectiveness of RVMs for 
speech recognition, we explored two tasks. We first experimented on the Deterding static vowel 
classification task which is a common benchmark used for new classifiers. Second, we applied the 
techniques described above to a complete small vocabulary recognition task. Comparison with SVM 
models are given below. For each task, the RVMs outperformed the SVM models both in terms of model 
sparsity and error rate. 

In our first pilot experiment, we applied SVMs and RVMs to a publicly available vowel classification 
task, Deterding Vowels. This was a good data set to evaluate the efficacy of static classifiers on speech 
classification data since it has been used as a standard benchmark for several nonlinear classifiers for 
several years. In this evaluation, the speech data was collected at a 10 kHz sampling rate and low pass 
filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters, giving a 10 dimensional 
input space. A window duration of 50 msec was used for generating the features. The training set 
consisted of 528 frames from eight speakers and the test set consisted of 462 frames from a different set 
of seven speakers. The speech data consisted of 11 vowels uttered by each speaker in a h*d context. 
Though it appears to be a simple task, the small training set and significant confusion in the vowel data 
make it a very challenging task. 

Table 1 shows the results for a range of nonlinear classification schemes on the Deterding vowel data. 
From the table, the SVM and RVM are both superior to nearly all other techniques. The RVM achieves 
performance rivaling the best performance reported on this data (30% error rate) while exceeding the 
error performance of SVMs and the best neural network classifier. Importantly, the RVM classifiers 
achieve superior performance to the SVM classifiers while utilizing nearly an order of magnitude fewer 
parameters. While we do not expect the superior error performance to be typical (on pure classification 
tasks) we do expect the superior sparseness to be typical. This sparseness property is particularly 
important when attempting to build systems which are practical to train and test. 

 
Table 1. Performance comparison of SVMs and RVMs to other 
nonlinear classifiers on static vowel classification data. 



A hybrid recognition architecture was also developed that is a parallel of our SVM hybrid. Each phone-
level classifier (either an SVM or RVM dichotomous classifier) is trained as a one-vs-all classifier. The 
classifiers are used to predict the probability of an acoustic segment. For the SVM hybrid, a sigmoid 
posterior fit is used to map the SVM distance to a probability. The RVM output is naturally probabilistic 
so no link function is needed. 

The HMM system is used to generate alignments at the phone level. Each phone instance is treated as one 
segment. Since each segment could span a variable duration, we divide the segment into three regions in a 
set ratio and construct a composite vector from the mean vectors of the three regions. In our experiments 
empirical evidence showed that a 3-4-3 proportion generally gave optimal performance. The classifiers in 
our hybrid systems operate on composite vectors. For decoding, the segmentation information is obtained 
from a baseline HMM system —a cross-word triphone system with 8 Gaussian mixtures per state. 
Composite vectors are generated for each of the segments and posterior probabilities are hypothesized 
that are used to find the best word sequence using the Viterbi decoder. The HMM system also outputs a 
set of N-best hypotheses. The posterior probabilities for each hypothesis are determined and the most 
likely entry of the N-best list is produced. 

The performance of RVMs on the static classification of vowel data gave us good reason to expect the 
performance on continuous speech would be appreciably better than that of the SVM system in terms of 
sparsity and on par with the SVM system in terms of accuracy. Our initial tests of this hypothesis have 
been on a telephone alphadigit task. Recent work on both alphabet and alphadigit systems has taken a 
focus on resolving the high rates of recognizer confusion for certain word sets. In particular, the E-set 
(B,C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K, H, EIGHT). The problems occur mainly because 
the acoustic differences between the letters of the sets are minimal. For instance, the letters B and D differ 
primarily in the first 10-20 ms during the consonant portion of the letter. 

The OGI Alphadigit Corpus is a telephone database collected from approximately 3000 subjects. Each 
subject was a volunteer responding to a posting on the USEnet. The subjects were given a list of either 19 
or 29 alphanumeric strings to speak. The strings in the lists were each six words long, and each list was 
“set up to balance phonetic context between all letter and digit pairs.” There were 1102 separate 
prompting strings which gave a balanced coverage of vocabulary and contexts. The training, cross-
validation and test sets consisted of 51544, 13926 and 3329 utterances respectively, each balanced for 
gender. The data sets have been chosen to make them speaker independent. 

The hybrid SVM and RVM systems have been benchmarked on the OGI alphadigit corpus with a 
vocabulary of 36 words. A total of 29 phone models, one classifier per model, were used to cover the 
pronunciations. Each classifier was trained using the segmental features derived from 39-dimensional 
frame-level feature vectors comprised of 12 cepstral coefficients, energy, delta and acceleration 
coefficients. The full training set has as many as 30k training examples per classifier. However, the 
training routines employed for the RVM models are unable to utilize such a large set as mentioned earlier. 
The training set was, thus, reduced to 10,000 training examples per classifier (5,000 in-class and 5,000 
out-of class). 



The test set was an open-loop speaker independent set with 3329 sentences. The composite vectors are 
also normalized to the range -1 to 1 to assist in convergence of the SVM classifiers. Both the SVM and 
RVM hybrid systems use identical RBF kernels with the width parameter set to 0.5. The trade-off 
parameter for the SVM system was set to 50. The sigmoid posterior estimate for the SVM was 
constructed using a held-out set of nearly 14000 utterances. The results of the RVM and SVM systems 
are shown in Table 2. The important columns to notice in terms of performance are the error rate, average 
number of parameters and testing time. In all three, the RVM system outperforms the SVM system. It 
achieves a slightly better error rate of 14.8% compared to 15.5%. This error rate is obtained in over an 
order of magnitude fewer parameters. This naturally translates to well over an order of magnitude better 
runtime performance. However, the RVM does require significantly longer to train. Fortunately, that 
added training time is done off-line. 

D.4 Summary  

This work is the first application of sparse Bayesian methods to continuous speech recognition. By using 
an automatic relevance determination mechanism, we are able to achieve state-of-the-art performance in 
extremely sparse models. Further, this is accomplished while maintaining a purely probabilistic 
framework. We also achieve performance better than the popular SVM kernel classifier while using an 
order of magnitude fewer parameters for both a static classification task and a continuous speech task. 
However, this runtime efficiency comes at a large up front cost during training. Thus, most of our work at 
this point is focused on more efficient training schemes so that we can move to larger vocabulary tasks. 
To this end, we have developed an iterative subset refinement approach which attempts to optimize the 
global criteria by locally optimizing the model on small subsets of the total training set. The subset 
models are incrementally used to generate a model of the full training set. 

We are continuing our work on learning machines in speech recognition, and are now exploring new 
nonlinear statistical models under separate funding. This ITR project was our first opportunity to explore 
such risky and innovative methods. 

 
Table 2. Performance comparison of SVMs and RVMs on Alphadigit recognition data. The RVMs yield a large reduction in 
the parameter count while attaining superior performance. 
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The overall goal of this ITR was to create a strong synergy between speech recognition (ASR) and natural 
language processing (NLP). In line with the primary goal of the ITR program, this project created close 
collaborations between groups who did not previously work together. The PIs collaborated on a number 
of new initiatives as offshoots of this project, including applications in parsing, information retrieval, and 
homeland security. In this annual report, we briefly describe some of the significant findings of our 
research below. 

F. Laboratory for Linguistic Information Processing, Brown University 

Learning general functional dependencies, i.e. functions between arbitrary input and output spaces, is one 
of the main goals in supervised machine learning. Recent progress has to a large extent focused on 
designing flexible and powerful input representations, for instance by using kernel-based methods such as 
Support Vector Machines. We have addressed the complementary issue of problems involving complex 
outputs such as multiple dependent output variables and structured output spaces. In the context of this 
project we have mainly dealt with the problem of label sequence learning, a class of problems where 
dependencies between labels take the form of nearest neighbor dependencies along a chain or sequence of 
labels. The latter is a natural generalization of categorization or multiclass-classification that has many 
applications in the context of natural language processing and information extraction. Special cases 
include part-of-speech tagging, named entity recognition, and speech-accent prediction. More 
specifically, we have developed and empirically investigated several extensions of state-of-the-art 
categorization algorithms such as AdaBoost, Support Vector Machines, and Gaussian Process 
classification. We have designed and implemented several scalable learning algorithms that combine 
standard optimization techniques employed in the context of the above mentioned methods with dynamic 
programming techniques that account for the nearest neighbor dependencies. Experimental evaluations on 
a wide variety of tasks have shown the competitiveness of these methods compared to existing techniques 
like Hidden Markov Models and Conditional Random Fields.  

G. Center for Language and Speech Processing, Johns Hopkins University 

The Structured Language Model (SLM) aims at making a prediction of the next word in a given word 
string by making a syntactical analysis of the preceding words. However, it faces the data sparseness 
problem because of the large dimensionality and diversity of the information available in the syntactic 
parses. A neural network model is better suited to tackle the data sparseness problem and its use has been 
shown to give significant improvements in perplexity and word error rate over the baseline SLM (Emami 
et al, 2003). 

In this work we have investigated a new method of training the neural net based SLM. Our model makes 
use of a neural network for that component of the SLM that is responsible for predicting the next work 
given the previous words and their partial syntactic structure.  We have investigated both a mismatched 
and a matched training scenario.  In matched training, the neural network is trained on partial parses 
similar to those that are likely to be encountered during evaluation.  On the other hand in the mismatched 
scenario, faster training time is achieved but at the cost of mismatch between training and evaluation and 
hence, possible degradation in performance. 

The Structured Language Model works by assigning a probability P(W,T) to every sentence W and every 
possible binary parse T of W. The joint probability P(W,T) of a word sequence W and a complete parse T 
is broken into: 

1

1 1 1 1 1 1 1 1
1 1

( , ) ( | ) ( | , ) ( | , , , )
kNn

k k k
k k k k k k k i k k k k i

k i

P W T P W W T P t W T W P p W T w t p p
+

− − − − − − −
= =

= ⋅ ⋅ ⋅⋅⋅∏ ∏
  



where  1 1k kW T− −   is the word-parse (k-1)-prefix, kt  is the tag assigned to kw  by the TAGGER, 
1kN −  is the number of operations the CONSTRUCTOR executes at sentence position k before 

passing control to the PREDICTOR, and 
k
ip  denotes the i-th CONSTRUCTOR operation carried 

out at position k in the word string. 

Subsequently, the language model probability assignment for the word at position k+1 in the 
input sentence is made using: 
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which ensures a proper probability normalization over strings 
*W  where kS  is the set of all 

parses built and retained by the model at the current stage k. 

Neural networks are very suitable for modeling conditional discrete distribution with large 
vocabularies. These models work by first assigning a continuous feature vector with every token 
in the vocabulary, and then using a standard multi-layered neural net to get the conditional 
distribution at the output, given the input feature vectors.  Training is achieved by searching for 
parameters Θ  of the neural network and the values of feature vectors that maximize the 
penalized log-likelihood of the training corpus: 
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where 1 2 1( | , , , ; )t t t t
np y x x x −⋅ ⋅ ⋅ Θ  is the probability of word 

ty  (network output at time t), N is the 
training data size and R(Θ ) is a regularization term, L-2 norm squared of the parameters in our 
case. 

We have used a neural net to model the SCORER component of the SLM. By the SCORER we 

refer to the model 1( | )k k kP w W T+ . The neural net SCORER's parameters can be obtained by 
training it on the events extracted from the gold standard (usually one best) parses obtained from 
an external source (humans or an automatic parser).  However, there would be a mismatch 
during evaluation since the partial parses during that phase are not provided and have to be 
hypothesized by the SLM itself. We have called the SCORER trained in this manner the 
mismatched SCORER. 

On the other hand, one can train the model on partial parses hypothesized by the baseline SLM, 
thus maximizing the proper log-likelihood function. We have called this procedure the matched 
training of the SCORER. 



H. Signal, Speech, and Language Interpretation Lab, University of Washington 

Prosody can be thought of as the "punctuation" in spoken language, particularly the indicators of phrasing 
and emphasis in speech.  Most theories of prosody have a symbolic (phonological) representation for 
these events, but a relatively flat structure. In English, for example, two levels of prosodic phrases are 
usually distinguished: intermediate (minor) and intonational (major) phrases [Beckman & Pierrehumbert, 
1986].  While there is evidence that both phrase-level emphasis (or, prominence) of words and prosodic 
phrases (perceived groupings of words) provide information for syntactic disambiguation [Price et al., 
1991], the most important of these cues seems to be the prosodic phrases or the boundary events marking 
them. While prior work has looked at the use of prosody in automatic parsing of isolated sentences, a key 
component of our work involved sentence detection as well, since our goal is to handle continuous 
conversational speech. Hence, the focus of our work has been on automatically recognizing sentence 
boundaries and sentence-internal prosodic phrase structure and investigating methods for integrating that 
structure in parsing. 

To support these efforts, we also worked on analysis of acoustic cues to prosodic structure. The most 
important (and best understood) acoustic correlates of prosody are continuous-valued, including 
fundamental frequency (F0), energy, and duration cues.  Particularly at phrase boundaries, cues include 
significant falls or rises in fundamental frequency accompanied by word-final duration lengthening, 
energy drops, and optionally a silent pause.  In addition, however, there is evidence of spectral cues to 
prosodic events, so some of our work explored these cues, which also have implications for improving 
speech recognition. 

Our approach to integrating prosody in parsing is to use symbolic boundary events that have categorical 
perceptual differences, including prosodic break labels that build on linguistic notions of intonational 
phrases and hesitation phenomena but also higher level structure.  These events are predicted from a 
combination of the continuous acoustic features, rather than using the acoustic features directly, because 
the intermediate representation simplifies training with high-level (sparse) structures. Just as most 
automatic speech recognition (ASR) systems use a small inventory of phones as an intermediate level 
between words and acoustic feature to have robust word models (especially for unseen words), the small 
set of word boundary events are also useful as a mechanism for generalizing the large number of 
continuous-valued acoustic features to different parse structures. This approach is currently somewhat 
controversial because of the high cost of hand labeling, and to some extent because of its association with 
a particular linguistic theory. However, the specific subset of labels used in this work are relatively theory 
neutral and language independent, and a key contribution of this work is the use of weakly supervised 
learning to reduce the cost of prosodic labeling. 

An alternative approach, as in [Noth et al, 2000], is to assign categorical "prosodic" labels defined in 
terms of syntactic structure and presence of a pause, without reference to human perception, and 
automatically learn the association of other prosodic cues with these labels.  While this approach has been 
very successful in parsing speech from human-computer dialogs, we expect that it will be problematic for 
conversational speech because of the longer utterance and potential confusion between fluent and 
disfluent pauses. 

H.1 Data, Annotation and Development 

The usefulness of speech databases for statistical analysis is substantially increased when the database is 
labeled for a range of linguistic phenomena, providing the opportunity to improve our understanding of 
the factors governing systematic suprasegmental and segmental variation in word forms.  Prosodic labels 
and phonetic alignments are available for some read speech corpora, but only a few limited samples of 
spontaneous conversational speech have been prosodically labeled.  To fill this gap, a subset of the 



Switchboard corpus of spontaneous telephone-quality dialogs was labeled using a simplification of the 
ToBI system for transcribing pitch accents, boundary tones and prosodic constituent structure [Pitrelli 
et al., 1994]. The aim was to cover phenomena that would be most useful for automatic transcription and 
linguistic analysis of conversational speech.  This effort was initiated under another research grant, but 
completed with partial support from this NSF ITR grant. 

The corpus is based on about 4.7 hours of hand-labeled conversational speech (excluding silence and 
noise) from 63 conversations of the Switchboard corpus and 1 conversation from the CallHome corpus. 
The orthographic transcriptions are time-aligned to the waveform using segmentations available from 
Mississippi State University (http://www.cavs.msstate.edu/hse/ies/projects/switchboard/index.html) and a 
large vocabulary speech recognition system developed at the JHU Center for Language and Speech 
Processing for the 1997 Language Engineering Summer Workshop (www.clsp.jhu.edu/ws97) [Byrne et 
al., 1997].  All conversations were analyzed using a high quality pitch tracker [Talkin, 1995] to obtain F0 
contours, then post-processed to eliminate errors due to crosstalk.  The prosody transcription system 
included: i) breaks (0-4), which indicate the depth of the boundary after each word; ii) phrase prominence 
(none, *, *?); and iii) tones, which indicate syllable prominence and tonal boundary markers.  It also 
provides a way to deal with the disfluencies that are common in spontaneous conversational speech (a p 
diacritic associated with the prosodic break), and to indicate labeler uncertainty about a particular 
transcription. The annotation does not include accent tone type, primarily to reduce transcription costs 
and because we hypothesized that the phrase tones would be relevant to dialog act representations which 
may be relevant for question-answering. For further information on the corpus and an initial distributional 
analysis, see [Ostendorf et al. 2001]. 

The prosodically labeled subset of Switchboard overlaps with the subset of that corpus annotated with 
Treebank parses, but there is a mismatch in the orthographic transcriptions because the Treebank parses 
were based on an earlier version of transcripts and the prosodic annotation was based on the higher 
quality corrections done by Prof. Picone's group (ISIP) at Mississippi State.  In addition, we made use of 
the DARPA EARS metadata annotations that overlapped with the Treebank parses, which where again 
based on the higher quality transcriptions. To be able to use all of these resources, we used an alignment 
of words provided by the ISIP team, and mapped the Treebank parse information to the more recent word 
transcriptions, which could then be aligned with the EARS metadata annotations. Differences in 
transcriptions were handled by: dropping the parse information for deletions, transferring it as is for word 
substitutions, and treating it as "missing" information for insertions in the corrected transcripts.  While 
most of the differences between the Treebank and corrected word transcriptions involved simple 
substitutions (or deletions) that had little or no impact on the parse (e.g. "a" vs. "the"), there were some 
cases where the transfer introduced noise into the collection of parses. The most frequent such cases were 
in disfluent regions, where transcribers tend to have more difficulties, including missed word fragments or 
repetitions ("I I" vs. "I I I").  An additional difference between the Treebank parses and the EARS 
metadata annotations is the marking of sentence boundaries.  Since speakers frequently begin sentences 
with conjunctions, the metadata conventions often split up constituents marked as compound sentences in 
Treebank. Because the metadata labelers listened to the speech and the Treebank labelers did not, we 
chose to use the metadata constituents, which in most cases involved simply dropping a top-level (S) 
node, but in some cases involved adding a top-level node called "SUGROUP". 

H.2 Automatic Labeling of Prosodic Structure 

An important part of the effort was development of an automatic prosodic labeling system that would 
provide cues to improve parsing. In addition, the resulting system was inspected to analyze possible 
dependencies between prosodic and parse structures in conversational speech. In the experiments, we 
used decision tree classifiers with different combinations of acoustic, punctuation, parse, and disfluency 
cues. While more sophisticated techniques, such as HMMs and maximum entropy models, have been 



used for related tasks of sentence boundary detection (see [Liu et al., 2005] for a brief survey), we chose 
decision trees because they are easy to inspect for learning about the prosody-syntax relationship and 
because this simplified the weakly supervised learning experiments, which were the focus of our efforts.  

For the prosody/syntax analyses, we designed trees to predict prosodic labels from syntactic structure, as 
well as trees to predict prosodic structure from a combination of syntactic and acoustic cues.  For 
purposes of providing information to a parser, we designed trees to predict prosodic constituents from 
acoustic cues and part-of-speech (POS) tags, but as an intermediate step in designing these trees we also 
used syntactic cues in designing trees as part of the weakly supervised training.  More specifically, a 
small set of labeled data was used to train prosody models based on both text and acoustic cues, which 
were then used in combination to automatically label a large set of data that had not been hand-annotated 
with prosodic structure, and finally new (separate) acoustic-based prosody models were designed from 
this larger data set for use in parsing new data. 

Experiments were conducted on the Switchboard corpus, using the prosodically annotated subset 
described above for initial training and evaluation (independent subsets for each). Then the full 
Switchboard training set was incorporated using various methods for weakly supervised learning, as 
described below. The prosodic constituent labels were merged into 3 classes: major intonational phrase 
boundary (4), hesitation boundary (1p, 2p), and all other fluent word boundaries.  We grouped minor 
intonational phrase boundaries (3) with the default word boundary class, because preliminary experiments 
showed that they were almost never predicted by the decision trees (even with sampled training to 
account for the low frequency) and because they were most often confused with the default word class in 
4-class prediction experiments. The simple 3-class system also has the advantage that it is relatively 
theory neutral and language independent in that essentially all languages have a notion of fluent and 
disfluent segmentation. 

The acoustic cues included normalized F0, energy and duration cues based on those used in [Kim et al., 
2004] and similar to those used in other metadata detection studies [Shriberg et al., 2000].  Text-based 
cues -- including punctuation, parse structure and disfluency markers -- were taken from the annotations 
available from the Linguistic Data Consortium, aligned to the word transcriptions as described above. The 
parse features included right-to-left and left-to-right relative depth, part-of-speech, label of the left and 
right syntactic constituents, and parenthetical markers.  In addition, disfluency interruption points and 
flags for filled pauses and sentence-initial conjunctions were used as features.  Punctuation as inserted by 
a human transcriber (including incomplete sentences) and estimated speaker turn boundaries (defined 
simply as a word boundary with a silence of length greater than 4s) were also used. 

The baseline system trained on hand-labeled data has error rates of 9.6% when all available cues are used 
(both syntax and prosody) and 16.7% when just acoustic and POS cues are used.  This can be compared 
to an error rate of 30% when the default class is assigned to all word boundaries.  We considered three 
different weakly supervised training techniques for adding data without prosodic labels (but with hand-
labeled syntactic structure) into the training set: EM, co-training, and self-training.  The co-training 
algorithm used classifiers designed on either acoustic or syntactic cues, and it differed slightly from the 
standard method in that we used an information-theoretic distance on the tree posteriors to determine 
when to omit samples with conflicting classifier decisions.  The self-training algorithm used bagging with 
uniform class sampling to deal with data skew [Liu et al., 2004]. In all cases, only 1-2 iterations were 
needed.  Both the co-training and EM approaches gave improved performance over the baseline, with the 



EM algorithm giving the best results of 14.2% error for the acoustic-only trees, which corresponds to a 
15% reduction in error rate over supervised training. The self-training strategy actually hurt performance.4 

From analysis of the resulting trees, we find that punctuation and repair points are correlated with 
prosodic breaks and hesitations, as expected.  Silence duration is the most useful individual acoustic 
feature, but alone it is not a reliable predictor of prosodic phrases, since there are many prosodic phrases 
that do not occur at silences and because silences are frequently associated with hesitations. Aside from 
syntactic structure, the most important text features for predicting prosodic constituents are punctuation, 
disfluency edit point markers, filler words (sentence-initial coordinating conjunctions, discourse markers, 
filled pauses), and turn boundaries. Some important syntactic features include depth of subtrees on the left 
and right sides of the boundary, previous and next syntactic constituent tag, length of closing phrase, and 
part-of-speech tags. These features were relevant when associated with the target word boundary, but 
frequently also with the next or previous word boundary. Surprisingly, the label of the joining constituent 
is not useful.  This analysis provided input into the parse reranking work described in the next section. 

Due to the success of the weakly supervised training on prosodic phrase boundary detection, we have 
recently started investigating use of the same technique for training models of prosodic prominence. 
Initial results show only a 4% reduction in error rate for the system based on acoustic cues, from 22% to 
21% error.  Despite the high error rate, however, the automatically annotated prominence appears to be 
useful in topic identifications in preliminary experiments associated with a separate NSF project (IIS-
0121396). 

H.3 Prosody and Parsing 

Parsing speech can be useful for a number of tasks, including information extraction and question 
answering from audio transcripts. However, parsing conversational speech presents a different set of 
challenges than parsing text: sentence boundaries are not well-defined, punctuation is absent, and 
presence of disfluencies (edits and restarts) impact the structure of language. Most prior work on parsing 
conversational speech has focused on handling disfluencies [Hindle 1983; Mayfield 1995; Charniak & 
Johnson, 2001], but experiments relied on hand-marked sentence boundaries and made use of punctuation 
as in text-based parsers.  While utterance-level segmentation may be reasonable to assume in current 
human-computer dialog systems, it is not realistically available in recognized conversational speech. 
Hence, our work looked at the problem of parsing text with disfluencies and without punctuation. 

We have investigated three main issues in the use of prosody in parsing: the impact of automatic sentence 
segmentation, the usefulness of interruption points, and the usefulness of automatically detected sub-
sentence prosodic constituent boundaries (described above). In all cases, we use a two-stage architecture 
where metadata (constituent boundaries) are first detected with a combination of prosodic and simple text 
features, and then these symbolic events (or their posterior probabilities) are used in parsing. Our 
approach focuses on categorical boundary events, which are predicted from a combination of acoustic 
features, rather than using the acoustic features directly. As argued earlier, the intermediate representation 
simplifies training with sparse structures.  Key research issues include whether the metadata should be 
treated as "words" or as features on words, whether edits should be represented with an independent 
component, and how to represent uncertainty of the metadata classifiers.  Our work has begun 
investigating all of these questions, but some remain unanswered and are being pursued in ongoing work. 

                                                      

4 The results reported here are in some cases worse than those reported in an earlier progress report, because they are based on a 
larger data set.  Due to a data processing bug, several files were omitted from earlier studies. In addition, because of the larger 
amount of data used and the richer feature sets, the trees are much larger than those described in prior reports. 



The data used in this work is the Treebank portion of the Switchboard corpus of conversational telephone 
speech, which includes sentence-like unit boundaries (SUs) as well as the reparandum and interruption 
point of disfluencies.  The data consists of 816 hand-transcribed conversation sides (566K words), of 
which we reserve 128 conversation sides (61K words) for evaluation testing according to the 1993 NIST 
evaluation choices.  In all cases, training was based on hand-labeled SUs.  Parses were evaluated using 
SU boundaries rather than the standard punctuation-based units that the Treebank is based on, so the gold 
standard parses and parse evaluation metric were modified to incorporate the SUs. 

The most exhaustive series of experiments looked at the impact of automatic segmentation on parsing.  
For this particular effort, we chose to work with the complete word sequence, i.e. including all of the 
words within edit regions, to allow experimentation with multiple parsers. In initial work [Kahn et al., 
2004], we used the structured language model (SLM) as a parser with a simple pause-based segmentation 
and automatically detected SUs (69% vs. 35% slot error rate, respectively), showing a significant 
improvement in parsing performance when using the automatic SUs.  We then confirmed the findings 
with results on the same segmentation alternatives but using two state-of-the-art statistical parsers trained 
on conversational speech: the Bikel [Bikel, 2004] 5 and Charniak [Charniak & Johnson, 2001] 6 parsers.  
Figure 1 shows the relative performance of each parser for the two different segmentations, comparing to 
the oracle performance for each using hand-annotated SUs.  In order to have a single number for 
performance, we use the F-measure calculated from bracket precision and recall.  (Trends with separate 
precision and recall measures and with bracket crossing statistics follow the same patterns.)  For all three 
parsers, there is a significant gain in performance due to using the explicit SU detection algorithm, with 
more than half of the performance loss associated with the pause-based segmenter recovered when 
moving to the more sophisticated SU detection system. As SU detection improves, we would expect 
further performance gains.  Also important is the observation that the impact of increased SU error is not 
lessened by using a better parser: the best oracle results were achieved with the Bikel parser, but it was 
much more sensitive to SU errors than the 
SLM. 

In trying to understand the role of IPs in 
parsing, we ran several experiments, 
including some with and without human-
annotated punctuation.  Without 
punctuation, there was a small increase in 
parsing performance of the SLM using IPs 
When the SUs are automatically detected. 
We were not able to confirm these gains 
with other parsers; however, recent work in 
[Johnson, Charniak & Lease, 2004] shows a 
benefit to edit detection from using IPs 
which presumably would lead to improved 
parsing in their two-stage processing 
strategy [Johnson & Charniak, 2004].  
Including punctuation and IPs in 
experiments with the SLM showed an 
                                                      

5 http://www.cis.upenn.edu/~dbikel/download.html (Version 0.9.9). For this work, we trained the Bikel 
parser on the Switchboard Treebank parses with the Collins settings. 

6 ftp://ftp.cs.brown.edu/pub/nlparser/ (August 2004) 

 
Figure 3. Relative performance of different parsers for the RT03 
MDE SU detection system and a simple pause-based system, in 
each case comparing the F-measure to that obtained with oracle 
SUs. 



interesting trade-off of bracket precision and 
recall using the two different cues, as illustrated 
in Figure 2.  We saw the improved precision 
associated with using both punctuation and IPs as 
possible evidence that sub-sentence prosodic 
constituents might be useful. 

In all of the above work, metadata is incorporated 
as "word" tokens, similar to the standard 
mechanism for parsers to incorporate 
punctuation.  For sentence segmentation with a 
reasonably reliable segmenter, this may make 
sense, but certainly for sub-sentence prosodic 
constituents there is the potential for the gains 
associated with adding prosody to be offset by a 
loss from the extra words blocking part of the 
history that might be used in a statistical model 
of word dependence. We conjecture that this may in part explain the negative results obtained in [Gregory 
et al., 2004], since our analyses of the prosody prediction trees provides some evidence that sub-sentence 
prosodic constituents may be useful in parsing. (The direct use of acoustic features may also be 
problematic.) In addition, the use of metadata events as "words" requires a hard decision in the first stage 
of detection, and many results in speech processing suggest that soft decisions (e.g. using class posteriors) 
are more effective.  

To address these problems, we developed an extension to the SLM that uses prosodic constituents as 
hidden conditioning variables, similar to headword conditioning in the SLM.  However, since our 
subsequent work obtained much better baseline performance with other parsers, we decided to explore a 
parse reranking framework [Johnson et al., ms. in prep.] as an alternative method for incorporating 
automatically detected prosodic constituents.  The approach uses a maximum entropy reranking model 
and introduces new features based on counts of syntactic constituent types weighted by the posterior 
probability of different prosodic events.  Experiments with this new approach are in progress, now under 
other funding, and we anticipate having results in early 2005.  This series of experiments will also look at 
the question of whether a separate stage of edit detection benefits parsing compared to simply 
incorporating the edit structure in the parser with the same status as other constituents. 

I. Institute for Signal and Information Processing, Mississippi State University 

Hidden Markov models (HMMs) with Gaussian emission densities are the prominent modeling technique 
in speech recognition. HMMs suffer from an inability to learn discriminative information and are prone to 
overfitting and overparameterization. Recent work in machine learning has focused on models, such as 
the support vector machine (SVM), that automatically control generalization and parameterization as part 
of the overall optimization process. SVMs, however, require ad hoc (and unreliable) methods to couple it 
to probabilistic speech recognition systems. We have applied a probabilistic Bayesian learning machine 
termed the relevance vector machine (RVM) as the core statistical modeling unit in a speech recognizer. 
The RVM is shown to provide superior performance compared to HMMs and SVMs in terms of both 
accuracy and sparsity on a continuous alphadigit task. 

Computer speech recognition is typically posed as a statistical pattern recognition problem based on 
Bayesian methods in which the acoustic model and language model are treated as separate statistical 
models. The focus of our work has been the acoustic model, which maps sequences of features vectors to 
probabilities that these vectors were produced by a given linguistic unit, such as phone. In most state of 

 

Figure 4. Precision-recall trade-offs associated with using 
punctuation, oracle IPs or both in addition to SUs in 
parsing. 



the art recognition systems, a hidden Markov model (HMM) is used as the acoustic model. The popularity 
of the HMM representation is based on an HMMs ability to simultaneously model the temporal 
progression of speech (speech is usually seen as a “left-to-right” process) and the acoustic variability of 
the speech observations. The temporal variation is modeled via an underlying Markov process while the 
acoustic variability is modeled by an emission distribution at each state in the Markov chain.  

The most commonly used emission distribution is the Gaussian mixture model (GMM). While 
combinations of HMMs and Gaussian mixture models have been extremely successful, there are two 
fundamental limitations of these approaches: (1) the parametric form of the underlying distribution is 
assumed to be Gaussian, (2) the maximum likelihood (ML) approach, which is typically used to estimate 
model parameters, does not explicitly improve the discriminative ability of the model. The ML approach 
maximizes the probability of the correct model while implicitly ignoring the probability of the incorrect 
model. Ideally, a training approach should force the model toward in-class training examples while 
simultaneously driving the model away from out-of-class training examples. Methods such as maximum 
mutual information and minimum classification error have been developed to incorporate discriminative 
training directly into the standard HMM/GMM framework. However, their success has been limited due 
primarily to their considerable computational costs. 

The weaknesses of the HMM/GMM system have led researchers to explore other models, such as hybrid 
connectionist systems, which merge the power of artificial neural networks (ANNs) and HMMs. 
HMM/ANN hybrids have shown promise in terms of performance but have not yet found  widespread use 
due to some serious problems. First, ANNs are prone to overfitting the training data if allowed to blindly 
converge. To avoid overfitting, a cross-validation set is often used to define a stopping point for training. 
This is wasteful of data and resources — a serious consideration in speech where the amount of labeled 
training data is limited. ANNs also typically converge much slower than HMMs. Most importantly, the 
HMM/ANN hybrid systems have not shown the substantial improvements in recognition accuracy over 
HMM/GMM systems that would be necessary to force a paradigm shift. 

The approaches developed in this work draw significantly from the HMM/ANN hybrid systems. 
However, we seek methods which are automatically immune to overfitting without the artificial 
imposition of a cross-validation set as well as methods which can automatically learn the appropriate 
model structure as part of the overall optimization process. One such model that has come to the forefront 
of pattern recognition research is the support vector machine (SVM). The support vector paradigm is 
based upon structural risk minimization (SRM) in which the learning process is posed as one of 
optimizing some risk function. The optimal learning machine is the one whose free parameters are set 
such that the risk is minimized. 

Finding a minimum of the risk function is typically impossible due to the unknown distribution. Instead, 
it has been shown that a relationship exists between the actual risk, which is related to the empirical risk 
(i.e. the training set error which can be measured) and the Vapnik-Chervonenkis (VC) dimension. The VC 
dimension is a measure of the capacity of a learning machine to learn any training set and is typically 
closely related to the complexity of the learning machine’s structure. With this result, we can guarantee 
both a small empirical risk (training error) and good generalization — an ideal situation for a learning 
machine. 

In their most basic form SVMs use the SRM principle to impose an order on the optimization process by 
ranking candidate separating hyperplanes based on the margin they induce. For separable data, the 
optimal linear hyperplane is the one that maximizes the margin. The true power of the SVM, however, 
lies in how it deals with nonlinear class separating surfaces. Providing for a nonlinear decision region is 
accomplished using kernels. The optimization process yields a decision function where the sign of can be 
used to classify examples as either in-class or out-of-class. The decision function is formed from only 



those training vectors that lie on the margin or in overlap regions. In practice, the proportion of the 
training set that becomes support vectors is small, making the classifier sparse. Consequently, the training 
process,  along with the training set, directly optimize the complexity of the learning machine. In contrast, 
ANN systems often make a priori assumptions about the form of the model. 

SVMs have had great success on static classification tasks. However, it is only recently, that these 
techniques have been applied to continuous speech recognition. While the SVMs provide an excellent 
classification paradigm, they suffer from two serious drawbacks that hamper their effectiveness in speech 
recognition. First, while sparse, the size of the SVM models (number of non-zero weights) tends to scale 
linearly with the quantity of training data. For a large speaker independent corpus this effect is 
prohibitive. Second, the SVMs are binary classifiers. In speech recognition this is an important 
disadvantage since there is significant overlap in the feature space which can not be modeled by a yes/no 
decision boundary. Further, the combination of disparate knowledge sources (such as linguistic models, 
pronunciation models, acoustic models, etc.) requires a method for combining the scores produced by 
each model so that alternate hypotheses can be compared. Thus, we require a probabilistic classification 
which reflects the amount of uncertainty in our predictions. 

We have investigated a Bayesian model termed the relevance vector machine (RVM) which is similar in 
form to the SVM but which addresses these two problems. The essence of an RVM is a fully probabilistic 
model with an automatic relevance determination prior over each model parameter. Thus, sparseness in 
the RVM model is explicitly sought in a probabilistic framework. 

I.1 Sparse Bayesian Methods 

Supervised learning in speech recognition implemented via a maximum likelihood approach is the 
dominant approach for finding values of the parameters in our model that best match the training data. 
Our expectation in data modeling is that given sufficient training data, the model would generalize to 
unseen test sets. Two levels of inference must be implemented to accomplish this. First, assuming that a 
particular model is true, we seek to infer the values for the parameters of the model that best fit the data at 
hand. This is exactly the training process used in the ANN hybrids. Second, we must decide which model 
is most appropriate given the data at hand, i.e. model comparison. 

A simple approach to model comparison might dictate that we simply choose the model that fits the data 
best — the maximum likelihood solution. However, a more complex model can always fit the data better. 
Jaynes describes an extreme interpretation of this problem where we would always choose the so-called 
Sure Thing hypothesis, under which exactly the training set and only the training set is possible. Though 
it is the maximum likelihood solution, the Sure Thing hypothesis is intuitively displeasing and is counter 
to our desire for a solution which generalizes. We avoid choosing the Sure Thing hypothesis by 
expressing an a priori preference for simpler solutions using the principle of Occam’s Razor. MacKay 
and others have formalized this preference mechanism through the use of Bayesian methods. These 
provide a natural and quantitative embodiment of Occam’s razor. The first level of inference requires that 
we find the best-fit parameters. The second level of inference requires the comparison of competing 
hypotheses. If we assume that the competing hypotheses are a priori equiprobable then the best 
hypothesis is chosen by evaluating the evidence. The evidence is computed by marginalization across the 
model parameters. 

The evidence provides a natural trade-off between the best-fit likelihood and the Occam factor. This 
concept is closely related to other methods such as the Minimum Description Length and the Bayesian 
Information Criteria where the model is directly penalized by the number of parameters used. A similar 
idea was also incorporated into SVM models, which penalize the models with too large a capacity (VC 
dimension). However, while the SVM models are forced to estimate the penalty via cross-validation 



schemes, Bayesian techniques automatically 
determine and apply the penalty in a fully 
probabilistic framework. 

Assuming we have no prior knowledge that 
would cause us to favor a particular prior, we 
can find the optimal value for by evaluating 
the evidence. If we did have prior 
knowledge, we would simply repeat the 
inference over using the prior. At some level 
of the inference, we will arrive at a point 
where our prior knowledge is too weak to 
apply and then we evaluate the evidence. 
This extreme application of the Bayesian 
prior as a control parameter is known as the 
method of automatic relevance determination (ARD). It is so named because the prior over the input unit 
weights in a neural network can ‘shut-off’ those input dimensions which are irrelevant to the problem at 
hand. ARD is at the heart of the relevance vector machines that will be described next. 

I.2 Relevance Vector Machines 

An application of the evidence framework to kernel machines is the relevance vector machine (RVM). As 
with SVMs, RVMs use a weighted linear combination of basis functions. Due to the large number of 
parameters in this mode l— one per observation — we must guard against overfitting of the model to the 
training data. SVMs use a control parameter to implicitly balance the trade-off between training error and 
generalization. RVMs take a Bayesian approach and explicitly define an ARD prior distribution over the 
weights. 

Each weight in the RVM model has an individual hyperparameter, , that is iteratively reestimated as part 
of the optimization process. As the hyperparameter grows larger, the prior on becomes infinitely peaked 
around zero, forcing to go to zero and, thus, contributing nothing to the summation. This process 
automatically embodies the principle of Occam’s Razor because it explicitly seeks the simplest model that 
satisfies the data constraints. In practice, the majority of the weights are pruned, resulting in an 
exceedingly sparse model with generalization abilities on par with SVMs. To complete the Bayesian 
specification of the model, we have to specify a prior probability. In practice we use a non-informative 
(flat) prior to indicate a lack of preference. 

The parameter estimation process is an iterative reduction process. That is, initially each vector of the 
system is allocated one parameter. As the procedure continues, vectors are pruned from the model when 
they are found to be irrelevant with respect to the remaining parameters. Integral to this iterative 
reestimation process is the computation of the inverse Hessian matrix. This operation requires the 
inversion of an MxM Hessian matrix where M is initially set to the size of training set. For larger training 
sets (on the order of a few thousand), this computation is prohibitive both in time and memory.  

I.3 Experiments 

RVMs have had significant success in several classification tasks. These tasks have, however, involved 
relatively small quantities of static data. Speech recognition, on the other hand, involves processing a very 
large amount of temporally evolving signals. In order to gain insight into the effectiveness of RVMs for 
speech recognition, we explored two tasks. We first experimented on the Deterding static vowel 
classification task which is a common benchmark used for new classifiers. Second, we applied the 

 
Table 3. Performance comparison of SVMs and RVMs to other 
nonlinear classifiers on static vowel classification data. 



techniques described above to a complete small vocabulary recognition task. Comparison with SVM 
models are given below. For each task, the RVMs outperformed the SVM models both in terms of model 
sparsity and error rate. 

In our first pilot experiment, we applied SVMs and RVMs to a publicly available vowel classification 
task, Deterding Vowels. This was a good data set to evaluate the efficacy of static classifiers on speech 
classification data since it has been used as a standard benchmark for several nonlinear classifiers for 
several years. In this evaluation, the speech data was collected at a 10 kHz sampling rate and low pass 
filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters, giving a 10 dimensional 
input space. A window duration of 50 msec was used for generating the features. The training set 
consisted of 528 frames from eight speakers and the test set consisted of 462 frames from a different set 
of seven speakers. The speech data consisted of 11 vowels uttered by each speaker in a h*d context. 
Though it appears to be a simple task, the small training set and significant confusion in the vowel data 
make it a very challenging task. 

Table 1 shows the results for a range of nonlinear classification schemes on the Deterding vowel data. 
From the table, the SVM and RVM are both superior to nearly all other techniques. The RVM achieves 
performance rivaling the best performance reported on this data (30% error rate) while exceeding the 
error performance of SVMs and the best neural network classifier. Importantly, the RVM classifiers 
achieve superior performance to the SVM classifiers while utilizing nearly an order of magnitude fewer 
parameters. While we do not expect the superior error performance to be typical (on pure classification 
tasks) we do expect the superior sparseness to be typical. This sparseness property is particularly 
important when attempting to build systems which are practical to train and test. 
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